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Abstract: Biodiesel is a biodegradable, renewable, and carbon-neutral alternative to petroleum
diesel that can contribute to the global effort of minimizing the use of fossil fuels and meeting
the ever-growing energy demands and stringent environmental constraints. The aim of this work
was to (1) review the recent progress in feedstock development, including first, second, third, and
fourth-generation feedstocks for biodiesel production; (2) discuss recent progress in lipase research
and development as one of the key factors for establishing a cost-competitive biodiesel process
in terms of enzyme sources, properties, immobilization, and transesterification efficiency; and
(3) provide an update of the current challenges and opportunities for biodiesel commercialization
from techno-economic and social perspectives. Related biodiesel producers, markets, challenges,
and opportunities for biodiesel commercialization, including environmental considerations, are
critically discussed.
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1. Introduction

Biodiesel is gaining acceptance as a substitute for petrodiesel due to its renewability,
biodegradability, recyclability, and carbon neutrality. Major economic and environmental
factors drive the broader use of biodiesel, such as growing demand, fast drop-off supply
and price hikes of crude oil, depleting oil reserves, air pollution, and increased levels of
greenhouse gases (GHG) emissions [1,2]. For the reasons above, biodiesel production in
the last decade has increased at an annual growth rate of 11.4%, which is higher than
for any other biofuel such as bioethanol, biobutanol, bio-2,5-dimethylfuran biomethanol,
renewable aviation, and biojet fuels [3,4].

Owing to its lower density (860–900 kg/m3), the energy per gallon biodiesel is about
10% lower (118,000 British Thermal Unit, BTU/gallon) than petrodiesel (130,000 BTU/gallon).
However, there are several advantages of biodiesel that make it a competitive, renewable
alternative to petrodiesel. Biodiesel can be blended at any level with petrodiesel and can be
used in any diesel engine with only minor engine modifications. These modifications that
mainly concern the fuel pump design and related injection timing are needed to address some
limitations of biodiesel, such as cold starting, engine clogging, and storage [5]. Biodiesel has a
higher flashpoint and cetane number than diesel and the emissions from burning biodiesel
in a conventional diesel engine contain lower levels of particulate matter, sulfur oxides,
hydrocarbons, carbon monoxide, carbon dioxide, and odor [6]. Overall, biodiesel emits 3-fold
lower amounts of GHG than petrodiesel and 85% ethanol–gasoline fuel (E85), and 4.5-times
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lower than gasoline [7]. Biodiesel has better lubricating properties compared to diesel fuels,
which increases the usable life of high-pressure fuel injection equipment that relies on the
fuel for its lubrication [8]. Furthermore, biodiesel is safer than petrodiesel because it is less
combustible and, therefore, causes less damage if spilled or released to the environment [9].

Biodiesel is typically produced by reacting vegetable oils or animal fats with methyl
alcohol in the presence of a chemical (alkali, acid) or enzymatic catalyst. The transester-
ification process produces biodiesel, fatty acid methyl esters (FAME), and glycerol as a
co-product [10,11]. Biodiesel (B100) is marketed as a fuel, whereas glycerol can be used
as an ingredient for making soaps, detergents, shampoos, and cosmetics. Vegetable oils
such as sesame seed oil [12], palm oil [13], white mustard oil [14], and soybean oil [15]
that consist of long chain of fatty acids have been all used for biodiesel production. In
addition, waste biomass, microalgae, waste cooking oils, oily sludge, meat processing
waste, and animal fat waste from slaughterhouses [16,17] are all gaining importance as
inexpensive feedstock. Related information on these feedstocks is also helpful in the design
of strategies for low-cost biodiesel production that can at the same time address waste
disposal problems related to waste diversion, recycle and re-use [18]. The direct use of
vegetable oils has been controversial because of the elevated viscosity [19,20]. For this
reason, strategies have been designed to minimize the vegetable oil viscosity, such as
dilution, microemulsion, pyrolysis, and transesterification [21].

The different routes for biodiesel production are homogeneous catalysis, heteroge-
neous catalysis, enzymatic, non-catalytic supercritical, hydro-esterification, microwave,
and ultrasound. The most cost-efficient method for the production of biodiesel with higher
quality is transesterification of vegetable oils and animal fats using chemical or enzymatic
catalysts [22]. The enzymatic catalysis of biodiesel production offers some apparent ad-
vantages over the chemical method, which include: room-temperature reaction conditions,
elimination of treatment costs associated with the recovery of chemical catalysts, enzyme re-
use, high substrate specificity, the ability to convert both free fatty acids and triglycerides to
biodiesel in one step, lower alcohol to oil ratio, avoidance of side reactions and minimized
impurities, easier product separation and recovery; biodegradability and environmental
acceptance [23–27].

In order to extend the viability of the enzymatic biodiesel process, major efforts have
been recently made towards process improvement in terms of biodiesel efficiency, the
impact of water and fatty acid content, adding value to glycerol co-product and bioreactor
design [28]. Research has focused on optimizing process parameters that: (1) directly
impact biodiesel production (e.g., oil to alcohol ratio, lipid content, need for treatment
and purification, etc.); and (2) have the potential to reduce the number of unit operations
further and, consequently, the overall cost of biodiesel production [29]. The success and
efficiency of the enzymatically catalyzed biodiesel production are dependent on many
factors, such as feedstock, pretreatment, enzyme properties, temperature, time, mixing
speed, etc. [17,30] The focus of this review is on the choice of feedstock and enzyme catalyst
as two of the major factors affecting the production of enzymatic biodiesel and its properties.
Related producers, markets, challenges, and opportunities for biodiesel commercialization,
including environmental considerations, are critically discussed.

2. Feedstock for Biodiesel Production

The feedstock and its availability as a raw material is a prerequisite for the successful
establishment of a large-scale biodiesel production process [31]. While there has been con-
siderable growth in the biodiesel industry, the feedstock availability has acted as a natural
barrier that applied pressure on biodiesel producers and impeded the biodiesel scale up.
Feedstock cost and supplies are a function of various factors, including currency strength,
domestic and global production capacity for biofuels, energy costs, global demand for food,
etc. It has been reported that oilseed crops are only capable of meeting a limited biodiesel
demand [32]. This illustrates the need for more viable alternative biodiesel feedstocks such
as low-cost waste and non-edible oils. In addition, oleaginous microorganisms such as
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algae [33], yeast [34], and bacteria [35] are aggressively studied as promising feedstocks for
biodiesel that can help reduce the feedstock shortage [36].

The total cost of producing biodiesel varies and depends on a number of factors,
including production method, production scale, quality, and trade cost of raw materials
used. Biodiesel production has to look after the investment and operating costs [37]. In
terms of availability and cost, the feedstock is a major issue for biodiesel production.
Currently, high-quality food-grade vegetable oils, such as soybean, rapeseed, palm, and
groundnut oil, are utilized in biodiesel manufacturing. These feedstock expenses account
for more than 60% of the overall biodiesel production costs [38]. Thus, to reduce the cost of
biodiesel, many low-cost feedstocks and many alternative techniques need to be explored.

Depending upon the source and processing techniques used, the biodiesel feedstocks
are grouped into first, second, third, and fourth generations. The first-generation feedstock
implies the direct use of food crops, such as corn, soybean, sugarcane, etc., for biodiesel
production [39]. The second-generation feedstock includes non-edible raw materials that
are no longer suitable for human consumption. Examples include waste vegetable oils and
animal fats. Third-generation feedstock comprises high oil yield producing microalgae [40].
Solar energy-based technology of photosynthetic water splitting as a photobiological solar
fuel system represents the fourth-generation feedstock of the future. Table 1 presents
examples of all four generation feedstocks and their fatty acid composition.

Table 1. Biodiesel feedstocks and their fatty acid composition.

Generation Feedstock Fatty Acid Composition References

1st

Rapeseed Monounsaturated fatty acids (Oleic acid + Alpha
Lipoic Acid + Linoleic acid) [41]

Olive oil Monounsaturated fatty acids (Oleic acid + Alpha
Lipoic Acid + Linoleic acid) [41]

Tea Seed
(Camellia Sinensis)

Palmitic acid + Stearic acid + Oleic acid
+ Linoleic acid + Linolenic acid + Gadoleic acid [42]

Groundnut Monounsaturated fatty acids (Saturated fatty
acids + Linoleic acid) [41]

Amaranth seeds Monounsaturated fatty acids [43]

Grapeseed Polyunsaturated fatty acid (Linoleic acid) [41]

Sesame Polyunsaturated fatty acid (Linoleic acid
+ Monounsaturated fatty acids) [41]

Sunflower oil Saturated fatty acids + Monounsaturated fatty
acids + Polyunsaturated fatty acid [41]

Okra (Hibiscus esculentus) seed
Behenic acid + Arachidic acid + Linoleic acid

+ Oleic acid + Stearic acid + Margaric acid
+ Palmitoleic acid + Palmitic acid + Myristic acid

[44]

Rapeseed Palmitic acid + Stearic + Oleic
+ Linoleic + Linolenic [45]

Depot margarine Polyunsaturated fatty acid + saturated fatty acid [46]
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Table 1. Cont.

Generation Feedstock Fatty Acid Composition References

2nd
Plants

Jatropha tree (Jatropha curcas) Palmitic acid + Oleic acid + Alpha lipoic Acid [47]

Karanja (Pongamia pinnata) Oleic acid + Linoleic acid + Palmitic acid +
Stearic acid [48]

Mahua (Madhuca indica) Oleic acid + Palmitic acid + Stearic acid+ Lipoic
Acid + Adipic acid [49]

Castor bean seed (Ricinus
communis)

Palmitic acid + Oleic acid + Pentanoic acid +
Octanoic acid + Ricinoleic acid [50]

Neem (Azadirachta indica)
Lipoic + Oleic acid + Oleic acid + Palmitic acid +
Arachidic acid + Behenic acid + Lignoceric acid +

Palmiticoleic acid
[51]

Salicornia begelovii (dwarf
saltwort) seed

Linoleic acid + palmitic acid + oleic acid + stearic
acid + Linolenic acid [52]

Nagchampa tree Linoleic acid + Oleic acid + Stearic acid +
Palmitic acid [53]

Rubber seed tree (Hevea
brasiliensis) Oleic acid + Linoleic acid + Linolenic acid [54]

Tobacco seed (Nicotiana tabacum) Palmitic acid + Oleic acid [55]

Meadowfoam (Limnanthes alba L.)
seed

Eicosenoic acid + Docosadienoic acid + Erucic
acid [56]

Waste oil

(Bakery) Depot margarine Saturated fatty acid + Monounsaturated fatty
acids [46]

Sunfoil (triple refined sunflower
oil from Restaurant)

Saturated fatty acid + Monounsaturated fatty
acids [46]

Frying oil Palmitic acid + Stearic acid + Oleic acid +
Linoleic acid + Linolenic acid [57]

Waste activated sludge Palmitic acid + heptadecanoic acid + ginkgoid
acid + stearic acid + oleic acid + linoleic acid [58]

Animal oil/fat

Pork Lard
Myristic + palmitic + palmitoleic + stearic + oleic

+ linoleic + linolenic + Arachidonic +
docosapentaenoic

[59]

Beef Tallow Myristic + palmitic + palmitoleic + stearic + oleic
+ linoleic + linolenic [60]

Animal fat Myristic + palmitic + palmitoleic + stearic + oleic
+ linoleic + linolenic [61]

Poultry Fat
Myristic + palmitic + palmitoleic + stearic + oleic

+ linoleic + linolenic + Arachidonic +
docosapentaenoic + docosahexaenoic

[62]

Tallow Palmitoleic + oleic + stearic + palmitic + myristic [63]

Meat Processing Waste
Myristic + palmitic+ palmitoleic + stearic + oleic
+ linoleic + linolenic + eicosadienoic + saturated

fatty acids
[64]

3rd

Cyanobacteria
(Fremyella diplosiphon)

Methyl palmitate + hexadecanoic acid + methyl
dodecanoate + methyl myristate +

hexadecenoate + octadecanoate + octadecenoate
+ octadecadienoate

[35]

Algae Palmitic + stearic + oleic + linoleic [45]
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Table 1. Cont.

Generation Feedstock Fatty Acid Composition References

4th

Dunaliella tertiolecta - [65]

Marine alga Nannochloropsis
oceanica + oleaginous fungus

Mortierella elongata
- [66]

Phaeodactylum tricornutum Saturated fatty acid + monounsaturated fatty
acids + polyunsaturated fatty acid [67]

Phaeodactylum tricornutum Pt4
Co-expression of a yeast

diacylglycerolacyl-transferase
(ScDGA1) and a plant oleosin

(At-OLEO3)

- [68]

Chlamydomonas reinhardtii with
overexpressing a Dof-type

transcription factor
- [69]

Bio-based feedstocks, including oils (vegetable, algal, microbial) and animal fats, are
considered a potent and promising renewable source for biodiesel production. Depending
on the feedstock composition, biodiesel with different degrees of purity and properties can
be produced [27]. The feedstock selection, therefore, has a direct impact on the choice of
the bioprocessing method used, the biodiesel yield, and the cost.

The biodiesel feedstocks are categorized into edible, non-edible, and waste-based [19].
The feedstock availability and selection for biodiesel production are country and region-
specific [70]. For instance, biodiesel production in Canada is based on canola oil, whereas
soybean meal is the feedstock of choice in the USA and Brazil. European countries (Italy,
Finland, Germany, and UK) predominantly use rapeseed oil as biodiesel feedstock. The
abundance of coconut and palm oil dictates the biodiesel production from these feedstocks
in Indonesia and Malaysia, respectively [15,71,72]. In India, karanja and jatropha oils are
the main biodiesel feedstock [73,74]. The growth of non-edible feedstocks for biodiesel
production is gaining momentum. China, for instance, has recently set aside a region just to
grow jatropha and other non-food oil plants, whereas India has around 60 million hectares
of non-cultivated land, which may be used for jatropha production [75].

2.1. First Generation Feedstock

Among the edible vegetable oils, sunflower, rapeseed, soybean, and mustard oil are
all first-generation feedstock. However, due to food security issues, biodiesel commer-
cialization from edible oils is a challenging one [76]. Small-scale biodiesel production
at a farm level utilizes first-generation feedstocks, such as coconut [77], palm tree [78],
soybean [79], and sunflower [80]. Some added advantages of first-generation feedstocks are
their abundance, availability, biodegradability, easy production in available infrastructure,
and technology [81]. However, the major constraints in the production of first-generation
biodiesel are the feedstock price and availability, limited production capacity, and competi-
tion with food production.

2.2. Second Generation Feedstock

The application of second-generation feedstocks from non-edible oil sources (waste
cooking oil, tallow oil, animal fats, fish oil, etc.) avoids the ongoing food vs. fuel conflict,
with no direct effect on the food supply chain and added benefits of biodegradability,
low sulfur and aromatic content [82,83]. Although the second-generation feedstocks are
mainly low-value non-edible oils, their processing to biodiesel may add extra cost and
time. Non-edible feedstocks, also called energy crops, include: jatropha [84–87], jojoba [88],
tobacco seed [89], salmon oil [90], and sea mango [91]. Biodiesel generated through energy
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crops is a clean alternative fuel to petrodiesel; however, the supply of this feedstock in
large quantities is unfortunately not sustainable [92]. Additionally, the cooking waste
oils, restaurant grease, and animal fats [93], such as beef tallow and pork lard [94], are
also considered second-generation feedstocks. Non-edible oils crops could be grown
on wasteland for maximum utilization of the country’s resources. Because of limited
availability, however, the second-generation feedstocks cannot fulfill the transportation
fuel demand alone. Moreover, biodiesel generated from non-edible vegetable oils and
animal fats showed poor engine performance in cold environments due to their high
concentration of saturated FAME that is known to have inferior cold flow properties,
namely cloud and pour point [95]. For example, the undesirable high melting point and
high viscosity of beef tallow (a second-generation feedstock) are due to the presence of
nearly 50% saturated fatty acids from the total amount of fatty acid in beef tallow [94].
The cold flow of properties of biodiesel containing high levels of saturated FAME can
be improved through winterization, adding fuel additives or branched branched-chain
esters, blending with petrodiesel or vegetable oils of lower crystallization temperature,
etc. [96]. These additional processing steps, however, render the production economics of
biodiesel less attractive, with a low to moderate commercialization potential. Therefore,
due to efficiency and sustainability issues, the large-scale biodiesel production from first-
and second-generation feedstocks has faced a major hurdle of high biodiesel cost [97,98].
A recent development of a second-generation feedstock is fat, oil, and grease (FOG) that
is recovered from wastewater discharges from restaurants, kitchens, food processing
plants, and slaughterhouses [99]. FOG is a potential biodiesel feedstock due to its lower
price, better oxidative stability, flash point, cetane number, and total emissions compared
to other feedstocks, and reduced carbon footprint that is realized through wastewater
management [100].

2.3. Third Generation Feedstock

The third-generation feedstock is of microbial origin and includes oleaginous microal-
gae, bacteria, fungi, and yeast. The cultivation and production of these oil-generating
microorganisms require no land or special growth supplements [101]. The third-generation
feedstocks have higher biomass productivity than the conventional crops, which is due
to their high photosynthesis efficiency, especially in the photosynthetic microbes [102]. In
addition, the oleaginous microbes present a new biodiesel feedstock that overcomes the
challenges of availability, adaptability to climatic conditions, and controversy of the food
supply chain that are typically faced by the first and second-generation feedstocks [103].

Lipids from microalgal origin appear as the most promising third-generation biodiesel
feedstock. Microalgae have very high growth rates and accumulate high levels of lipids
(oil) through photosynthesis [104,105]. Algal cultivation is easier than plant cultivation.
Cultivated algae show fast multiplication [65]. High oil yielding algae can reach up to
70% oil w/w dry biomass with an annual oil production of 136,900 L/ha and biodiesel
productivity of 121,104 kg biodiesel/ha [106]. Algal oil-based biodiesel production could
become feasible at a large scale provided a continuous supply of feedstock is in place.
Hence, algae cultivation or algal farming need to be further explored in both rural and
urban areas to ensure feedstock sustainability. This approach could have an added benefit
of creating employment opportunities, thereby strengthening the agricultural sector. More
research is also needed to address the inherent drawbacks of algal biodiesel associated
with its instability and degradability at higher temperatures [107].

2.4. Fourth Generation Feedstocks

Considering the feedstock cost for biodiesel development, it is desirable to research
and exploit opportunities to develop a very inexpensive, high-energy density feedstock that
is easily accessible and of unlimited availability. Solar energy-based technology of photosyn-
thetic water splitting into energy constituents holds promise to become a future biodiesel
feedstock [108]. This feedstock could be integrated with a second and or third-generation
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feedstock for a high photon to fuel conversion efficiency (PFCE) using a synthetic biological
approach. Thus, the future photobiological solar fuel system will be utilized for the produc-
tion of high-quality, high-yield, high-efficiency, and high-performance biodiesel. In general,
microorganisms can be cultivated in a photobioreactor for a solar-aided fuel conversion in
a two-step process that involves microbial biomass production followed by photo-bio-solar
fuel production by engineered and immobilized algae or cyanobacteria (Table 1). Current
research has focused on achieving a 10% PFCE that requires prior organism and bioreactor
design and construction. Further enhancement of the PFCE may be possible through de-
veloping microbial electrosynthesis technologies that utilize electro-biofuel/synthetic-cell
hybrid systems as the fourth-generation feedstock [109].

3. Lipases for Biodiesel Production

Applications of conventional techniques such as micro-emulsification, pyrolysis, and
transesterification with alkaline/acid catalysts are well developed for the processing of
biodiesel [21]. While these procedures are widespread and well investigated, there are
some pitfalls and technological diffuculties that need to be addressed and overcome, such
as catalyst recovery, purity of the glycerol co-product, high energy consumption, significant
volumes of wastewater that require treatment, etc. The development and implementation
of the lipase enzymatic path have greatly improved the efficiency of biodiesel processing,
thus decreasing the size of the process equipment to the microlevel [110]. Lipases are
hydrolytic enzymes that catalyze the production of free fatty acids, diacylglycerols, monoa-
cylglycerols, and glycerol by cleaving off the ester bonds of triacylglycerols (TAG) from fats
and oils [111]. As lipases possess an unusual trait of hydrolysis over oil-water interfaces,
they can also trans-esterify triacylglycerols to fatty acid alkyl esters in the presence of
short-chain alcohols, such as methanol and ethanol [112]. Biodiesel production is one of
the most significant and spectacular applications of lipases [113]. However, as lipases
are ubiquitous in nature, they could find applications in various industries [114]. Their
ubiquity is evident from Table 2, which shows that lipases are produced in plants and
microorganisms, including bacteria, fungi, and yeasts.

Table 2. Lipase-producing organisms and their habitat.

Source Species Habitat Reference

Plants

Triticum aestivum L. - [115]

Pachira aquatica Seed of Tree, UNESP, Brazil [116]

Coconut (Cocos nucifera linn) seed NIFOR substation Abak, Akwa Ibom State of
Nigeria [117]

Castor Beans Chiltern Seeds (Ulverston, Cumbria, UK) [118]

Bay Laurel (Laurus nobilis L.)
Seeds Hatay, Turkey [119]

French bean
(Phaseolus vulgaris L.) Landraces of Himachal Pradesh, India [120]

Nigella sativa L. Seed Denizli region of Turkey [121]

Brassica napus L.
Bangladesh Agriculture Research Institute,

Irshardi, Pabna and Rajshahi Local Shaheb Bazar
Market.

[122]

Rice Bran Bangalore, India [123]

Jatropha curcas L. Isiuwa quarters of the Nigerian Institute for Oil
Palm Research, Benin City, Nigeria [124]

Lupine seeds Poland [125]
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Table 2. Cont.

Source Species Habitat Reference

Bacteria

Streptomyces sp. Al-Dhabi-49 Soil, Saudi Arabia [126]

Chryseobacterium polytrichastri
ERMR1:04 Glacier, Sikkim Himalaya [127,128]

Seeds of African oil bean
(Pentaclethra macrophylla Benth) NIFOR, Benin City [129]

Chryseobacterium sp. strain IHBB
10212 Glacier top-surface soil, Himalaya, India [130]

Bacillus cereus HSS Mediterranean Sea, Eastern Harbor, Al Shatby,
and Abu-Qir [131]

Thalassospira permensis M35-15 Sea water and sediments samples [132]

Bacillus subtilis strain Kakrayal_1 Katra region of Jammu and Kashmir, India [133]

Geobacillus thermoleovorans DA2 Desert, Southern Sinai [134]

Pelosinus fermentans Groundwater, Germany [135]

Micrococcus luteus Agriculture field and garden [136]

Bacillus aerius Soil and water of hot spring, Shimla [137]

Ralstonia species Soil sample, Germany [138]

Trichoderma harzianum Soil sample, Turkey [139]

Acinetobacter baylyi Marine sludge, Thailand [140]

Serratia marcescens Raw milk [141]

Fungi

Aspergillus fumigatus Oil contaminated soil, HRTC workshop,
Himachal Pradesh [142]

Trichoderma reesei strain RF10625 Fungal Biodiversity Institute, The Netherlands [143]

Aspergillus niger (strain LFS) DSM Food Specialties B.V. [143]

Geotrichum sp. UNICAMP, Brazil [144]

Cunninghamella verticillata Oil-mill waste [145]

Aspergillus niger Dept of Biochemistry and Microbiology,
University of Plovdiv, Bulgaria [146]

Rhizopus chinensis (CCTCC) China Center for Type Culture
Collection [147]

Penicillium simplicissimum Waste from the babassu oil industry [148]

Yeast

Limtongella siamensis
DMKU-JMGT1-45 Grease traps, Kasetsart University, Thailand [149]

Yarrowia lipolytica Marine oil-contaminated sludge [150]

Candida rugosa Sigma-Aldrich Co. (Germany) [151]

3.1. Lipase Activity and Specificity

As lipases are obtained from a variety of biological sources (Table 3), they possess
diverse substrate and catalytic specificity [152]. The selection of lipase for a specific
application must be carried out on the basis of enzyme specificity and stability in various
solvents [153]. According to their substrate specificity, lipases are divided into three groups:
sn-1,3-specific lipases (hydrolyze ester bonds in the sn-1 and sn-3 position in TAG); sn-2-
specific lipases (lipases preferentially cleave acyl chains in the sn-1 and sn-3 position in
TAG); and nonspecific lipases [154,155]. Lipases with a sn-1,3-regioselectivity are most
common, while the sn-2 fatty acids in TAG are less accessible to lipases due to steric
hindrances [154].
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Table 3. Microbial production of lipase on different substrates.

Lipase Producer Lipase Activity Substrate Reference

Pseudomonas sp. LSK25 50.5 U/mL Rice bran oil
Coconut oil [156]

Antarctic Pseudomonas sp. 130.7 U/mL Olive oil [157]

Candida viswanathii 101.1 U/mL Olive oil [158]

Pseudomonas sp. LSK25 0.35 to 0.4 U/mL olive oil [156]

Aspergillus terreus NCFT 4269.10 475U/mL Sun flower oil [159]

Bacillus amyloliquefaciens PS35 361 mU/ml Palm oil [160]

Pseudomonas fluorescens Strain AMS8 226.69 U/mL Olive oil [161]

Pseudomonas aeuriginosa 528.54 U/L Olive oil [162]

Penicillium camembertii Thom PG-3

422.0 U/mL Jojoba oil

[163]

92.8 U/mL Corn oil

128.0 U/mL Soybean oil

146.5 U/mL Rape seed oil

180.0 U/mL Linseed oil

Colletotrichum gloesporioides 41 18.8 U/mL Olive oil emulsion [164]

3.2. Lipase Thermostability and Half-Life

The enzyme thermostability is an important characteristic that determines the enzyme
potential and robustness for industrial applications. Hence, biotechnological research
has been focused on the development of thermostable enzymes by 1) genetic engineer-
ing, protein engineering, and strain mutation to improve enzyme stability; and 2) bio-
prospecting and discovery of new thermophilic organisms capable of producing unique
thermostable enzymes [165]. For example, a recent study reported the isolation of a novel
thermo-halophilic bacteria from a hot spring area in Indonesia. This strain produced a
thermostable lipase with a temperature optimum of 70 ◦C, which was able to catalyze both
hydrolysis and transesterification reactions [166].

The half-life of any chemical reaction is defined as the time elapsed to reach half
(50%) of the initial reactant concentration [167]. The half-life of select lipases and their
temperature optima are displayed in Table 4. Strain mutation has been used as a strategy
to alter both the half-life and thermostability of produced lipases [58,165,168]. Protein
engineering of the enzyme structure through introducing a salt bridge in the enzyme
macromolecule significantly increased the thermostability of a Stenotrophomonas maltophilia
lipase from 40 ◦C to 90 ◦C, with an additional improvement in half-life [165]. Recombinant
DNA technology has been applied to enhance lipase production and reduce the overall
cost [169].

Table 4. Optimum temperature and half-life of microbial lipases.

Source Strain Optimum Temperature Half-Life (t1/2, min) References

Geobacillus zalihae

D43E

70 ◦C

135

[168]
T118N 75
E226D 165
N304E 120

Rhizopus chinensis

r27RCL

60 ◦C

0.85

[170]
m28 6.5
m26 4.5
m28 6.5
m29 12.3
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Table 4. Cont.

Source Strain Optimum Temperature Half-Life (t1/2, min) References

Rhizomucor miehei
WT RML 2.2

[171]M7 70 ◦C 27.5

Penicillium cyclopium
WT 66.7

[58]L41P 35 ◦C 87.3
G47I 126

Rhizopus oryzae V209L 4.38
[172]D262G 55 ◦C 4.2

Geobacillus
thermodenitrificans AV5

50 ◦C 289

[173]
60 ◦C 208
70 ◦C 103
80 ◦C 95

Bacillus sonorensis 4R

80 ◦C 150

[174]
90 ◦C 121.59
100 ◦C 90.01
110 ◦C 70.01
120 ◦C 50

Bacillus sp. RSJ-1

55 ◦C 240

[175]
60 ◦C 150
65 ◦C 90
70 ◦C 45
75 ◦C 30

Candida antarctica 85 ◦C 92 [176]

Burkholderia cepacia ATCC 25609
50 ◦C 54

[177]60 ◦C 46

Geobacillus sp. T1 65 ◦C 315 [178]

3.3. Lipase Reusability

The harsh conditions of industrial processes require the use of robust enzymes that
retain activity over the entire duration of the enzymatic catalysis. Enzyme immobilization
on a solid support has been shown to improve the enzyme resistance to denaturation by
alcohol and promote enzyme reusability [112,179]. Immobilized enzymes have several
advantages over free enzymes, which include prolonged enzyme-substrate contact, enzyme
recycling, improved process control, and more efficient product recovery [23].

Enzyme immobilization has revolutionized biocatalysis as it enabled the develop-
ment and establishment of more cost-efficient biotechnologies that offer higher quality
bioproducts. Immobilization methods include physical adsorption, covalent binding, en-
capsulation, and bio-selective adsorption [179,180]. In one study, a lipase enzyme isolated
from Arachis hypogaea seeds was immobilized with Ca-alginate and agarose gel, which
significantly improved enzyme stability [112]. Another study reported on the immobiliza-
tion by physical adsorption and entrapment of commercial lipases (Pseudomonas fluoresces
AKL, Pseudomonas cepacia PSL, Hog pancreas PHL, Porcine pancreas PPL, and Mucor ja-
vanicus MJL) on polyhydroxybutyrate (PHB), sodium alginate and chitosan [179]. Lipase
from the marine yeast Yarrowia lipolytica was immobilized on microporous resin, which
improved lipase activity over the free enzyme and allowed enzyme re-use [181]. The use of
nanotechnology (carbon nanotubes, metal-based nanoparticles, etc.) has become another
groundbreaking technology for lipase immobilization [176,182].

3.4. Lipase-Catalyzed Biodiesel Production

As can be seen from Table 5, the yield of biodiesel produced by means of lipases varies
depending on the lipase source, substrate source, lipase activity, and reaction parameters,
such as temperature, time, and alcohol to substrate ratio. Clearly, in each case, optimization
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of the reaction conditions is necessary. Overall, fungi and yeasts have shown strong
abilities to produce lipase (Table 5). Bacterial lipases used for biodiesel production have
been sourced from Chromobacterium viscosum, Burkholderia cepacia, Enterobacter aerogenes,
Thermomyces lanuginosa, Pseudomonas fluorescens, etc. [183].

Table 5. Lipase reaction parameters and biodiesel yield.

Lipase
Feedstock Lipase Source Lipase Name Lipase Conc.

(%)
Temp.
(◦C) Time (h)

Molar Ratio
(Alco-

hol/Oil)

Biodiesel
Yield
(%)

Reference

Marine
microalga Nan-

nochloropsis
Candida

antarctica

Candida
antarctica
lipase A
(CALA)

10 35 72 8:1 40.8 [184]

Microalga
Chlorella
vulgaris

Candida
antarcitica

Lipase B
(Novozyme

435)
40 40 72 13:1 66.7 [185]

Waste sardine
oil

Aspergillus
niger Lipase 10 30 72 9:1 94.5 [186]

Kernel oil Thermomyces
lanuginosus Lipozyme TL 0.25 45 4.03 1.50 83.9 [187]

Chinese Tallow
Kernel oil

Burkholderia
cepacia PS lipase 20 40 24 4:1 55.2 [188]

Soapstock
from rice bran

oil

Candida
antarctica Novozyme 435 10 40 24 5:1 93.0 [189]

Soapstock
from rice bran

oil

Thermomyces
lanuginosus

Lipozyme TL
IM 10 30 24 5:1 88.0 [189]

Palm oil fatty
acid distillate

(PFAD)

Candida
antarctica Novozyme 435 1 60 2.5 3:1 93.0 [190]

Tung oil Rhizopus oryzae Chimeric
lipase 13 40 48 3.88 91.9 [191]

Jatropha oil Enterobacter
aerogenes Lipase - * 55 48 4:1 94.0 [192]

Waste tallow Candida
antarctica

Lipase B
(CALB)
Candida

antarctica
lipase B

1.25 50 24 30:1 99.0 [193]

Nanochloropsis
oculata

microalga
Bacillus sp. S23 Lipase 1.5 35 60 12:1 95.7 [194]

Beef tallow Burkholderia
cepacia

Immobilized
lipase 20 50 48 12:1 89.7 [195]

Animal fat Candida
antarctica

Immobilized
lipase 10 40 6 50:6 79.0 [196]

Lard Candida sp. Lipase 20 40 30 3:1 87.4 [197]

Lard Candida
antarctica Lipase 10 30 72 1:1 74.0 [198]

Lard Candida
antarctica Lipase 2–6 50 20 5:1 97.2 [199]

Used
cottonseed oil

Pseudomonas
sp. Lipase 30 37 48 6:1 70.0 [200]

Palm oil
Rhodotorula

mucilagenosa P
11I89

Lipase 0.5 30 72 3:1 51.3 [201]

Palm oil Aspergillus
niger Lipase 2–3 25 72 3:1 87.0 [202]

Palm oil Aspergillus
niger Lipase 2–3 40 72 3:1 69.0 [202]

Used cooking
oil

Rhizopus oryzae
PTCC 5174 Lipase 15.5 35 72 3:1 98.0 [203]

Soybean oil Rhizopus oryzae Lipase 5 35 72 3:1 89–92 [204]

* 50 U of immobilized lipase/g.
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4. Lipase and Biodiesel Markets
4.1. Lipase Market

According to the Fior Market survey, the global lipase market is projected to register
a CAGR of 8.8% during the forecast period 2020–2025 and reach USD 961.85 million by
2028 [205]. Due to the diverse origin of lipases, their properties, and their abilities to
catalyze different biotechnical reactions, the market for lipases is expanding beyond the
food and biofuels industry to include animal feed, pharmaceutical, detergent, cosmetic,
pulp and paper, leather, and textile industries [206]. The use of lipase in biology and
electronics, biosensors, and nanotechnology is also on the rise. The global lipase market is
segmented into animal lipases and microbial lipases. In 2020, the microbial and animal feed
lipases segments held the largest market share of 61.64% and 26.6%, respectively. The key
players in the global lipase market are Amano Enzymes Inc. (Elgin, IL, USA), Advanced
Enzymes (Thane, Maharashtra, India), Clerici-Sacco Group (Cadorago, Como, Italy), Chr.
Hansen Holdings A/S (Boege Alle, Hoersholm, Denmark), Enzyme Development Corpo-
ration (New York, NY, USA), E. I. Du Pont De Nemours (Wilmington, DE, USA), Genencor
(Rochester, NY, USA), Novozymes A/S (Franklinton, NC, USA), Koninklijke DSM N.V.
(Heerlen, Limburg, The Netherlands), and Renco New Zealand (Eltham, Taranaki, New
Zealand) [207]. The major limitations for the wider, large-scale use of lipases have been
their high cost and the lack of transparency in the laws and regulations related to lipase
patents around the world.

4.2. Biodiesel Market

In 2016, the size of the biodiesel market was USD 34.1 billion and should reach USD
41.2 billion by 2021 at a 3.8% CAGR. However, over the period 2021–2028, the global biodiesel
market is forecasted to grow at a higher CAGR of 5.25%. The biodiesel demand is expected
to exceed 41.4 billion liters by 2025 [208]. The biodiesel market is driven by the increasing
demand for environmentally safe fuels that reduce GHG emissions. Other major growth-
inducing factors are the thriving automotive industry, the surging prices of fossil fuels, the
recent advancements and emergence of the third-generation biodiesel from algae, and the
implementation of favorable government policies to promote biodiesel usage [209]. Chemical
biodiesel is manufactured globally by several major producers, such as Archer Daniels
Midland Company (Chicago, IL, USA), Wilmar International Limited (Chinatown, Singapore),
Bunge Limited (Chesterfield, MO, USA), Neste Corporation (Espoo, Finland), Renewable
Energy Group Inc. (Ames, IA, USA), Louis Dreyfus Company (Rotterdam, The Netherlands),
Cargill Inc. (Wayzata, MN, USA), BIOX Corporation (Hamilton, ON, Canada), Munzer
Bioindustrie (Vienna, Austria), and Emami Group (Kolkata, West Bengal, India).

Although the enzymatic routes for biodiesel production have been intensively investi-
gated, the large-scale production of enzymatic biodiesel is currently limited (Table 6). The
U.S. has several commercial-scale production facilities; however, the largest single plant
(Aemetis Biorefinery, Inc., Cupertino, CA, USA) for enzymatic biodiesel production of
50 million gallons per year has been built in India. International collaborative efforts and
strategic partnerships between biodiesel manufacturers and lipase-producing companies
may accelerate the progress towards the development of commercially viable technologies
for enzymatic biodiesel.
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Table 6. Commercial production of enzymatic biodiesel: lipase source, feedstock, and annual production of biodiesel.

Country Company Name Lipase Source Main Feedstock Annual Production Reference

USA Viesel Fuel LLC Eversa Transform®

from A. oryzae
Waste cooking oil,

brown grease 11 million gallons [210]

USA SRS International
Co. Immobilized lipase Used restaurant oil 5 million gallons [211]

USA Buster Biofuels

Callera® Trans L
lipase from

Thermomyces
lanuginosus

Brown grease, fish oil 5 million gallons [212]

USA Blue Sun Energy

Callera® Trans L
lipase from

Thermomyces
lanuginosus

Used cooking oil, palm
fatty acid distillate,

corn oil
30 million gallons [213]

Israel TransBiodiesel Ltd. TransZyme A
Used cooking oil,

animal fat, acid oil,
brown grease

50,000 tons [214]

Israel EnzymeCore TransZyme A

Low-cost oils and fats
with high free fatty
acid and polar lipid

content

1500 tons [215]

South Korea M-Energy TransZyme A
Brown grease

extracted from grease
trap, fat, oil, grease

30,000 tons [216]

India Aemetis
Biorefinery, Inc. -

Brown grease, low
grade used cooking
oils, palm fatty acid
distillate and other

plant oil waste
feedstocks

50 million gallons [217]

China

Lvming and
Environmental

Protection
Technology Co.

Ltd.

Candida sp. 99–125
lipase Waste cooking oil 10,000 tons [218]

China
Hunan Rivers

Bioengineering Co.
Ltd.

Immobilized
Novozym 435®

(lipase B from
Candida antarctica)

Beef tallow, soybean
oil 20,000 tons [218]

Brazil Olfar

Immobilized
Callera® Trans L

lipase from
Thermomyces
lanuginosus

Recovered vegetable
oil, animal fat,

soybean oil
378 million liters [219]

As evident from Table 6, the predominant raw materials for the commercial production
of enzymatic biodiesel are waste cooking oil and brown grease, both second-generation
feedstock. Waste cooking/frying oils have high FFA content (typically 20–60% w/w)
as heat and water are known to accelerate the hydrolysis of TAG to FFA. On the other
hand, brown grease is categorized as grease that contains above 15% w/w FFA. The alkali-
catalyzed transesterification reaction of waste cooking oil and brown grease results in
soap formation, which consumes the alkali catalyst, creates difficulties in the downstream
recovery of biodiesel and diminishes the biodiesel yield. Pretreatment with sulfuric acid
in the presence of methanol is required to esterify the FFA and reduce their content to
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below 1% (w/w) before the alkaline transesterification of TAG to FAME can proceed. The
two-step acid-base process adds to the production cost and is considered as one of the
major drawbacks of chemical biodiesel [16]. Lipases can trans/esterify both TAG and FFA
in one step, hence their use on a large scale. Table 6 also suggests that the commercial
process makes use of commercial lipases as the preferred biocatalyst in both free (liquid)
and immobilized (solid) states.

5. Concluding Remarks

Biodiesel is a renewable, biodegradable, non-flammable, non-toxic biofuel that has
the potential to minimize the use of petrodiesel and strengthen energy security and socio-
economic development while reducing the environmental impact. To reach its full potential
as the energy source of choice, several techno-economic and social challenges need to
be overcome.

The main challenge in enzymatic biodiesel production is its high cost. Lipases are
still expensive, and the enzyme-catalyzed process requires more time to complete than the
alkali-catalyzed process. If not optimized, lipases may be inhibited by methanol, which
results in diminished biodiesel yields. The cost-efficiency of biodiesel can be improved
using immobilized enzymes that are recovered and recycled. As the glycerol co-product
in biodiesel production remains underutilized, the development of viable technologies
for glycerol conversion to value-added products will further strengthen the production
economics of biodiesel. The ability of lipase to catalyze biodiesel production from low-
cost feedstock with a high free fatty acid content, such as waste cooking oil, grease, and
tallow, can also lower the cost of enzymatic biodiesel. Furthermore, the discovery and
engineering of new and robust lipases with high activity, thermostability, and resistance
to inhibition will accelerate the progress towards the establishment of a cost-effective
enzymatic process [23]. Another challenge is the poor cold flow properties of biodiesel in
terms of cloud point, pour point, and cold filter plugging point [83,220–223]. The presence
of higher amounts of FAME in biodiesel than petrodiesel further aggravates this problem.
In addition, the water content of oily feedstocks may need adjustment to ensure optimal
transesterification conditions for lipase catalysis. A further drawback is the low oxida-
tion stability of biodiesel (both enzyme- and alkali-catalyzed biodiesel) that is caused by
the presence of polyunsaturated FAME [224]. In addition, the viscosity of biodiesel is
11–17 times higher than petrodiesel, which can make pumping, combustion, and atomiza-
tion more difficult [225]. Biodiesel combustion may lead to sludge buildup in the injectors
and engine heads, and compression ignition engines can wear excessively [226]. The use
of fuel additives can improve the oxidation stability, engine, and storage life of biodiesel,
and the performance of biodiesel-diesel blends in cold climates [227,228]. However, there
is a paucity of studies on the effects of antioxidants on the lubricity of biodiesel while
patents regarding methods for improving the cold flow properties of biodiesel remain
scarce [229,230]. For this reason, the biodiesel’s physical-chemical properties need to be
refined to increase compatibility with compression ignition engines.

A major disadvantage of the first-generation biodiesel is that it is produced from
edible oils derived from food crops, hence the concerns about increases in food prices in the
global market and the ongoing food vs. fuel debate. While the second-generation biodiesel
avoids the use of food crops, it still requires the cultivation of non-edible oil plants, which
may lead to competition with food crops for arable land [231]. In addition to the above
challenges, the expansion of the biodiesel industry may have direct or indirect negative
environmental impacts. For example, to maintain a sufficient feedstock supply, more land
may be required to cultivate oil crops, which could lead to deforestation. Rainforests are
the largest carbon sinks in the world, and their removal will inevitably release enormous
amounts of carbon into the atmosphere. Furthermore, as water is extensively used for
cooking, drinking, and irrigation, water-intensive biodiesel production can considerably
strain water resources and increase pressures on water supplies [232].
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Farmers, researchers, feedstock providers, transporter, investors, and youth are ex-
pected to benefit from the emerging biodiesel market. Many policymakers favor biodiesel
for its potential benefits, including increased domestic energy stability, lower GHG emis-
sions, economic growth, and job creation, especially in rural areas. Subsidies, grants,
campaigns, and biodiesel mandates in national policies can be implemented to facilitate
the development of first-generation biodiesel. A study of the socio-economic status in
Thailand related to the biodiesel market reported that more workers are needed for the
biodiesel than the petrodiesel industry, which will create more employment by the end
of 2022 [233]. Likewise, India currently generates around 70 billion liters of wastewater
per day, and opportunities exist to upgrade the existing sewage treatment plants for si-
multaneous production of biogas and biodiesel. This may add an additional 700,000 jobs
and allow the production of around 350 million liters of biodiesel. Various national and
international organizations currently collaborate with the objective to demonstrate real-
world opportunities of innovative biodiesel technology for the production and usage
of high-mileage 100% biodiesel (B100) in vehicle applications. A variety of cooperation
initiatives engage sustainable diesel supporters around the world to promote biodiesel
and its awareness at the regional, national, and international levels. These include Na-
tional Biodiesel Board (https://www.biodiesel.org, accessed on 20 August 2021), European
Biodiesel Board (https://ebb-eu.org, accessed on 20 August 2021), Biodiesel Ambassadors
(https://www.nbb.org/join-us/partnership-programs/biodiesel-ambassadors, accessed
on 20 August 2021), Biodiesel Alliance (https://www.greenamerica.org/fuels-future/
sustainable-biodiesel-alliance, accessed on 20 August 2021), Next Generation Scientists
for Biodiesel, (https://biodieselsustainability.org/ngsb/, accessed on 20 August 2021),
and others.
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