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Abstract: Background: “Dimocarpus longan Lour” is a tropical and subtropical evergreen tree species
mainly found in China, India, and Thailand; this plant, found naturally in Bangladesh, even locally,
is used as “kaviraj” medication for treating different diseases, such as gastrointestinal disorders,
wounds, fever, snake bites, menstrual problem, chickenpox, bone fractures, neurological disorders,
and reproductive health. Different parts of this plant, especially juice pulp, pericarp, seeds, leaves,
and flowers, contain a diverse group of botanical phytocompounds, and nutrient components which
are directly related to alleviating numerous diseases. This literature-based review provides the most
up-to-date data on the ethnomedicinal usages, phytochemical profiling, and bio-pharmacological
effects of D. longan Lour based on published scientific articles. Methodology: A literature-based
review was conducted by collecting information from various published papers in reputable journals
and cited organizations. ChemDraw, a commercial software package, used to draw the chemical
structure of the phytochemicals. Results: Various phytochemicals such as flavonoids, tannins, and
polyphenols were collected from the various sections of the plant, and other compounds like vitamins
and minerals were also obtained from this plant. As a treating agent, this plant displayed many
biologicals activities, such as anti-proliferative, antioxidant, anti-cancer, anti-tyrosinase, radical
scavenging activity, anti-inflammatory activity, anti-microbial, activation of osteoblast differentiation,
anti-fungal, immunomodulatory, probiotic, anti-aging, anti-diabetic, obesity, neurological issues,
and suppressive effect on macrophages cells. Different plant parts have displayed better activity in
different disease conditions. Still, the compounds, such as gallic acid, ellagic acid, corilagin acid,
quercetin, 4-O-methyl gallic acid, and (-)-epicatechin showed better activity in the biological system.
Gallic acid, corilagin, and ellagic acid strongly exhibited anti-cancer activity in the HepG2, A549, and
SGC 7901 cancer cell lines. Additionally, 4-O-methyl gallic acid and (-)-epicatechin have displayed
outstanding antioxidant activity as well as anti-cancer activity. Conclusion: This plant species can be
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considered an alternative source of medication for some diseases as it contains a potential group of
chemical constituents.

Keywords: Dimocarpus longan Lour; immunomodulatory; obesity; neurological disorder; flavonoid;
antiproliferative; anti-colorectal cancer; 4-O-methyl gallic acid

1. Introduction

The Chinese word “longan”, meaning “dragon-eye”, conveys an accurate description
of the fruit details after removing the fruit’s skin [1]. Dimocarpus longan Lour, or simply
longan, is the well-known tropical and subtropical tree species of the Sapindaceae family
under the Dimocarpus genus growing mainly in South Asian countries. However, China,
Thailand, India, and more recently Vietnam, cultivated this plant only for commercial
purposes [2]. As well as developing Asian countries, the tree can be found in Central
and South American countries, southern African countries, and Australia [3]. However,
depending on the climate and soil conditions, the evergreen longan tree is approximately
20 m in height, has mild green leaves, unisexual/bisexual flowers, and heart-shaped fruits,
i.e., 22–36 mm in diameter and weight of 6–19 g [2]. Here, the edible fresh fruits that have
outstanding importance like thin pericarp, soft pulp covering the seed, and hence, the aril
is sweeter; of late, the whole fruit has diverse nutrient components that are directly related
to medicinal usages [4]. From ancient times, various parts of this plant as pulp, pericarp,
seed, leaves, and flowers have health benefits due to it containing fundamental bioactive
components, which protect the body from different disorders, namely, insomnia, amnesia,
nerve pain, fever, snake bites, gastrointestinal disorders, cuts and wounds, and menstrual
problems [5–7].

Generally, Dimocarpus longan is a plentiful source of excellent botanical compounds
from different parts (pulp, pericarp, seed, leaves, flowers); among them, the pulp is the
rudimentary source of nutritional value with excellent ions (i.e., K, Mg, P, Fe, Ca), and most
of them have diverse biological functions for human health [8]. Some research output data
provided the active amino acid contents within the pulp part of the longan fruit juice [9,10].
However, several research findings reported that bioactive phytochemicals from the pulp
part of the Lour are phenolic as well as saccharides, both poly- and mono-saccharides [11–15].
Additionally, in recent years, various scientific reports validated that few potential health
effective compounds were extracted from the pericarp [16–22]. However, their brownish
black seeds are also major sources of botanical phytocompounds [18,20,23–26], furthermore,
leaves and flowers produce the major botanical phytoconstituents (ethyl gallate, astragalin,
luteolin, gentisic acid, epicatechin, proanthocyanidin) that have potential health benefits
and most interestingly, all of them belong to either the polyphenol, flavonoid, or both,
groups [27,28].

Aforementioned botanical bioactive compounds have found numerous biological
activity by in vivo and in vitro model analysis, for example, longan leaf extracts have
antiproliferative activity against cancer cell lines, the pericarp extracts including 4-O-
methylgallic acid and (-)-epicatechin also have potent antioxidant capability and provide
health benefits [21]. Additionally, polysaccharides derived from the pulp of the D. longan
plant effectively affect hepatoma cells (one kind of cancer cell) and must be followed
in a dose-dependent manner [29]. Furthermore, the glucans (1-3)-β-D-glucan and (1-6)-
α-D-glucan have potent anti-cancer activity, as the experiment conducted by the Iteku
Bekomo Jeff and colleagues [30] showed. It is important to mention that extracted longan
pulp polysaccharides (LP I–IV) directly inhibited the proliferation of HeLa, A549, and
HepG2 cancer cell lines at different concentrations ranging from 5.6 to 16.8 percent, 8.3 to
23.2 percent, and 4.7 to 29.5 percent, respectively, and most importantly, LP III inhibited
the A549 and HepG2 cells more strongly than other pulp crude extracts [31]. Moreover,
three phenolic compounds (gallic acid, corilagin, and ellagic acid) exhibited significant
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anti-cancer activity in the SGC 7901, HepG2, as well as A549 cancer cell lines [19]; at
the same time, flower and seed extracts of the longan plant possessed strong anti-cancer
potential on several cancer cell lines via mediating the cancer modulatory pathways [32].
Consequently, inflammation and inflammation-mediated diseases are minimized via me-
diating the H2O extract of longan pericarp [33]. Longan leaf extract and specific extracted
chemical components possess significant activity towards the HCV (hepatitis-C virus) and
influenza virus infection, respectively [34,35]; lipopolysaccharide (LP-1, 2) derived from
the longan pulp possesses immunomodulatory activity [12]. Here, ellagic acid showed
the most potent anti-fungal activity, longan seeds have better anti-fungal activity against
opportunistic yeast, for example, Candida species and Cryptococcus neoformans [36]. Accord-
ing to the findings of several research studies, the leaf extract has anti-aging properties
that are dose-dependent [37,38], on the other hand, research outcomes demonstrated that
the extracted compounds from the longan fruit and water extract of the longan flower
have been shown to have strong neuroprotective effect through enhancing the survival
of immature neurons [39,40]. The seed extract of the longan plant have also shown strong
anti-diabetic and anti-hyperglycemic effect in both in vitro and in vivo research models
by inhibiting glucosidase activity [41]. Moreover, longan polyphenol (quercetin) inhibits
tyrosinase activity [42]; longan flower water extract directly ameliorates hyperlipidemic
effects and obesity following the regulation of SREBP-1c with FAS gene expression molecu-
lar mechanisms [43,44]. D. longan fruit extract directly involves the activation of Erk-1/2
(extracellular signal regulated kinase-1/2) enzyme-dependent-RUNX-2 (runt related tran-
scription factor-2) factors and initiates the differentiation of osteoblasts along with strong
activity towards osteoporosis issues [14].

The current review provides more advanced information on the ethnomedicinal uses,
taxonomical details, phytochemical profiling, and pharmacological effects of D. longan
Lour based on published scientific reports and databases.

2. Research Methodology

In this current review, all of the significant data were collected and analyzed, as well as
summarized, from diverse areas of the Dimocarpus longan plant, including botanical descrip-
tion, ethnomedicinal purposes, bioactive phytoconstituents, pharmacological activities
through searching PubMed, Google Scholar, Scopus, Willy online sources, ScienceDirect,
ResearchGate, SpringerLink, Web of Science, and several patent offices (as-USPTO, CIPO,
WIPO). However, all of the published work on Dimocarpus longan was cited in this in-
vestigation, which is published in English along with distinct keywords, are used for
searching information such as D. longan and D. longan Lour, botanical description, active
phytochemicals of longan, scientific classification, anti-cancer, anti-microbial and D. longan,
anti-inflammation, and longan plant parts were used. All references listed in the collected
articles were also examined to identify further relevant papers. All chemical compound
structures were drawn via the ChemDraw tool.

3. Results and Discussion
3.1. Scientific Classification of Longan and Geographical Description

Taxonomical details of longan tree here—[9]
Kingdom—Plantae

Division—Angiospermea (flowering plant)
Class—Eudicots

Subclass—Rosidea
Order—Sapindales

Family—Sapindaceae
Genus—Dimocarpus

Species—Dimocarpus longan Lour
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China is the original birthplace of the longan tree, but it is widespread in all parts of
South Asian countries. All tropical and sub-tropical countries produce this tree, but it is
mainly propagated in China and Thailand [45]. It is noteworthy that different countries
commercially cultivate this tree, for example, China, Thailand, India, and Vietnam [46].
Counter-wise, Crane et al. (2005) [3] reported that the tree was found in Taiwan, Myanmar,
Cambodia, Laos, Australia, Kenya, some Central and South American countries, and
southern African countries. In Bangladesh, the district of Barisal is most famous for
cultivating the Dimocarpus longan Lour and it is known locally as “Kath litchi or Ashphal”,
which is used as an edible fruit as well as for medicinal purposes (mainly used as an
antidote) [47].

3.2. Complete Botanical Description of D. longan Tree

The longan is a very gracious, vertical, and static tree with 20 m height and diameter
depending on climate and soil conditions. The orbicular shape at the top of the tree grows
with uneven and mercurial peel [48]. Evergreen leaves of the longan tree are dilated with
6–9 leaflets per pair of spare and paripinnate leaves. The leaves are up to 30 cm (12 inches)
long and 3.5–5 cm wide with deep margins and stingless tops of the leaves. However, the
longan tree forms shiny leaves with dark green on the upper sides and on the lower base
the leaves have a mild green color. Leaves are usually smooth but now and then they have
a woolly texture [49]. A longan tree usually forms one shoot per year, but sometimes it
produces more than one flurry of the shoot and the tree shoots over summer or autumn.
Moreover, flowers are small, just 5–6 petalled and the tree produces both unisexual and
bisexual (hermaphroditic) flowers [50]. The petals of these flowers are yellow-brown with
the tree bearing flowers towards the end of winter. Besides, the female flower conveys a
carpellate ovary; flowers are 4–18 inches (10–45 cm) long, held on the panicle in bunch
form [3]. Dimocarpus longan fruits are small and drupaceous fruit of 22–36 mm in diameter
and weight of 6–19 g. Heart-shaped longan fruits contain only one seed, and fruits are
mostly yellowish to light brown with mellifluous carriage peel. The edible portion is robust
with fettle white-peel; furthermore, 350 fruits may be carried by panicles and flowering to
harvest is from 140–190 days [3]. Hence, mature longan fruit contains one seed inside the
fruit; basically, the seed is orbicular with black or brown color with a rounded white spot
that has the appearance of a dragon’s eye [51]. Various parts of this part are graphically
represented under the Figure 1.
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3.3. Ethnobotanical Usages of Longan

In China, the pulp of the longan Lour fruit showed diverse effective health biological
functions, for instance, flourishing blood metabolism, calming and relaxing nerves, alle-
viating insomnia, restraining amnesia, enhancing longevity, relieving nerve pain, curing
nerve swelling, and medicating palpitations [14]. Additionally, for a long time, the longan
plant was used to treat fatigue diseases. The phytochemical constituents of the flowers
and seeds of longan decrease the pain associated with urinary disorders. However, the
flower, root, pulp, and pericarp have antioxidant, anti-glycation, anti-tyrosinase, anti-
fungal, anti-microbial, and anti-cancerous activities. For these reasons, these parts are used
in medication for diabetes, cancer, fungal, microbial infections, etc. [14,49]. In Bangladesh,
the local “kaviraj” in Barisal use it for different diseases, such as gastrointestinal disorders,
cuts and wounds, fever, snake bites, menstrual problems, chickenpox, bone fractures, cattle
disorders, and so on; it is more prevalently used as the antidote for poison [47]. In Tabgail,
longan is used locally to treat neurological disorders and reproductive health [52].
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3.4. Nutrient Components and Phytochemicals Profiling of Dimocarpus longan
3.4.1. Nutrient Components of the Fruits

Carbohydrates (12–23%), potassium (196.5 mg/100 g), ascorbic acid (43.12–163.7 mg/100 g),
and water (about 80%) are all contained in fresh longan pulp [8]. Despite not having the
maximum polysaccharide content, the fruit pulp is the edible portion widely used in
traditional medicine [53]. Fresh longan fruit is rich in nutritional components and free
amino acids [54]. Dietary compositions and amino acid compositions are illustrated in
Tables 1 and 2, respectively. Fresh longan fruit pulp contains potassium (266 mg/100 g),
which maintains the proper functioning of nerves and muscles of humans [14]. Additional
minerals, including iron (Fe), calcium (Ca), phosphorus (P), and magnesium (Mg), are
abundant in longan fruit pulp. longan fruit pulp is rich in vitamins such as vit-C (ascorbic
acid), riboflavin, thiamin, and niacin (Table 1). Furthermore, water, protein, ash, carbohy-
drate, and fiber are available in the Lour. fruit pulp. Fresh longan fruit pulp contains seven
essential amino acids, and most importantly, few free amino acids, namely, glutamic acid
(Glu), alanine (Ala), aspartic acid (Asp), valine (Val), and leucine (Leu) are found (Table 2).

Table 1. Nutritional content per 100 g of fresh D. longan Lour fruit pulp (acquired from the USDA
National Nutrient Database [14].

Type Content Type Content

Water 82.75 g Total lipid (fat) 0.1 g
Energy 60 kcal Calcium (Ca) 1 mg
Protein 1.31 g Iron (Fe) 0.13 mg

Ash 0.7 g Phosphorus (P) 21 mg
Carbohydrate 15.14 g Potassium (K) 266 mg

Fiber (total dietary) 1.1 g Thiamin 0.031 mg
Magnesium (Mg) 10 mg Niacin 0.3 mg

Vit-C (ascorbic acid) 84 mg Riboflavin 0.14 mg

Table 2. Amino acid (aa) composition per 100 g of fresh D. longan Lour fruit pulp (acquired from the
USDA National Nutrient Database (https://fdc.nal.usda.gov/fdc-app.html#/food-details/169089
/nutrients; accessed on 10 September 2021).

Type Content (g) Type Content (g)

Threonine (Thr) 0.034 Leucine (Leu) 0.054
Isoleucine (Ile) 0.026 Lysine (Lys) 0.046

Methionine (Met) 0.013 Tyrosine (Tyr) 0.025
Phenylalanine (Phe) 0.03 Valine (Val) 0.058

Arginine (Arg) 0.035 Alanine (Ala) 0.157
Histidine (His) 0.012 Glutamic acid (Glu) 0.209
Glycine (Gly) 0.042 Proline (Pro) 0.042
Serine (Ser) 0.048 Aspartic acid (Asp) 0.126

3.4.2. Phytochemical Profiling

A vast amount of potential bioactive phytoconstituents have also been isolated from
different parts of the longan Lour tree and all compounds are reported within Table 3. More-
over, pulp is the chief source of the major phytocompounds, for instance, protocatechuic
acid, vanillic acid, caffeic acid, 4-methylcatechol, p-Coumaric acid, ferulic acid, syringic
acid, chlorogenic acid, quinic acid, narirutin, naringin, rhoifolin, hesperidin, phthalic
acid, methyl hesperidin, naringenin, phlorizin, gallic acid, epicatechin, (-)-epicatechin,
isoquercitrin, and coumarin [11,14,15,55]. On the contrary, pericarp accommodates many
compounds, including protocatechuic acid, ellagic acid, ethyl gallate, gallic acid, cori-
lagin, isoscopoletin, brevifolin, 4-O-methylgallic acid, proanthocyanidin trimer (a type),
(-)-epicatechin, quercetin, proanthocyanidins c1, methyl gallate, methyl brevifolin car-
boxylate, and rutin [16–22]. Furthermore, the D. longan seed contains corilagin, gallic
acid, ellagic acid, 3′-o-methyl-ellagic acid 4′-o-β-d glucopyranoside, ethyl gallate, geraniin,

https://fdc.nal.usda.gov/fdc-app.html#/food-details/169089/nutrients
https://fdc.nal.usda.gov/fdc-app.html#/food-details/169089/nutrients
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(s)-flavogallonic acid, as well as isomallotinic acid [18,20,23–26]. Furthermore, diverse
research findings indicated that the leaves and flowers of longan Lour consist of several
botanical phytochemicals, namely, ethyl gallate, astragalin, luteolin, kaempferol, quercetin,
gentisic acid, epicatechin, and proanthocyanidin [27,28]; of note, most of the chemical
compounds belong to either the polyphenol, flavonoid, or both groups. The chemical
structure of all compounds is represented in Figure 2.

Table 3. Tabular representation of extracted bioactive phytochemicals from the different parts of the D. longan Lour plant.

Plant Parts Phytocompounds References

Pulp

Protocatechuic acid, Vanillic acid, 4-Methylcatechol,
p-Coumaric acid, Ferulic acid, Syringic acid, Chlorogenic

acid, Quinic acid, Caffeic acid, Narirutin, Naringin,
Rhoifolin, Hesperidin, Phthalic acid, Methyl hesperidin,

Naringenin, Phlorizin, Gallic acid, Epicatechin,
Isoquercitrin, coumarin

[11,14,15,55]

Pericarp

Protocatechuic acid, Ellagic acid, Ethyl gallate, Gallic acid,
Corilagin, Isoscopoletin, Brevifolin, 4-O-methylgallic acid,

Proanthocyanidin, Epicatechin, Quercetin,
Proanthocyanidins C1, Methyl gallate, Methyl brevifolin

carboxylate, Rutin

[16–22]

Seeds Corilagin, Gallic acid, Ellagic acid, Ethyl gallate, Geraniin,
Flavogallonic acid [18,20,23–26]

Leaves Ethyl gallate, Astragalin, Luteolin, kaempferol, Quercetin [27]

Flowers Gentisic acid, Epicatechin, Proanthocyanidin [28]
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Protocatechuic acid, Ellagic acid, Ethyl gallate, Gallic acid, Corilagin, 
Isoscopoletin, Brevifolin, 4-O-methylgallic acid, Proanthocyanidin, Epicate-

chin, Quercetin, Proanthocyanidins C1, Methyl gallate, Methyl brevifolin 
carboxylate, Rutin  

[16–22]   

Seeds  Corilagin, Gallic acid, Ellagic acid, Ethyl gallate, Geraniin, Flavogallonic 
acid  [18,20,23–26]    

Leaves  Ethyl gallate, Astragalin, Luteolin, kaempferol, Quercetin [27]   
Flowers Gentisic acid, Epicatechin, Proanthocyanidin [28]   
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3.5. Pharmacological Activities of Dimocarpus longan

The pharmacological investigation of the D. longan Lour are as follows and the data
are summarized in Table 4.

3.5.1. Antiproliferative, Antioxidant Activity and Anticancer Activity

The excessive, abnormal, and uncontrolled growth of the body’s tissue cells are
characteristics of cancer. Cancer cells (invasive) infiltrate and continue to expand the
surrounding tissue (metastasis). Secondary metabolites are plant-derived compounds
with bioactivity that can inhibit cancer cell proliferation [56]. The antiproliferative ac-
tivity of D. longan leaf extracts against cell lines derived from cancer was studied in a
controlled environment and in in vivo research models. The research study also estab-
lished that longan leaf ethanol extract possessed significant antiproliferative activity against
cancer-derived cell lines. Table 4 also shows the significant pharmacological activities
of isolated compounds of longan. The highest antiproliferative activity was obtained by
extracting WEHI-164 at 600 µg/mL and 57.45 percent by 500 µg/mL of ethanol at THP-1 at
44.93 percent [57].

Antioxidants are the chemical substances that can improve shelf-life by delaying
the oxidation process when incorporated into cellular components, namely, DNA/RNA,
protein, and lipid molecules, which are one of the main reasons for foodstuff degradation
during production and storage [58]. Accordingly, bioactive compounds, particularly
from plant sources, have become more critical in recent years [59]. Many plant-derived
bioactive compounds, and crude vegetable and fruit extracts were known to positively
affect the free radicals in biological systems as significant antioxidant compounds [60,61].
The pericarp of the longan fruit is densely packed with bioactive substances such as
phenolic compounds, polyphenols, hydrolyzable tannins, and polysaccharides. Those
compounds had considerable antioxidant activity in different models of antioxidants,
including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, radical scavenging
activity of superoxide anions, total antioxidative capacity, and inhibitory lipid peroxidation
activity [22]. Phenolic compounds of longan plant parts have long been thought to possess
significant antioxidant and free radical scavenging properties, due to its ability to suppress
the enzymes responsible for the production of reactive oxygen species (ROS) and to reduce
rapidly oxidized ROS [62,63]. To further investigate the findings of various research, Fu
et al. discovered that longan possessed a ferric reducing antioxidant power (FRAP) value of
8.61 ± 0.44 µmol Fe (II)/g and a total phenolic value of 5.88 ± 0.34 µmol Trolox/g. The
study also revealed a strong interaction (R2 = 0.8416) among the FRAP value and total
phenolic content [59,64]. Several crops of longan have been studied for their antioxidant
potential, and the cellular antioxidant activity (CAA) scores ranged from 0.49 to 6.71 mol
quercetin equivalents (QE)/100 g of fruit with an average value of 2.76 mol QE/100 g
of fruit. According to CAA values, the antioxidant activity of longan fruit appears to be
dominated by phenolics and flavonoids [11]. The FRAP value of longan plant seed was also
greater compared to the longan peel and pulp [65], in which the pulp has the lowest FRAP
value within the three components. In addition, 4-O-methyl gallic acid and (-)-epicatechin
also have antioxidant capabilities and health benefits extracted from the pericarp [22].
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It is now known that cancer is the number one health threat to the general population,
and thus we need to prevent and treat it by using potential strategies [66]. It is increasingly
a preventable disease because cancer develops progressively slowly and takes many years
to become a life-threatening condition [67–69]. A pure polysaccharide (LPS1) derived from
the pulp of the longan plant has a dose-dependent manner for the significant effect on hep-
atoma cells, most likely due to the immunomodulatory activities of (1–6)-α-D-glucan [29].
The research study by Iteku Bekomo Jeff and colleagues demonstrated that the anti-cancer
activity of the glucans (1-3)-β-D-glucan and (1–6)-α-D-glucan were confirmed [30]. In the
in vitro studies, a new water-soluble polysaccharide derived from the longan pulp (LP1)
demonstrated a significant anti-tumor effect on the SKOV3 and HO8910 cancer cell lines,
with the antiproliferative percentages of 40 percent at a concentration of 40 mg/L and
50 percent at a concentration of 320 mg/L, respectively, at different concentrations [12].
Four extracted longan polysaccharides (LP I–IV) and refined longan pulp polysaccharides
inhibited the proliferation of A549, HeLa, and HepG2 cancer cell lines at different con-
centrations ranging from 5.6 to 16.8 percent, 8.3 to 23.2 percent, and 4.7 to 29.5 percent,
respectively, and LP III inhibited A549 and HepG2 cells more strongly than refined or crude
longan pulp polysaccharides [31]. The insights of the factors associated with polysaccharide
anti-tumor function were in the following order: water solubility > chain conformation >
average molar masses (Mw) [70]. According to cancer epidemiological studies, enhancing
the consumption rate of phenolic contents is associated with a lower risk of cancer forma-
tion [71–74]. Three phenolic compounds exhibited significant anti-cancer activity in the
HepG2, A549, and SGC 7901 cancer cell lines: gallic acid, corilagin, and ellagic acid [19].
Chih-Cheng Lin et al. (2012) [32] noted that the extracted compounds of longan flower and
seed possessed strong anti-cancer potential on several cancer cell lines through inhibiting
the cancer modulatory pathways.

3.5.2. Anti-Inflammatory Properties

Inflammation has been defined as the tissue’s localized protective response to injury
or infection, manifested by pain, redness, and swelling. The inflammatory process involves
several physiological systems with a central role in the immune system. Several molecules
and signaling pathways are upregulated in damaged areas as a result of inflammation.
The inducing features of nitric oxide synthase (iNOS) and cyclooxygenase-2 are these pro-
inflammatory enzymes (COX-2). Increased levels of nitric oxide (NO) and prostaglandins
(PGs) are caused by the genes iNOS and COX-2, respectively [75]. Most strong evidence
for NO’s role as a mediating role of the inflammatory response has come from studies on
an animal rheumatoid model, human osteoarthritis, and rheumatoid arthritis, among other
sources [76].

Additionally, to cope with the increase in oxidative stress and inflammation that occur
during injury, tissues contain antioxidant enzymes such as superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase (GPx). In recent times, it was demonstrated that
dysfunctional cellular antioxidant mechanisms contribute to the development of a number
of adverse and cancerous diseases in organisms [77]. There is evidence that the critical roles
played by antioxidant enzymes in the inflammation pathway defend the organisms from
oxidative stress [78]. The suppression of NO and tumor necrosis factor (TNF) as well as the
enhancement of antioxidant enzyme activities, such as catalase, superoxide dismutase, and
glutathione peroxidase, have shown that the water extract of longan pericarp (WLP) has
anti-inflammatory properties [33].

3.5.3. Immunomodulatory Activities

Polysaccharides derived from a variety of natural sources have been shown to possess
immunomodulating properties [14,79]. LPD2, an effective polysaccharide derived from
longan pulp, demonstrated a significant effect on the upregulation of macrophages phago-
cytic effect as the multiplication of splenic lymphocytes through the toll-like receptor
2 (TLR2) and 4 (TLR4) facilitated myeloid differentiation factor 88/interleukin receptor-
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associated kinases (MDF88/ILRK) signaling pathway and the tumor necrosis factor receptor-
associated factor 6 (TRAF6) signaling pathway [12,80–82]. The major reason why LPD2
is the stronger immunomodulatory substance is higher molecular weight, acetyl groups,
and (1–4)-β-Glc. LP1 and LP1-S were shown to significantly raise the pinocytic effect of
murine macrophages and development of nitric oxide (NO), interleukin 6 (IL 6), interleukin
(IL-1), and tumor necrosis factor-alpha (TNF-alpha) in vitro, according to experimental
research [83]. Cytokines released during the immune response by the helper T-lymphocyte
play a significant role in controlling the existence of the reaction. For instance, type 1 helper
T-cells (Th1 cells) release interferon (IFN- γ) and interleukin-2 (IL-2) to modulate cell-
mediated immunity [84]. IFN- is a multifunctional cytokine that has immunomodulatory
effects on a variety of immune cells. IFN- has been shown in mammals as a marker of cel-
lular immunity in infected organisms [85]. Consequently, the IFN-α detection can be made
to preliminarily evaluate T cell activation’s extent [86]. The water-soluble polysaccharide
(LP1) extracted from Dimocarpus longan pulp has shown solid immunomodulatory activ-
ities. The research studies have significantly demonstrated that the LP1 have effectively
regulated the expression of the cytokine interferon-γ (IFN-γ) and enhanced the activity of
murine macrophages and the B- and T-lymphocyte production [12].

3.5.4. Prebiotic Activities

Prebiotics are the functional foodstuffs categorized as edible products that have to be
measured by their health benefit by their intake in the bloodstream, and by the component’s
main activity [87]. The non-digestible carbon-hydrates, such as resistant starch, galacto-
oligosaccharides (GOS), fructo-oligosaccharides (FOS), and various oligosaccharides that pro-
duce carbohydrates fermentable by advantageous colon microorganisms are prebiotics that
are obtained from natural sources such as vegetables, rootstock, fruit, milk, or honey [88,89].
The research studies noted that the longan pulp polysaccharides showed intense prebiotic
activity on several probiotic bacterial strains. The superfine grinding-assisted enzymatic
treatments (LP-SE) of longan pulp polysaccharides exhibited the most important prebiotic
activities with great potential in the use of functional food and medical industries [90]. The
polysaccharides from the pulp of longan had more significant effects on Lactobacillus plantarum,
Lactobacillus bulgaricus, Lactobacillus fermentum, and Leuconostoc mesenteroides than LP-H
(longan pulp polysaccharide extracted using warm water) and LP-S (longan pulp polysaccha-
ride extracted using superfine grinding) [90]. Longan cellulose with a degree of hydrolysis
of 21% demonstrated a greater prebiotic significance and growth level of bacteria for
Lactobacillus acidophilus and Bifidobacterium lactis [91].

3.5.5. Anti-Microbial Activities

Plant extracts and phytochemicals, both of which have been shown to have anti-
microbial properties, can become very useful in therapeutic approaches [92]. Several
studies in various countries have been carried out to demonstrate this efficiency [93].
Due to the production of compounds in the plant secondary metabolic pathways, several
species of plants have been used for their anti-microbial properties. These products are
characterized by essential ingredients, such as phenolic content found in essential oils
known as tannin [94,95]. The anti-microbial properties of longan Lour seed extracts were
examined using disc diffusion methods, and the minimum inhibitory concentration was
determined. The DL-P01-SI01 (Dimocarpus longan: crude methanolic extract; fractions:
DL-P01, aquation; ethyl acetate subfractions) fraction demonstrated the highest activity
against Staphylococcus aureus and methicillin-resistant S. aureus at an MIC of 64 mg/mL,
attributed to the phenolic compounds [24]. Apriyanto et al. (2015) [34] reported that the
longan tree leaf extract possesses activity towards the hepatitis-C virus and minimizing of
death rate. Anti-influenza activity has also been noted by the chemical components from
the parasitic plant on Dimocarpus longan Lour [35].
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3.5.6. Anti-Fungal Activities

Intermittent fungi cause severe disease and mortality in patients with weak immune
conditions [96]. Candida can be found in the normal flora of the mouth, skin, intestines,
and vaginal area. Candida albicans is one of the Candida species found in the oral cavity
and is responsible for most oral candidal infections [97]. Cryptococcus neoformans is a yeast-
like encapsulated fungus that causes central nervous system and pulmonary problems
in immunocompromised people and is an opportunistic fungal infection in both plants
and animals [98,99]. The results of many studies have shown that longan seeds have anti-
fungal activity against opportunistic yeast (Candida species and Cryptococcus neoformans).
Ellagic acid showed the most potent anti-fungal activity, followed by corilagin and gallic
acid, respectively, from all the extracted longan compounds. Candida krusei and some
Candida albicans clinical strains were more efficiently suppressed by ellagic acid than
Candida parapsilosis and Candida neoformans [36]. The significant pharmacological activities
of isolated compounds of longan are represented in Table 4.

3.5.7. Neuroprotective Activities

Human brain synaptic vesicles contain the neurotrophin, brain-derived neurotrophic
factor (BDNF), composed and deposited in the synaptic lesions to respond to endogenous or
exogenous transmissions. Integration with the trkB receptor or the p75NTR receptor reveals
its characteristics by interacting with the tropomyosin-related tyrosine kinase receptor
B (trkB) or the p75 neurotrophin binding site p75NTR [100,101]. BDNF, which assists in
neuronal transmission and memory incorporation, is an important component in producing
and maintaining long-term memory synaptic transmission [102,103]. Neurogenesis appears
to occur repetitively all throughout adulthood in two areas of the adult brain, known as
the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of
the dentate gyrus (DG) of the brainstem [104–106].

Additional findings have shown that brain-derived neurotrophic factor (BDNF) is
necessary to preserve neuronal cells throughout development and neurogenesis [107,108].
In general, it seems that BDNF cascades and neurogenesis are a memory development
procedure. In recent years, a growing number of studies have focused on neuroprotec-
tive strategies involving dietary supplements for the therapeutic interventions of central
nervous system neurodegenerative disorders [109–111]. In the mice research model, the
extracted compounds from the longan fruit part have shown a strong neuroprotective effect
through enhancing the survival of immature neurons [39]. The research study by Anya
Maan-Yuh Lin and colleagues reported that the water extract of longan flower possessed
a potent neuroprotective effect in the brain rat model developed with the MPP+-induced
neurotoxicity [40].

3.5.8. Anti-Aging Activities

Ageing is characterized by progressive disintegration of cells, a significant risk factor
for developing a wide variety of degenerative diseases, including cardiovascular disease,
neurodegenerative disease [112], and even skin ageing [113]. Many other research stud-
ies also reported that the phytochemical component of longan leaves showed potential
anti-ageing characteristics. The longan leaves hydroethanolic extract (HE) demonstrated
radical activity in the experimentation of DPPH and hydrogen peroxide with IC50 values
of 30.03 ± 7.64 and 71.40 ± 15.30 µg/mL, respectively. Moreover, it showed inhibition
of lipid peroxidation with IC50 of 537.01 ± 42.32 µg/mL. The HE was found to inhibit
hyaluronidase and collagenase with IC50 of 234.80, 21.52 and 314.44 62.14 g/mL, respec-
tively. The extract also showed inhibition of MMP-2 and MMP-9 that is more potent than
gallic acid by zymography at 1.0 mg/mL [38].
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3.5.9. Anti-Diabetic Effect and Anti-Hyper Glycemic Effects

Diabetes mellitus (DM) was one of the world’s leading causes of death. This figure
is expected to reach 438 million by 2030 when misdiagnosed cases of diabetes are also
included [114]. Subsequent studies have shown that hyperlipidemia and oxidative stress
each play an important role in developing diabetes, with each increasing the risk of
abnormalities [115]. As a result, there are many oral hypoglycemic medication therapies for
the management of diabetes, such as biguanides and sulfonylureas, but these medications
can produce severe side effects [116]. The research study by Ya-Yuan Tang and colleagues
reported that the polyphenols and alkaloids from extracted by-products of the longan fruits
possessed a strong anti-diabetic effect in vitro [18]. The pericarp extract of the longan plant
revealed the potent anti-diabetic with anti-hyperglycemic activity in the mouse model by
enhancing the gene expression associated with the production of insulin [17]. Moreover,
the seed extract also showed strong anti-diabetic and anti-hyperglycemic effect on both the
in vitro and in vivo research models by inhibiting the glucosidase activity [41].

3.5.10. Anti-Tyrosinase Properties

Browning of crude fruits, vegetables and beverages is a serious problem in the food
processing industry and one of the major causes of postharvest quality loss during collection
and management [117,118]. Browning of fruits and vegetables due to enzymatic action is
primarily due to the oxidation of endogenous phenolic compounds [119]. The phenolic
oxidation is known to be caused by an enzyme that is known as tyrosinase (monophenol,
o-diphenol: oxygen oxidoreductase; EC 1.14.18.1). It is widespread in microorganisms,
animals, and plants and is also responsible not only for plant browning but also animal
melanization [120].

It has been demonstrated that the longan pericarp extract has anti-tyrosinase activity.
When looking at ultra-high-pressure-induced extraction of 500 MPa and traditional extrac-
tions, the longan pericarp extract from the ultra-high-pressure-induced extraction exhibited
the greatest proportion of anti-tyrosinase property, 23.6 ± 1.2% at the concentration of
100 g/mL, when compared to traditional extraction [121]. The mechanism of action of
some tyrosinase inhibitors is via hydrophilic groups that attach with the active site of an
enzyme, causing steric hindrance or altered conformation [122]. According to the study by
Rout and Banerjee, the ultrasonication of polysaccharides from longan fruit pericarp (PLFP)
inhibited tyrosinase activity non-competitively [123,124]. A wide variety of tests conducted
on fresh and processed longan seed extracts revealed tyrosinase inhibition, and the IC50
values for fresh and processed extracts were 2.9 and 3.2 mg/mL, comparatively [23]. The
polyphenols of longan have also been shown to have tyrosinase inhibitory activity. In their
study, Guan et al. discovered that the inhibitory effect of longan polyphenol extract on ty-
rosinase activity was dose-dependent. The inhibitory impact also resulted in a high sample
concentration rate. It is conceivable that ellagic acid, gallic acid, corilagin, and ethyl gallate
are responsible for inhibitory activity. Such compound holds various hydroxyl groups
that are structurally similar to the substrate and have the potential to attach to the copper
ion active site of tyrosinase, removing active oxygen and inhibiting tyrosinase enzyme
expression [14]. The results of inhibitory activity studies confirmed that longan polyphenols
inhibited tyrosine diphenolase in a reversible and competitive manner. As a result, the
combined effect of longan polyphenols and substances with enzymes does not create an
irreversible change in the cognitive shape of the enzyme. It uses longan polyphenols as a
highly competitive aid to copper ions that inhibits tyrosinase formulation in the catalyzed
reaction, which ultimately reduces the level of tyrosinase in the reaction mixture. Kubo
et al. also characterized the methodology by which quercetin inhibits tyrosinase activity;
they discovered that quercetin inhibits tyrosinase activity compared to active tyrosinase
centers [42].
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3.5.11. Miscellaneous Activities

Obesity is regarded as serious health condition that leads to the manifestation of
diverse health problems, including cardiovascular disease, diabetes mellitus, hypertension,
fatty liver, some cancers, mental health problems, and so on, and thereby this is a life-
threatening problem [125], as these conditions increase the lipid levels of our bodies.
Here, the longan flower water extract directly ameliorates the hyperlipidemic effects and
obesity with such effective activity showed by the polyphenol compounds. The following
mechanisms act as control of the expression level of hepatic PPAR-alpha gene, regulation
of SREBP-1c with FAS gene expression, reducing the exogenous lipid absorption, and the
large amount of the fecal TG (triglyceride) output. Additionally, the total biological process
occurred within the in vitro rat model in a dose-dependent manner [43,44].

A study by Zhu et al., 2016 [13], demonstrated that the polysaccharides of D. longan
pulp could significantly promote the upregulation of sox9, aggrecan, and collagen II gene
expression, consequently, synthesis of the CAM (cartilage extracellular matrix) protein
as well as chondrocyte act as an excellent activity towards osteoporosis; the experiment
was conducted within an in vitro model animal. On the other hand, D. longan fruit ex-
tract directly involves the activation of Erk-1/2 (extracellular signal regulated kinase-1/2)
enzyme-dependent-RUNX-2 (Runt related transcription factor-2) factors via following
the phosphorylation mechanism along with initiating the differentiation of osteoblasts.
Longan fruit extract also represses the mRNA expression of osteoclast and thereby in-
hibits the differentiation of osteoclast, mediates the osteoporosis disease severity, and
decreases the TRAP (tartrate resistant acid phosphatase) protein-mediated multinucleated
cells in the RAW264.7 cells [14]. Additionally, NF-κB (nuclear factor-kappa B) pathway
downregulation, NFATc1 (nuclear factor of activated T-cells c1) suppression through the
longan Lour fruit extract efficiently involves the suppression of osteoclast differentiation
in vitro. Additionally, the administration of Lour fruit extract in vivo experiment model
ovariectomized rats and zebrafish enhanced their mineral contents in bone, minimizing
bone disorder risk [126,127]. Longan Lour flower H2O extract attenuates the serological
TG (triglyceride), disaggregates the lipid moiety, and downregulates the MMP-2,9 (ma-
trix metalloproteinases-2,9) gene expressions, thereby protecting the hepatic cells; in vitro
hypercaloric-dietary rat model study [28].
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Table 4. Potential pharmacological activities of “Dimocarpus longan” plant.

Potential Activity Sources Compound Name and
Chemical Class Test System Test Dose/Concentration Results References

Antioxidant activity

High pressure-assisted
extract of fruit pericarp

Gallic acid, corilagin acid, and
ellagic acid

Phosphomolybdenum
method using various

antioxidant model systems
50 µg/mL at 90 min Strong antioxidant activity [19]

Ultrasonic assisted extract
of Fruit Pericarp Galactose and galacturonic acid OLFP and DPPH Radical

Scavenging Assay At the concentration of 500 µg/mL Strong antioxidant activities [128]

Anti-tyrosinase activity
Ultra-high-pressure-

assisted fruit pericarp
extract

Phenolic acids, gallic acid,
ellagic acid, and corilagin Through HPLC assay

l-Tyrosine solution (4 mL) at 0.5
mg/mL, dissolved in 20 mM

phosphate buffer (pH 6.8)

Enhanced anti-tyrosinase
activity

[121]

Anti-glycated activity
Extract of fruit

polysaccharides with
Ultrasonic wave

Plant polysaccharides, mainly
the phenolic compounds

PLFP assay and
aminoguanidine At the concentration of 0.5 mg/mL Significant anti-glycated

activity
[129]

Radical-scavenging
activity Polyphenols from seeds

Polyphenols (methyl brevifolin
carboxylate, brevifolin and 4-O-

a-L-rhamnopyranosyl-ellagic
acid)

DPPH radical assay and
superoxide radical assay

0.80– 5.91 lg/mL for DPPH radical
assay and 1.04–7.03 lg/mL
superoxide radical assay

Effective radical-scavenging
activity

[130]

Anti-Inflammatory
Properties

Water extract of
longan pericarp Polyphenols Male ICR mice (6–8 weeks) (10 mg/kg) Strong anti-Inflammatory

properties
[33]

Anti-microbial activities Seed extracts
Phenolic compounds (gallic

acid, corilagin, ethyl gallate and
ellagic acid)

Disc diffusion method 64 mg/mL Strong antimicrobial
activities

[24]

Activation of osteoblast
differentiation Fruit Extract Plant Polyphenolic Compounds

Promotion of
signal-regulated kinase1/2

(Erk1/2)
500 µg/mL Can activate osteoblast

differentiation
[127]

Anti-fungal activities Seed extract Ellagic acid, corilagin acid and
gallic acid Disc–agar diffusion assay 15.63–16,000 µg/mL Potential antifungal

activities
[36]

Anti-colorectal
cancer effects

The polyphenol of
seed extract Phenolic compounds CRC cell lines (Colo 320DM,

SW480, HT-29 and LoVo) 25 µg/mL–200 µg/mL Strong anti-colorectal cancer
effects

[131]

Antitumor activities Water extract of pulp Monosaccharide compounds SKOV3 and HO8910
tumor cells 5–40 mg/L Effective antitumor

activities [12]
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Table 4. Cont.

Potential Activity Sources Compound Name and
Chemical Class Test System Test Dose/Concentration Results References

Immunomodulatory
activities Water extract of pulp Monosaccharide compounds Immunosuppression of

serum IL-2 levels in mice 320 mg/kg
Effective

Immunomodulatory
activities

[12]

Articular chondrocytes
maintenance activity Pulp extract Plant polysaccharides

Articular chondrocytes
culture 1-week-old New

Zealand rabbits
9.38 µg/mL

Intense articular
chondrocytes maintenance

activity
[13]

Prebiotic activities Pulp extract Plant polysaccharides Basal medium 0.5, 1.0, 1.5 and 2.0% (w/v) Potential prebiotic activities [87]

Flocculant in landfill
leachate treatment Seed powder Not demonstrated Landfill leachate samples 2 g/L LSP and 2.75 g/L PACl Show effective efficiency [132]

Anti-ageing activities Leaf Extracts Plant total phenolic and
flavonoid content

MTT assay on mouse
embryonic fibroblasts

(BCRC 60071; ATCC CCL92)
0.1–1 mg/mL Potential anti-aging

activities [38]

Suppressive effect on
macrophage cells Flower extract Flavonoids (tannins, and

proanthocyanidins)
Determination PGE2 by
enzyme immunoassay 1 µg/mL Strong suppressive activity [133]
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4. Concluding Remarks

Nowadays, natural food products are given more attention by people to combat dis-
eases, including cardiovascular diseases, immune dysfunctions, and cancer insurgencies.
Additionally, consumers are turning to compounds derived from medicinal plants to treat
a wide range of conditions, including malignancy, due to the lower risk of complications
and lower cost of these biomolecules. It was recently found that researchers from pharma-
ceutical sectors and medication are searching for natural compounds as medicinal agents
since synthetic compounds show substantial side effects to the patients’ bodies. For this
reason, this review was conducted to explore natural phytochemicals that offer therapeutic
activities; as a model plant, Dimocarpus longan Lour was reviewed, and it significantly
exhibited a diverse group of chemical compounds. As a source of flavonoid and phenolic
components, this plant displayed different biological activities, and more interestingly, it
showed strong anti-cancer and anti-diabetic activities.

Consequently, this review article has demonstrated that the compounds derived from
Dimocarpus longan Lour will be used as a complementary and alternative medicine to
treat many different types of diseases. They can also serve as possible sources of phyto-
therapeutic lead molecules. However, according to previously published research, the
pharmacokinetic evidence for this promising, highly nutritious medicinal plant and its
derivative products is insufficient in this case. Therefore, more research on these natural
compounds is highly required, especially on their toxicogenetical profiles. Therefore, more
research is needed to discover the specific disease controlling and toxicological mechanisms
and their pharmacokinetics properties.
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