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Abstract: In practical industrial application, the fault samples collected from rotating machinery
are frequently unbalanced, which will create difficulties when it comes to diagnosis. Besides, the
variation of working conditions and noise factors will further reduce the diagnosis’s accuracy and
stability. Considering the above problems, we established a model based on deep Wasserstein
generative adversarial network with gradient penalty (DWGANGP). In this model, the unbalanced
fault data set will first be trained by the sample generation network to generate synthetic samples,
which will be used to restore the balance. A one-dimensional convolutional neural network with a
specific structure is then used as the fault diagnosis network to classify the reconstructed equilibrium
samples. The experimental results show that the proposed sample generation network can generate
high-quality synthetic samples under highly imbalanced data, and the diagnostic network has a
fast training convergence. Compared to the combination methods of support vector machines, back
propagation neural network and deep belief network, our method has a 74% average accuracy in all
unbalanced experimental conditions, which has 64%, 69% and 87% averages leading, respectively.

Keywords: convolutional neural network; fault diagnosis; generative adversarial networks;
imbalance data

1. Introduction

Rolling bearings are widely used in industrial machinery, of which the health state has
a significant influence on the performance and service life of the mechanical equipment.
Because of the complex working environment, rolling bearing is one of the most vulnerable
components in machinery. The faults of rolling bearings are not easy to be recognized
visually; hence, the vibration signals collected by sensors are generally used for fault
analysis [1,2].

In recent years, machine learning has emerged as a powerful tool in studying the
fault diagnosis of machinery. Extensive research has shown that the K-means clustering,
support vector machine (SVM), Bayesian network and multilayer perceptron (MLP) can be
used in the field of mechanical fault diagnosis [3–6]. Such approaches, however, do not
have sufficient ability to extract depth features of vibration signals, due to the limitation
of their shallow network architectures. Therefore, relevant scholars try to use the signal
processing methods such as Fourier transform (FFT), wavelet transform (WT) and empirical
mode decomposition (EMD) to initially extract the feature of vibration signals in time- or
frequency-domain [7–9]. Then, the refined signals are trained and classified by the machine
learning methods. It is undeniable that the above scheme’s diagnostic effect is often better
than that of the single machine learning algorithm. However, it increases the complexity
of the model, and the feature selection relies on manual labelling and expert knowledge,
which is processing time-consuming.
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Aiming at the above problems, various studies using deep neural networks have
assessed the efficacy for fault diagnosis. Among them, autoencoder (AE), deep belief
network (DBN) and convolutional neural network (CNN) have been shown to have the
adaptive feature extraction capability of the raw vibration signals, which can provide end-
to-end diagnostic solutions for mechanical faults [10–15]. Deep-learning-based methods
provide a means of learning features and identifying faults automatically. Compared
to the conventional machine learning algorithms, deep-learning methods can achieve
high-accuracy fault diagnosis without a feature extractor.

Nonetheless, the greater part of the literature was based upon the assumption that all
fault samples have the same probability distribution. So far, however, there has been little
discussion about the fault samples are far less than the normal samples in machinery fault
diagnosis. Recent studies have documented the oversampling techniques can improve
the classified accuracy in imbalanced sample problem. Moreo et al. [16] used the random
oversampling (NR) to accomplish the imbalanced text classification. Sun et al. [17] devel-
oped the synthetic minority oversampling technique (SMOTE), an interpolation method
based on K nearest neighbor, to balance class-imbalanced financial data. Tan et al. [18] pro-
posed a deep imbalance learning model with the adaptive synthetic sampling (ADASYN)
and AE to assess the power system’s transient stability under unstable samples. More
recently, some studies also exploited the generative adversarial networks (GAN), and its
variations, to settle the imbalance fault problem of machinery [19–21]. Wang et al. [22]
combined the generative adversarial networks and stacked denoising autoencoders to the
planetary gearbox fault diagnosis. Zhou et al. [23] design a GAN model to generate fault
features rather than fault samples and be trained by the deep neural network to solve the
unbalanced data problem. Shao et al. [24] considered an auxiliary classifier GAN-based
framework for augmenting the unbalanced fault data of machine. Relevant literature has
exemplified the effectiveness of the oversampling methods and GAN, but still faces the
following limitations: (1) The synthetic samples produced by oversampling technique in
highly unbalanced data were excessively similar, which leads to overfitting in training.
(2) The GAN model may occur the vanishing gradient when the discriminator overpowers
the generator, which trends to generate low-quality synthetic samples. (3) The GAN model
may suffer from the mode collapse problem, resulting in an extremely low variety of the
generated signals. (4) In the machinery fault diagnosis scenario based on imbalanced data,
the variable working conditions and external noise factors are not taken into account in
model performance evaluation.

To address the above deficiencies, we propose a rotating machinery fault diagnosis
model for the imbalanced data problem named DWGANGP. The model comprises two
independent networks: the sample generation network and the fault recognition network,
respectively devised by Wasserstein generative adversarial network with gradient penalty
(WGAN-GP) and CNN. In the diagnostic task, WGAN-GP first generates the high-quality
synthetic samples from the minority samples (i.e., the unbalanced samples). These syn-
thetic samples and the minority samples were extended to the majority samples (i.e., the
balanced samples), and are trained and classified by the CNN. The main contributions are
summarized as follows:

(1) Propose an end–end fault diagnosis model to optimize the imbalanced data prob-
lem of rotating machinery.

(2) Design the comparative experiments to verify the strong robustness of the proposed
model under variant–load and noise conditions.

(3) Use Wasserstein distance as GAN’s loss function and gradient penalty as GAN’s
training strategy, which be able to enhance the stability of GAN training and the quality of
synthetic samples. As a result, our method provides a far better diagnostic accuracy than
other models under highly unbalanced conditions.

The rest of this paper has been divided into five parts. Section 2 introduces the
theoretical background of the generative adversarial network. Section 3 presents the
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framework of the proposed model. Section 4 deals with the results of the case studies.
Section 5 provides the discussion. Section 6 gives the conclusion.

2. Theoretical Network
2.1. Generative Adversarial Network

GAN [25] has an impressive performance in many generative tasks such as images and
semantic segmentation. It is game theory-based and consists of two models: a generator
G and a discriminator D, are competing and reinforcing each other, shown as Figure 1.
A discriminator D distinguishes a sample from a given dataset blended real and false
samples, aiming to try hard not to be cheated. The loss functions of the discriminator and
the generator can be formulated as follows [25]:

LD = Ex∼pr(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))] (1)

LG = Ez∼pz(z)[log(1− D(G(z)))] (2)

where pr is the data distribution over real sample x. pz is the data distribution over noise
input z. D(x) represents the probability that x comes from the real data. Ex∼pr(x) denotes
the expectation of x from the real distribution pr. Ez∼pz(z) denotes the expectation of z
sampled from pz. The discriminator wants to maximize Ex∼pr(x)[log D(x)] but expects
the D(G(z)) trend to zero by maximizing Ez∼pz(z)[log(1− D(G(z)))]. Meanwhile, the
generator wants D(G(z)) trend to one by minimizing Ez∼pz(z)[log(1− D(G(z)))]. This
zero-sum game between two models allows one to promote their functionalities steadily
and eventually reach Nash equilibrium. Therefore, the global loss function should be
optimized to the following expression:

min
G

max
D

L(D, G) =Ex∼pr(x)[log D(x)]

+Ez∼pz(z)[log(1− D(G(z)))] (3)

2.2. Wasserstein Generative Adversarial Network with Gradient Penalty

Although GAN demonstrates an outstanding effect in the field of image generation, it
still faces the dilemmas of instability and inefficiency in training. To alleviate the above
problems, Arjovsky et al. [26] proposed WGAN using Wasserstein distance instead of the
Jensen–Shannon (JS) divergence. Their expressions as shown follow separately [26].

W(pr, pg) = inf
γ∼Π(pr ,pg)

E(x,y)∼γ[‖x− y‖] (4)

DJS(p‖q) = 1
2

DKL(p‖ p + q
2

) +
1
2

DKL(q‖
p + q

2
) (5)

where Π(pr, pg) represents the set of all simultaneous distribution γ(x, y) between pr and
pg. x and y denote the real sample and synthetic sample from the above distribution.
E(x,y)∼γ[‖x− y‖] denotes the expectation of distance between x and y. p is the real data
distribution and q is the one estimated from the model. DJS is the Kullback–Leibler (KL)
divergence function, shown as Formula (6).

DKL(p‖q) =
∫

x
p(x) log

p(x)
q(x)

dx (6)

Moreover, use the Wasserstein distance as WGAN’s loss function:

L(pr, pg) = W(pr, pg) =max
w∈W

Ex∼pr [ fw(x)]

−Ez∼pr(z)[ fw(gθ(z))] (7)
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where f is a family of K-Lipschitz continuous function, w is a set of parameters in the
network fw. The discriminator model is used to optimize w, aims to maximize the
loss function.

The WGAN has a better performance than GAN, but still has the drawbacks of
vanishing gradient and mode collapse. Hence, Gulrajani et al. [27] proposed WGAN-GP
to ameliorate the problems above further. The major modification is imported gradient
penalty as a regularizer in the loss function. The updated loss function is shown below:

L =Ez∼pr(z)[D(G(z))]−Ex∼pr(x)[D(s)]

+ λEx̂∼px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(8)

x̂ = tx̂ + (1− t)x with 0 ≤ t ≤ 1 (9)

where x̂ sampled from x̂ and x with t uniformly sampled between 0 and 1. WGAN-GP
is superior to WGAN in training speed and stability, and is insensitive to the selection of
hyper-parameters. More detailed studies can be found in [27].

N Generator

Sreal

Sfake DiscriminatorN Generator

Sreal

Sfake Discriminator

Random Noise  Generating fake signal

Real signals

Distinguishing real 

or fake

Figure 1. GAN sketch map.

3. The Framework of the Proposed Method
3.1. The Overall Framework

Much of the research up to now [28,29] needs to extract the features manually before
training in the area of troubleshooting. That handing is a toilsome work and may lead to
losing the time-domain information of the raw signals. In contrast, the DWGANGP has
the capability of adaptive feature learning, which can directly recognize the characteristics
from the original signals. It consists of two functional networks: the sample generation
network (i.e., the WGAN-GP model) and the fault recognizing network (i.e., the CNN
model), connecting in series. The flow chart of this model is shown in Figure 2. The core
procedures are as follows:

(1) A signal segment with the fixed length will be randomly collected from the raw
time-domain signals, aiming to fabricate the fault sample. The step above will be repeated
several times to gather the fault samples corresponding number.

(2) The samples of minority class are trained by the sample generation network model
to produce the synthetic samples.

(3) The unbalanced real samples are assembled with synthetic samples to augment
the samples of the minority class.

(4) The rebalanced fault samples are trained and classified by the fault recogniz-
ing network.



Processes 2021, 9, 1751 5 of 13

Data preprocessing

Start

Dataset partitioning

WGAN-GP model initiating 

WGAN-GP model trainning

Nash equilibrium satisfaction?

Synthetic samples generating

Training samples extending

CNN Fault recognizing

End

N

Y

Figure 2. The flow chart of the DWGANGP model.

3.2. The Networks Architectures

The DWGANGP is coupled by WGAN-GP and CNN, which are the role of the sample
generation network and the fault identification network (FIN), respectively. Their detailed
structure parameters were shown in Table 1. The discriminator and generator of WGAN-GP
are composed of convolution layers and transposed convolution layers. The generator’s
input is the uniformly distributed random noise, which is reconstituted into synthetic
samples after three transposed convolution operations and two up-sampling operations.
Besides, its first two convolutional layers use ReLU as the activation function and perform
batch normalization, while the last convolutional layer uses Tanh as the activation function,
and the output is the synthesized sample. The discriminator takes either a real sample
or a composite sample, uses LeakyReLU as the activation function, and the output is a
binary number. Both networks mentioned above use RMSProp as the optimizer, with an
initial learning rate of 0.00005. The fault identification network consists of a three-layer
convolution network. It uses the ADAM as the optimizer, the learning rate is set to be 0.001,
and the training iterations is set to be 200.

Table 1. Detailed structure parameters of the networks.

Model Generator Discriminator FIN

Layer1 Input:1 × 100 × 1 Input:1 × 400 × 1 Input:1 × 400 × 1
Layer2 Upsampling-1:1 × 2 Conv-1:1 × 30 × 16 Conv-1:1 × 30 × 32
Layer3 Conv-1:1 × 20 × 128 Conv-2:1 × 10 × 32 MaxPool-1:1 × 2
Layer4 Upsampling-2:1 × 2 Conv-3:1 × 10 × 64 Conv-2:1 × 10 × 64
Layer5 Conv-2:1 × 10 × 64 Conv-4:1 × 10 × 128 MaxPool-2:1 × 2
Layer6 Conv-3:1 × 3 × 1 FC-1:Flatten FC-1:Flatten
Layer7 Output:1 × 400 Output:1 FC-2:256
Layer8 \ \ Output:10
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4. Experimental Results Analysis
4.1. Dataset Introduction

The data set in this paper is collected from Western Reserve University Bearing Data
Center (CWRU) [30]. The test platform is shown in Figure 3. Its test system is composed of
the motor, dynamometer and control circuit. The drive end bearings model is SKF6205,
which is made with faults using electro-discharge machining. Faults including 0.007 inches,
0.014 inches and 0.021 inches in diameter were presented separately at the inner ring, ball
and outer ring. The vibration signals were acquired by the accelerometer for motor loads
of 0 to 3 horsepower (HP). In this paper, 1000 real samples were randomly selected as the
training set, another 1000 samples as the testing set, and an additional 500 real samples
were selected as the validation set. No data are reused among the three sets. According
to the unbalanced proportion of data, the corresponding number of training set samples
would be deleted, then fill in the generated samples to form the new training set. Case 2
and case 3 inherited the training set in case 1 for training. Samples from the HP = 2 and
HP = 3 were used as testing sets and validation sets for case 2 and case 3, respectively. The
specific division method is shown in Table 2. Considering that the sampling frequency was
12 kHz, and the motor speed was 1797 rpm in no-load, we determined the sample length
to be 400, which approximated the sampling number that bearing rotated by a full turn.

Figure 3. The test platform.

Table 2. Description of data set.

Damaged Position Normal Ball Inner Raceway Outer Raceway

Damaged diameter (inches) \ 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
Class label 0 1 2 3 4 5 6 7 8 9

Training set (HP = 0) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Testing set (HP = 0) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Training set (HP = 2) 0 0 0 0 0 0 0 0 0 0
Testing set (HP = 2) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Training set (HP = 3) 0 0 0 0 0 0 0 0 0 0
Testing set (HP = 3) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

4.2. Analysis of Training Effects

Figure 4 shows the training performance of the diagnostic networks in 1:50 balance
ratio. As Figure 4a shows, the loss curves of training decrease with the increase of iteration
numbers. The CNN and BP models show a faster convergence rate, which reaches conver-
gence around the 10th and 50th epoch, respectively. The DBN model shows a relatively
slow convergence, demonstrating a stepwise descent and reaching a stable convergence
around the 80th epoch. Figure 4b indicates the curves of the validation accuracy between
them. The accuracy of all three improved with the increase of training times. The accuracy
of the CNN model has a sharp rise in the first 25 epochs and achieves a stale diagnosis
accuracy at the 50th epoch. The accuracy of the BP model increases gradually, and achieves
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balance at the 85th epoch. Correspondingly, the accuracy of the DBN model shows an
interval fluctuation before the 110th epoch, then has a steep increase. Compared with BP
and the DBN model, the CNN model shows a better performance in both training speed
and diagnostic accuracy in the diagnostic networks.

0 10 20 30 40 50 60 70 80
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Figure 4. The diagnostic networks’ training curve in 1:50 balance ratio: (a) the loss curve of the
training set and validation set (b) the accuracy curve of the validation set and training set.

4.3. Quality Analysis of Synthetic Samples under Highly Unbalanced Data

The quality of synthetic samples is an essential factor affecting the classification
accuracy in the imbalance diagnosis problem. However, compared with the image samples,
the one-dimensional signals are often difficult to appraise, because it is hard to evaluate the
authenticity, as the image sample does visually. Nonetheless, the t-distributed stochastic
neighbor embedding (t-SNE) [31] technique could be used to assess the quality of synthetic
samples to a certain extent.

In this experiment, the balance ratio was chosen to be 1:100, and the NR, SMOTE,
GAN and WGAN-GP methods were applied respectively to generate the synthetic samples.
As the extended samples, the synthetic samples would be reconstructed with the real
samples and then be trained by the CNN model. The fully connected output would be
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extracted as the input of the t-SNE algorithm. After the calculation of t-SNE, the output of
fully connected, which contained high-dimensional features, would be reduced as the two-
dimensional data. The visualizing result was displayed in Figure 5. Figure 5a illustrates
the distribution of the diagnostic features extracted by the NR-CNN method. Half types of
the ten fault characteristics can be well classified, except for class 2 to class 4, which remain
overlapping. Moreover, the boundary between class 5 and class 10 is not clearly separated.
As shown in Figure 5b, the features that come from the SMOTE-CNN method cannot
correctly cluster except class 1. Figure 5c shows t-SNE features extracted by GAN-CNN
method. Like the NR-CNN method, class 2, class 3 and class 4 are blended in feature
space, and class 8 and class 10 are also not properly divided. Figure 5d demonstrates the
distribution of features extracted by the DWGANGP method. It can be visibly presented
that most categories are well-separated clusters, except class 2 and class 4. In contrast with
the other three oversampling methods, the WGAN-GP model can generate high-quality
synthetic signals, which have more adaptation for the CNN diagnostic network.

Figure 5. The t-SNE visualized feature distribution in 1:100 balance ratio between different oversam-
pling techniques on the CNN model: (a) NR; (b) SMOTE; (c) GAN and (d) WGAN-GP.

4.4. Analysis of Classification Accuracy

This part proposed a comparative experiment to evaluate different models’ perfor-
mance on the imbalance fault diagnostic problem in three different scenarios. The NR,
SMOTE, ADASYN, GAN and WGAN-GP were selected as the sample generators to pro-
duce the synthetic samples in different balance ratios. All the synthetic samples were then
added into the samples in minority classes, aiming to increase the imbalance samples to
balance. Finally, these extended samples were trained separately by the SVM, BP, DBN and
CNN diagnostic models. The dataset selection for the three cases was shown in Table 3.The
details of partitioning for the dataset were illustrated in Table 4.

4.4.1. Case 1: Imbalance Fault Diagnosis

The curves of diagnostic accuracy were shown in Figure 6. All models’ diagnostic
accuracy increased with the balance ratio increase and finally approached the balanced
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sample result (i.e., the balance ratio is 1:1). Besides, under all balance ratios, the models’
diagnostic accuracy is better than that of the no-sampling models. The WGAN-GP method
has an enormous improvement in diagnostic accuracy on BP, DBN and CNN models, while
it is the NR method in the SVM model. Overall, the diagnostic accuracy of the DWGANGP
model is far better than that of all other fault diagnosis models, which has an average
leading of 53%, 40% and 46% compared to NR-SVM, WGANGP-BP and WGANGP-DBN.

Figure 6. Diagnosis accuracy of multi-class imbalance fault dataset on HP = 0: (a) SVM model; (b) BP
model; (c) DBN model and (d) CNN model.

4.4.2. Case 2: Imbalance Fault Diagnosis under Variant Motor Load

In this part, we evaluated the diagnostic accuracy of the models mentioned above
under the conditions of motor load–variant, based on the unbalanced samples problem.
The partitioning method of the training set was the same as that of case 1. However, the
data HP = 2 was used for the testing set instead of HP = 0, aiming to verify these models’
generalization. The dataset selection was shown in Table 4, and the precision curve was
shown in Figure 7.

Compared with case 1, the diagnostic accuracy of each model decreased to different
degrees. Notably, as shown in Figure 7b, the SMOTE and ADASYN methods have no
noticeable effect on improving accuracy. The diagnostic accuracy in SVM, BP and DBN
models is greatly affected by the condition of variable load, while the influence of the
CNN model is relatively small. The WGAN-GP method still has good adaptability in
BP, DBN and CNN models, which shows the best performance in the correspond models.
Comprehensive analysis shows the DWGANGP has better generalization than other models
under the condition of the variable load. Meanwhile, the DWANGP has over 80% in
average diagnostic accuracy and has an average leading of 74%, 86% and 114% compared
to NR-SVM, WGANGP-BP and WGANGP-DBN.
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Figure 7. Diagnosis accuracy of multi-class imbalance fault dataset under variant Motor load: (a) SVM
model; (b) BP model; (c) DBN model and (d) CNN model.

Table 3. The dataset partitioning for imbalance fault diagnosis under variant motor load and noise.

Training Set Testing Set

Case 1 HP = 0 HP = 0
Case 2 HP = 0 HP = 2
Case 3 HP = 0 HP = 3 with Gaussian noise of SNR = 10 dB

Table 4. The data set partitioning of the of imbalance fault diagnosis for each category.

Balance Ratio 1:100 1:50 1:25 1:10 1:5 1:2 1:1

Training set (HP = 0)
synthetic samples number 990 980 960 900 800 500 0
real samples number 10 20 40 100 200 500 1000
balanced samples number 1000 1000 1000 1000 1000 1000 1000

Testing set (HP = 0) samples number 1000 1000 1000 1000 1000 1000 1000

4.4.3. Case 3: Imbalance Fault Diagnosis under Variant Motor Load and Noise

This section would verify each model’s performance under relatively extreme condi-
tions that considered motor variant-load and noise jamming factors simultaneously. The
experiment would be designed as follows: In the training part, we would follow the same
setup as in case 1, but used HP = 3 instead of HP = 0 as the testing part to create the
variant-load condition. Additionally, the white Gaussian noise (WGN) with the specified
signal to noise ratio of 10 dB would be mixed with the signals on HP = 3 to simulate the
environment of noise. The dataset selection was shown in Table 4 and the detail of accuracy
was shown in Figure 8.



Processes 2021, 9, 1751 11 of 13

Figure 8. Diagnosis accuracy of multi-class imbalance fault dataset on HP = 3 and SNR = 10 dB:
(a) SVM model; (b) BP model; (c) DBN model and (d) CNN model.

Compared with case 2, each model’s diagnostic accuracy is further reduced, and the
degree of differentiation is increased. The fault diagnosis network based on CNN is far
superior to other models in diagnostic accuracy. The DWGANGP outperforms all other
models, which has around 80% in the average diagnostic accuracy and has an average
leading of 65%, 81% and 103% compared to NR-SVM, WGANGP-BP and WGANGP-DBN.
Remarkably, the DWGANGP model’s accuracies in all balance ratios are better than that in
the balanced samples.

5. Discussion

Through the analysis from case 1 to case 3, it can be summarized that the CNN
network has better capacities in feature extraction, anti-noise, and the robustness under
variable working conditions, compared with the independent fault recognizing networks.
Moreover, all the oversampling methods are effective at solving the unbalanced fault
diagnosis problem. In particular, the combination between WGAN-GP and artificial neural
networks (ANNs) always get the optimal results, except combined with the SVM model.
This result may support the hypothesis that the synthetic samples generated by GAN
contain more nonlinear features, which are classified by ANNs easily but not for SVM.
WGAN-GP used in conjunction with CNN (i.e., the DWGANGP model) exhibits the finest
generalization under load–variant and noise conditions, based on imbalance fault diagnosis.
The DWGANGP can produce high-quality synthetic signals in a highly unbalanced ratio to
suppress overfitting. Hence, the DWGANGP model can notably improve the diagnostic
accuracy in a highly unbalanced ratio.

6. Conclusions

This study set out to develop an end-end model for the imbalanced fault diagnosis
of rotating machinery. The raw vibration signals can be processed by our model directly.
In the WGAN-GP network, the counterfeit samples with similar real signal features can
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be generated to extend the minority samples through the discriminator and generator’s
competitive mechanism. Then, the CNN diagnosis network can accurately classify the
reconstructed vibration signals. The comprehensively comparative tasks are designed to
consider the variable working conditions and the noise effect. These experiments confirmed
that the DWGANGP model is superior in training convergence, diagnostic accuracy under
highly unbalanced ratios and generalization. Thus, the model has the potential to be
applied in the industrial environment. After a comprehensive analysis of the experimental
results, the following conclusions are obtained:

(1) In contrast to SVM, BP and DBN fault diagnostic networks, the CNN model has
80%, 46% and 48% average rises separately on accuracies, revealing a superior features
extraction ability for fault diagnosis problems.

(2) DWGANGP models can generate the synthetic sample with similar features of the
original samples. The generated samples can be mixed with the original samples to be
trained by CNN network, which improves the recognition accuracy under the condition of
unbalanced samples.

(3) Under varying speed and noise conditions, the diagnosis accuracies of our method
are around 74% and 81% in extremely small and moderate imbalance ratio respectively,
showing a strong fault feature extraction capability and robustness.
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