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Abstract: The environmental pollution of phenol-containing wastewater is an urgent problem with
industrial development. Natural deep eutectic solvents provide an environmentally friendly alter-
nation for the solvent extraction of phenol. This study synthesized a series of natural deep eutectic
solvents with L-proline and decanoic acid as precursors, characterized by in situ infrared spectrome-
try, Fourier transform infrared spectrometry, hydrogen nuclear magnetic resonance spectrometry, and
differential thermogravimetric analysis. Natural deep eutectic solvents have good thermal stability.
The high-efficiency extraction of phenol from wastewater by natural deep eutectic solvents was in-
vestigated under mild conditions. The effects of natural deep eutectic solvents, phenol concentration,
reaction temperature, and reaction time on phenol extraction were studied. The optimized extraction
conditions of phenol with L-prolin/decanoic acid were as follows: molar ratio, 4.2:1; reaction time,
60 min; and temperature, 50 ◦C. Extraction efficiency was up to 62%. The number of extraction cycles
can be up to 6, and extraction rate not less than 57%. The promising results demonstrate that natural
deep eutectic solvents are efficient in the field of phenolic compound extraction in wastewater.

Keywords: amino acid; natural deep eutectic solvents; phenolic wastewater

1. Introduction

As a class of protoplasmic toxicants, phenolic compounds have the characteristics of
numerous sources, high toxicity, and difficult degradation [1–3]. Vast amounts of phenol
and phenolic compounds are produced by industry, including textiles, ceramics, medicine,
coking, and leather processing, and then discharged into the environment, producing
lasting adverse effects. Phenolic compounds are a kind of poison, such as phenol; they
can poison almost all living things, and are particularly harmful to the human nervous
system [4–6]. Therefore, many countries and regions strictly restrict the discharge of
phenolic wastewater [7]. For instance, according to standards for drinking water quality, the
maximal permissible concentration of volatile phenols in aqueous solution is 0.002 mg L−1

in China, and 0.005 mg L−1 in Japan. In addition, the maximal accepted concentration of
phenol in wastewater is 1 mg L−1 under European Union rules [8].

The main methods for the disposal of phenolic wastewater can be divided into two
types: destructive and recyclable methods [9–11]. Destructive methods may be thermal
decomposition, catalytic degradation, and chemical oxidation, whereas recyclable methods
include solvent extraction, adsorption, and membrane separation. Recyclable methods are
usually adopted when phenol content is at or over 1000 mg L−1. Among them, solvent
extraction is a preferred recyclable treatment method, especially for high concentrations
of phenolic wastewater (e.g., sodium sulfate wastewater), due to it having excellent prop-
erties such as high selectivity, easy availability, and large extraction capacity. The type of
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extractant is a major factor during extraction. In the last few decades, common traditional
extractants have many problems, such as toxicity, expensiveness, and low extraction yield.
Aiming at the above problems, researchers are looking for a novel type of extractant that
is cheap, accessible, environmentally friendly, and highly extractive to replace traditional
extractants. In recent years, ionic liquids (ILs), natural deep eutectic solvents (NADESs),
and biosolvents (Bio-Ss), as novel alternatives, have emerged as promising candidates in
this field of research [12–14].

Abbott’s group conducted some interesting experiments at the beginning of our
century [15,16]. A few published papers of this group triggered research in the area of
deep eutectic solvents (DESs). They are generally synthesized by the simple eutectics of
hydrogen-bond donors (HBDs) and hydrogen-bond acceptors (HBAs) from components of
natural origin such as alcohol, organic acids, and amino acids; thus, they are also defined
as natural deep eutectic solvents (NADESs) [17,18].

Compared to ILs, DES have superior biocompatibility and high reactivity [19–21], and
are called novel ionic liquids. In the past few years, NADESs have been widely applied
as extractants, catalysts, electrolytes, and solvents. Li et al. [22] expounded the synthesis,
application, and development of deep eutectic solvents, indicating that it is expected to
diversify into extraction and separation. Afterwards, Zhao et al. [23] focused on aqueous
two-phase systems based on deep eutectic solvents and their application in green separation
processes. Lalit Khare et al. [24] synthesized hydrophobic DES using menthol, thymol,
or tetra butyl ammonium hydrogen bromide as HBA, and various long-chain acids as
HBD, for extracting ergosterol from mushrooms. The experiment used response surface
methodology (RSM) and obtained a maximal extraction yield of 6995.00 µg ergosterol/g
dry weight. In 2018, Zhang et al. [25] prepared amino acid ionic liquid-based deep eutectic
solvents (tryptophan fluoborate/urea, TrpBF4/U) from L-tryptophan, fluoroboric acid, and
urea for oil–carbonate mineral separation. Results showed that oil recovery was enhanced
by at least 11% compared with the initial status. In 2019, A Shishov et al. [26] developed in
situ deep eutectic mixtures supported in a hydrophilic porous membrane. By hydrogen–
bond interaction, the analytes were extracted and retained into the hydrophilic porous
membrane. Lastly, deep eutectic mixtures were applied to the HPLC-FLD determination
of phenols in smoked food samples. In addition to the extraction of phenolic compounds
from food, there is also the extraction of phenolic compounds from wastewater. According
to the investigation of Yang [27], a ternary extractant consisting of 20% tributylphosphane
(TBP)/20% diethyl carbonate (DEC)/60% cyclohexane was utilized to extract phenol from
wastewater, of which the maximal extraction rate could reach 99.79%. Mechanism analysis
illustrated that the extraction of phenol was enabled by intermolecular hydrogen bonding
with both TBP and DEC. A NaOH solution was utilized in the experimental process, which
may have caused secondary pollution. In addition, many researchers utilized the synthesis
of different kinds of DES for absorbing and extracting contaminants containing pesticides,
radioactive iodine polluting gases, and the like [28]. For their latest study, Tang [29]
used green renewable choline chloride as new adsorbents for the removal of aniline by
forming choline-based deep eutectic solvents, and this displayed excellent aniline removal
efficiency. In subsequent research by Tang [30], a polarity-controlled hexafluoroisopropanol-
choline chloride (DES)-based biphasic system was successful developed. Polarity-driven
recognition enables it to be an efficient absorbent in the simultaneous extraction and
separation of high-polarity compounds.

To sum up, a variety of DESs have been applied in the separation field, and promis-
ing results demonstrated DES to be an attractive option for the treatment of hazardous
substances from the environment. However, there is still difficulty in the large application
of DES for secondary NaOH solution pollution, known high viscosity, and relatively low
reactivity [31,32].

This research develops a hydrophobic, low-viscosity, and high-reactivity NADES. The
biodegradable amino acid L-proline was determined as HBD. The heterocyclic structure,
sufficient carboxyl, and amino groups on L-proline could enable multiple potential reac-
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tion sites. Decanoic acid was preferred as the feedstock of HBA. The long hydrophobic
chains on decanoic acid ensured the hydrophobicity of NADES, which is beneficial for
the extraction of decanoic phenol form wastewater. The decanoic acid/L-proline NADES
ensures extraction efficiency, reduces the risk of reaction to a certain extent, and avoids the
secondary pollution of related hazardous substances. Amino acid-based NADESs formed
with decanoic acid and L-proline in different proportions were developed to realize the ef-
ficient extraction of phenolic compounds from aqueous environments. Thermogravimetric
analysis (TG) with UV–vis absorption spectra manifested its physical and optical properties.
Fourier transform infrared spectroscopy (FTIR) and an in situ infrared spectrometer system
were utilized to study the extraction mechanism. In addition, the effects of precursor
ratio, phenol concentration in simulated wastewater, reaction time, and temperature on
the removal rate of phenol were investigated. The effect of regeneration time on extraction
efficiency was also assessed.

2. Materials and Methods
2.1. Chemicals and Materials

L-proline (purity ≥ 98%) was obtained from Sichuan Huatang Jurui Biotechnology
Company Limited (Co. Ltd). Decanoic acid (purity ≥ 98%) and phenol (purity ≥ 98%)
were purchased from Shanghai McLean Biochemical Technology Co. Ltd. All agents were
used as received and with no further purification. In the experimental process, all aqueous
solutions were prepared using high-purity (Milli-Q) water with specific conductance <
0.1 mS cm−1.

2.2. Preparation of Amino Acid-Based Natural Deep Eutectic Solvents

In the current work, a series of amino acid-based NADESs were prepared from L-
proline (L-Pro) and decanoic acid according to previous methods. L-Pro was used as
hydrogen bond acceptor, and decanoic acid was used as hydrogen bond donor [33–35].
L-Pro and decanoic acid were added into a 250 mL flask at different molar ratios (decanoic
acid:L-Pro, 2.88:1, 3.5:1, 4.2:1, 4.55:1, 4.84:1). Taking 5 ◦C min−1 as the heating rate and
starting from 20 ◦C to increase the temperature, the preparation of amino acid-based
NADESs was observed with different proportions. The whole process was carried out
in a magnetic stirrer heated by a constant temperature collector. The container was also
protected with nitrogen until a uniform, stable liquid. The products were dried in a forced
air oven at 60 ◦C for 24 h.

2.3. Extraction-Cycle Procedure
2.3.1. Preparation of Simulated Wastewater

First, 1 g solid pure phenol was weighed and placed in a clean beaker. After adding
an appropriate amount of high-purity water until complete dissolution, it was moved to a
1 L volumetric flask with constant volume and shaken well to obtain a phenol-containing
wastewater model with a concentration of 1000 mg L−1 [36]. The phenol wastewater model
with concentrations of 2000, 3000, 4000, and 20,000 mg L−1 was obtained by repeating the
above operation steps [37]. The above solutions were proportionally diluted to obtain a
series of wastewater models with concentration gradients of 0.5, 1, 2, 5, 10, 20, 40, 60, 80,
10,000, 15,000, and 5000 mg L−1, respectively.

2.3.2. Extraction Process

The NADES with a ratio of decanoic acid to L-Pro of 4.2:1 was heated to a homoge-
neous transparent liquid. Then, 5 mL of the NADES and 10 mL of 100 mg L−1 phenol
simulated wastewater were injected into a three-mouth flask [38]. The mixture was then
heated at 50 ◦C under magnetic stirring with 10 rotations per second continuing for 60 min,
and poured into the test tube to make it stand. Taking the subnatant after complete delami-
nation, its absorbance was measured by UV–vis absorption spectra. The corresponding
residual phenol concentration was calculated, and the phenol removal rate at that temper-
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ature was then obtained. The above operations were then repeated at ratios of decanoic
acid to L-Pro of 2.88:1, 3.5:1, 4.55:1, and 4.84:1. In addition, the control variable method
was used to explore the influence of phenol concentration, reaction time, and reaction
temperature on the removal rate of phenol [39]. The experiment was measured 3 times in
parallel.

2.4. Analytical Methods

Hydrogen nuclear magnetic spectra (1H NMR) were recorded using a nuclear mag-
netic resonance spectrometer (Bruker, Avance 500 MHz, Karlsruhe, Germany) at room
temperature. The solvent was D2O. Thermogravimetric (TG) (Netzsch, STA449 F5, Nurem-
berg, Bavaria, Germany) analysis was performed under helium. Samples for TG analysis
were placed in a small crucible with a cover under the helium atmosphere with a flow
rate of 20 mL min−1, and heated at a temperature range of 50–400 ◦C with a heating rate
of 30 K min−1. Fourier transform infrared spectra were recorded on a Fourier transform
infrared spectrometer (FTIR) (Bruker Tensor 27, Karlsruhe, Germany) with wavenumbers
from 4000 to 400 cm−1. An in situ infrared spectrometer system (Mettler Toledo, React
IR 15, Zurich, Switzerland) can be used for tracing and detecting chemical reactions over
the entire course of an experiment in order to analyze the mechanism and process of a
reaction. The pH of the sample was determined by a Seven Excellence multiparameter
tester from Mettler Toledo. The absorbance of residual phenol after NADES extraction
was collected with a UV-6100S UV–vis spectrophotometer (Metash instrument Co., Ltd.,
Shanghai, China). The scan range was 190 to 1100 nm with an interval of 0.5 nm.

2.5. Calculation of Phenol Extraction Rate

The completely reacted mixture was placed in a 10 mm quartz colorimeter to measure
its absorbance under UV–visible light. The concentration of phenol in the mixture was
calculated by Lambert–Beer’s law. The extraction rate of phenol was calculated according
to the following formula:

R =
CP − CP-NADES

CP
× 100% (1)

where R, extraction rate of phenol, %; CP, phenol content of model wastewater, mol L−1;
CP-NADESs, residual phenol content after extraction, mol L−1.

3. Results and Discussion
3.1. Preparation of Natural Deep Eutectic Solvents

The required temperature for the formation of acid-based NADESs in different pro-
portions is different. The required temperature for synthesizing each amino acid-based
NADES is shown in Figure 1. The synthesis temperature of amino acid-based NADESs
under different ratios (decanoic acid:L-Pro, 2.88:1, 3.5:1, 4.2:1, 4.55:1, 4.84:1) is 60, 50, 40, 45,
and 55 ◦C, respectively. Briefly, the lowest temperature for the synthesis of NADESs by
decanoic acid and L-pro is 40 ◦C, at which point the molar ratio of is 4.2:1.

The heating and stirring process of decanoic acid and L-pro was monitored with
online in situ infrared [40]. The peak value at 1700 cm−1 significantly and stably decreased
with the increase in reaction time from 0 to 60 min (Figure 2). A hydrogen bond was thus
formed through the interaction of functional groups between the two. A new substance,
amino acid-based NADESs, was synthesized.
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3.2. Properties of Natural Deep Eutectic Solvents
3.2.1. Thermostability

Thermal stability is a significant parameter related to the extractant with NADESs. The
thermodynamic properties of synthesized NADESs were examined by TG-DTG analysis
(Figure 3). Figure 3 shows that NADES had two absorption peaks at 28 and 200 ◦C,
respectively. Sample mass started to decrease at 150 ◦C and reached its peak value at
200 ◦C according to the DTG curve. The NADES had a melting point of 28 ◦C and began to
decompose at 150 until 255 ◦C, when it was fully decomposed. So, the NADES was stable
at room temperature from 25 to 150 ◦C. This indicates that the prepared NADES had good
thermal stability to meet phenol extraction.
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3.2.2. FT-IR and 1H NMR Analysis

The surface chemical composition of the NADES was manifested with FT-IR and
1H NMR, respectively (Figure 4a,b). In Figure 4a, the peaks at wavelengths of 2850.7,
2916.3, and 2951.0 cm−1 denote the C−H stretching vibration for −CH2– and −CH− of
L-proline. The characteristic peaks 3136.2 and 1703.1 cm−1 are attributed to O–H and C=O
stretching vibration for the −COOH group in L-proline and decanoic acid, respectively.
Particularly, the characteristic peak 927.7 cm−1 is attributed to O−H bending vibration
for the −COOH group. The characteristic N−H stretching peak appeared at 1610.5 and
1633.6 cm−1 for C−NH. Combined with the structural formula of the precursor (Figure 4b,
insets), 721.4 cm−1 was the absorption peak of C−H bending vibration for −CH2− in
decanoic acid, and 1193.9 and 1220.9 cm−1 were the absorption peaks of C−N stretching
vibration in L-proline.
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Moreover, to verify the reaction between decanoic acid and L-proline, 1H NMR results
are shown in Figure 4b. The characteristic peak of −CH connected to −COOH in L-proline
structure was at 3.99 ppm. Peaks at 2.28 and 3.39 ppm were assigned to −CH2C=O
on decanoic acid and −CH2N− on L-proline, respectively. H on −NH− in L-proline is
shown in 3.58 ppm. However, new peaks appeared at 4.90 ppm, indicating that a chemical
reaction took place between the two raw materials, and the functional group changed. A
new hydrogen structure was formed, which further proved the success of the synthesis of
the amino acid-based NADESs.

3.2.3. pH

pH reflects the acidity of a solution, and it directly affects the extraction of phenolic
compound. As shown in Table 1, the pH of NADESs is about 5–6 in aqueous environments
and shows weak acidity. This provides a basis for the treatment of phenol wastewater.

Table 1. pH of NADESs with different molar ratios.

Sample Number Ratio of
Decanoic Acid and L-Proline pH Acid/Base Properties

1 4.2:1 5.67 acidity
2 4.55:1 5.42 acidity
3 3.5:1 5.58 acidity
4 4.84:1 5.24 acidity
5 2.88:1 5.86 acidity

3.2.4. Stability in the Presence of Water

Water content greatly influences the stability of NADES, and it can weaken the
hydrogen-bond interaction between HBA and HBD, thus resulting in the dissociation
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of NADES. It is important to moderate the water content of NADESs. The thermodynamic
stability of NADESs with water content from 0 to 55% was determined by TG (Figure 5).
The TG curves of decanoic acid/L-proline NADES maintained good stability when the
content of water was not much more than 35% (V/V). This might have been due to the
formation of a NADES hydrate, which was discussed in previous studies [41,42]. However,
the hydrogen bond was gradually weakened with water added up to 45% (V/V). The
smooth curve became steeper, and platforms even appeared. The NADES absolutely disso-
ciated till water content was 55% (V/V), and transited from a united to a mixed aqueous
solution. The result was consistent with that of Dai, who reported that 50% (V/V) was the
critical value of water in NADESs [43].
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Figure 5. TG (in nitrogen) curves of NADESs with different water content levels.

3.3. Phenol Extraction with Natural Deep Eutectic Solvents
3.3.1. Standard Curve of Absorbance–Concentration

In this work, the maximal absorption wavelength of phenol by UV–vis absorption
spectra was about 267 nm (Figure 6a,b). Simulated phenolic wastewater with concentra-
tions of 16, 20, 40, 60, and 80 mg L−1 were taken to measure UV–vis absorption spectra,
respectively. The fitting-degree curve was drawn according to the five measured scatter
points, and the fitting degree of the curve was calculated by computer as R2 = 0.9992347. Its
function expression Y = 64.331X − 1.1872 was also calculated. Maximal absorbance at the
maximal absorption wavelength was 4.419. Substituted it into the function, the maximal
phenol concentration measured by UV–vis absorption spectra was 283.09 mg L−1 under
the condition of no dilution.
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Figure 6. (a) UV–vis absorption spectra of 30 mg L−1 phenol wastewater; (b) standard curve of absorbance–phenol
concentration.
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3.3.2. Effect of Precursor Molar Ratio on Phenol Extraction

After the reaction of NADESs and simulated phenol-containing wastewater, the two
were quickly stratified. After standing for 10 min, the NADES layer was completely
separated from the water layer, and residual phenol concentration was detected in the
aquifer.

Figure 7 shows that phenol extraction rate varied with precursor molar ratio. The
extraction rate was obviously related to precursor molar ratio. At 40 ◦C, reaction time
was 30 min, and the concentration of phenol-containing wastewater was 100 mg L−1. The
maximal rate was 38% with a molar ratio of 3.5:1. In the range of 2.88–4.84 for the molar
ratio of decanoic acid to L-proline, the extraction rate of phenol first increased and then
decreased.
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Figure 7. Effect of precursor molar ratio on phenol extraction rate.

To understand the extraction mechanism, in situ IR spectra were applied to monitor
the extraction of phenol by NADES (Figure 8). In the formation of NADES between
L-proline and decanoic acid with a molar ratio of 3.5:1, relative stable hydrogen bond
H−O···H−N was observed, and the hydrogen bond was not so stable as that of 4.2:1, nor
so loose as that of 2.88:1 or 4.84:1, which would afford potential electrons to react with
electrophilic group on phenol. In the extraction of phenol (Figure 8a,b), the intensity of
the hydrogen bond in NADES at 1700 cm−1 greatly changed, as it decreased sharply. At
the same time, the peak intensity at 1250 cm−1 slightly increased with the addition of
NADES to phenolic wastewater. This suggests the interaction of NADES and phenolic
hydroxyl group by hydrogen bond. Moreover, the increase in N−H peak intensity at
1658 cm−1 indicated that O−H in the phenolic compound combined with N−H in the
NADES. Thus, phenolic compounds were extracted by NADES to achieve the treatment of
phenolic wastewater (Figure 8c–e).

In subsequent experiments, a NADES with a molar ratio of 3.5:1 for decanoic acid and
L-proline was selected.

Trioctylamine, kerosene, and tributyl phosphate are conventional organic solvents, and
they have good phenol extraction efficiency. In order to evaluate the potential application
of NADES, parallel experiments with conventional organic solvents were also carried
out under the same extraction conditions. The phenol extraction rates of trioctylamine,
kerosene, and tributyl phosphate were 45%, 34%, and 39%, respectively. Though the
extraction efficiency of NADES (38%) was lower than that of trioctylamine and tributyl
phosphate, the difference was small. As a new solvent, results demonstrated that NADES
is a promising green extraction technology in the field of separation science, especially
phenolic compounds in large-scale applications.
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3.3.3. Effect of Phenol Concentration on Phenol Extraction

As shown in Figure 9, the effect of different phenol concentration on phenol extraction
was investigated in a NADES system. Reaction conditions were the same as above. The
extraction rate increased with the increase in phenol concentration. When the concentration
of phenolic wastewater was greater than 300 mg L−1, the extraction rate remained at about
53%. The extraction rate of phenol from NADES was less than 24% in simulated phenolic
wastewater with a concentration of 0–10 mg L−1, and the removal rate of phenol from
simulated phenolic wastewater with a concentration of 0.5 mg L−1 was 20%. Therefore, the
minimal detection limit of phenol from the prepared NADES was 0.5 mg L−1, which has a
certain practical value. With the increase in concentration of wastewater containing phenol,
the extraction rate of phenol increased. When the concentration of phenol in simulated
wastewater reached 200 mg L−1, the extraction rate of phenol fluctuated at 1% with the
increase in the concentration of phenol. The maximal removal rate of phenol in NADES
was 53% when the concentration of phenol in simulated wastewater was greater than
200 mg L−1.
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Figure 9. Effect of phenol concentration on phenol extraction rate.
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3.3.4. Effect of Reaction Time on Phenol Extraction

From the start of the reaction to the maximal extraction rate, reaction time is essential
for the practical application of NADESs. Generally, a short extraction time is beneficial
to enhance processing capacity. In this study, NADES with a ratio of decanoic acid to
L-proline of 3.5:1 was used to continuously stir and heat the simulated phenol-containing
wastewater of 100 mg L−1. At a specific time, phenol concentration was determined. The
experimental results are shown in Figure 10.
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Figure 10. Effect of reaction time on phenol extraction rate.

When phenol concentration, reaction temperature, and precursor ratio were fixed, the
extraction first increased and then tended to be stable with the extension of reaction time.
After 15 min, the reaction was the most intense, and the intensity of the reaction decreased
within 15–60 min. At 60 min, the reaction tended to be stable. At this time, the extraction
rate of phenol was 46%, and fluctuation was no more than 1%. The extraction rate of phenol
at 60 min was 8% higher than that at 30 min. Results showed that the reaction time greatly
influenced the extraction rate of phenol. Therefore, the optimal reaction time is 60 min.

3.3.5. Effect of Temperature on Phenol Extraction

The effect of temperature on phenol extraction was investigated and is shown in
Figure 11. The extraction rate of phenol were 53.0%, 62.0%, 58.2%, and 51.4% at the reaction
temperature of 45, 50, 55, and 60 ◦C, respectively. There was a peak of 62.0% with reaction
temperature of 50 ◦C, which then decreased slowly. The extraction rate of 40 ◦C was 17.9%,
which was less than all the above. Reaction temperature greatly influenced the extraction
rate of phenol, and the optimal reaction temperature was 50 ◦C.
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3.3.6. Study on Recyclability of Natural Deep Eutectic Solvents

From an economic perspective, excellent extractant renewability plays a crucial role in
practical applications, which suggests that the cost of wastewater treatment can be signifi-
cantly reduced. In our study, chloroform was chosen to extract phenol in NADESs because
phenol dissolves well in chloroform. The optimal NADES was mixed with 100 mg L−1

phenolic water. After the NADES was completely stratified with phenolic water, the water
phase was taken, and absorbance was tested. The phenol was removed by chloroform, and
the 100 mg L−1 simulated water was mixed with the NADES after dephenolic water.

Figure 12 shows that the removal rate of phenol changed little with the increase
in cycle number. At the sixth extraction, the removal rate of phenol in NADES was
still above 57%, and calculability was relatively high. For this, we refer to the available
literature data. In research by Youan Ji et al. [44], biological reagents based on Brønsted
acid–Lewis base interaction were used to separate phenol from the environment, Lastly, the
extraction rate of phenol by 1,3-dimethylxanthine (DMX) was 66.6%. BRs were regenerated
with an antiextraction method for four cycles without significant changes in separation
efficiency and their properties. In addition, Yatong Zhang et al. [45] used biodiesel to
extract phenol, and results showed that phenol extraction efficiency reached 98%. However,
the regeneration ability of the extractant was not further investigated. Therefore, NADES
as a green solvent has certain advantages in extracting phenol.
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4. Conclusions

In this work, NADESs with L-proline and decanoic acid at different molar ratios were
synthesized and applied in the extraction of phenolic compounds from wastewater. Results
showed that the green amino acid-based NADES had excellent physical and chemical
properties, and most importantly, does not pollute the environment. In the separation
application, the influencing factors for the extraction of phenol from wastewater were
systematically studied. It could achieve high efficiency up to 62% by decanoic acid/L-
proline NADES with a precursor molar ratio of 3.5 to 1 under a reaction time of 60 min
and temperature of 50 ◦C. The NADES could be cycled for six times without a significant
decrease in extraction capacity. The application of green NADESs in the treatment of
hazardous substance combines cleaner production and sustainable development. Amino
acid-based NADESs could be a substitute for the conventional organic solvent extraction of
phenolic compounds from aqueous environments. They are also a promising green solvent
for the field of separation science, which has great potential applications in industry.
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