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Abstract: In order to attain high manufacturing productivity, industry 4.0 merges all the available
system and environment data that can empower the enabled-intelligent techniques. The use of data
provokes the manufacturing self-awareness, reconfiguring the traditional manufacturing challenges.
The current piece of research renders attention to new consideration in the Job Shop Scheduling
(JSSP) based problems as a case study. In that field, a great number of previous research papers
provided optimization solutions for JSSP, relying on heuristics based algorithms. The current study
investigates the main elements of such algorithms to provide a concise anatomy and a review on the
previous research papers. Going through the study, a new optimization scope is introduced relying
on additional available data of a machine, by which the Flexible Job-Shop Scheduling Problem (FJSP)
is converted to a dynamic machine state assignation problem. Deploying two-stages, the study
utilizes a combination of discrete Particle Swarm Optimization (PSO) and a selection based algorithm
followed by a modified local search algorithm to attain an optimized case solution. The selection
based algorithm is imported to beat the ever-growing randomness combined with the increasing
number of data-types.

Keywords: flexible job shop scheduling; heuristics; optimization; job shop scheduling; industry 4.0;
integrated process planning and scheduling

1. Introduction

Industry 4.0 (I4.0) has accustomed manufacturing to the digital age via Cyber Physical
Systems (CPS) and Digital Twins (DTs). CPS and DTs are two integrated approaches
of several intelligent tools that facilitate the use of data-driven approach in industry. A
system can have the ability to physically interact the environment and collect data to
virtually represent a complete description along system states progress. Such description
causes a state of awareness or smartness that empowers smart manufacturers to take
the place of conventional manufacturers [1]. Accordingly, the progress of sensor devices,
communication technologies and enabling intelligent techniques have evolved for the
sake of big data analytics [2]. Enabling techniques have been used in industry for more
than three decades. However, what makes a difference is the perspective of data that
empowers the intelligent techniques [3]. In a dynamic collaboration, CPS allow information
communication between systems/sub-systems aspects, where the real physical phase and
cyber phase are associated to fulfill the system awareness gap through data analysis [4,5].
While, DTs support integration between the dual states of data: static state and dynamic
state. Data states are beneficial in creating a virtual model or emphasizing interdependent
instances of included sub-systems, approaching a model-based system [6,7]. Briefly, both
the CPS and DTs are employed to achieve cyber-physical pervasive integration [5].

The motive behind the three previous industries is still applied in I4.0 but is influenced
by sustainability and adaptability. Sustainability is a requirement for the future, being one
of the pillars that accompanies value added activities [8,9]. The latter term, adaptability, is
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accomplished through three self-functionalities: self-configuration, self-organization and
self-maintenance [3]. The system exploits the available data to achieve the parameters of
self-configuration and self-organization. While, system life-cycle data can be operated to
address self-maintenance. The three terms target higher levels of automation compati-
bilities, approaching what is meant by awareness which enables the progress in the new
manufacturing era.

The research topics in smart manufacturing are being pinpointed recently by aca-
demics in a number of review papers [10,11], declaring the new horizon of challenges. As
expected, the challenges are conventional manufacturing challenges in real-time. Such
instances result in a complex dynamic-oriented challenge. Accordingly, the solution seeks
optimization from a comprehensive view in respect to the interdependent data between
the subs. The main contributions of this piece of research can be concluded as follows:

• A short review on the JSSP root problems and their evolution, outlined the elements
of the heuristic based techniques (Sections 1–3).

• Regarding that, a projected literature review on a number of highlighted research
studies are demonstrated (Section 4).

• A new perspective of FJSSP is outlined and tackled through a case study (Section 5).
• A proposed two stages approach is designed considering improved steps to enhance

the neighborhoods shaking search (Section 6).
• Finally, the results and conclusion are present in Section 7, followed by the future

discussion.

2. JSSP Evolution

In manufacturing systems, shop scheduling problems are initiated as a resources
organization problem of a single or multiple identical machine(s) processing identical jobs
of the same route. The problem was evolved quickly through the last decades to be a root
of several distinct problems, differing in formation and complexity [12]. Three research
problems have appeared the most often. The first is the Job Shop Scheduling Problem
(JSSP), wherein each job follows its own predetermined route. Second, in a more general
forum, the Flexible Job Shop Scheduling Problem (FJSP) discusses the alternative routes
and assigned machines of each job to follow. Till that point, all studies focus on that field as
a static approach. Third, the Dynamic Job Shop Scheduling Problem (DJSP) brings JSSP to
real-time, in order to handle the disruptive events that happen in manufacturing, such as
the arrival of new jobs and machines breaking down. Nevertheless, researchers during the
recent decade urged that process planning and scheduling are two dependent processes that
should be considered as a linked one [13–16]. In process planning, the machining process,
tools and related configuration parameters are selected. The advances in CAD/CAM field
has designed files that contain viable data for the scheduling problems [17]. The integration
of the two processes is known as Integrated Process Planning and Scheduling (IPPS).

General speaking, JSSP related problems are crucial from more than one aspect and
can stop the wasting of resources of a manufacturer. The new paradigm of manufacturing
leverages technical devices to boost data that empowers knowledge of multiple aspects of
a problem [18,19]. In such cases, future manufacturers will be able to adopt participating
parts as an object-oriented entity that are completely describing the entity state. Regarding
machines as an example, the enclosed life-time information is capable of drawing a detailed
picture of the machining efficiency [20], the wearing that has occurred, and the expected
maintenance time, etc. Such information paves the way for energy saving and predictive
maintenance to be included in scheduling optimization considerations. Applying that upon
a decision-making based problems [21], scheduling can be now considered as a multiple
dynamic layers of optimization.

The JSSP complexity level is upgraded in conformity with variable insertion. In other
words, FJSP and DJSP have higher complexity than the JSSP, following that sequence,
additional integrations further increase the decision complexity, and hereafter, the cost of
optimization increased.
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3. Heuristics

Heuristics based algorithms are utilized heavily to find a solution for the JSSP based
problems. In varied research topics, several heuristics and meta-heuristics taxonomies have
been introduced for optimization an algorithms family [22–27], however, most of those
taxonomies are influenced by relatively old anatomy. As an actively updated field, the
recent years hold new discoveries in optimization techniques paired with a synchronous
implementation in application based approaches. Hence, herein we produce a reshaped
classification considering JSSP related spots respective to the inspired techniques, as in
Table 1.

Table 1. Meta-heuristics observed taxonomy.
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n Evolutionary Inspired, i.e., Genetic Algorithms (GA)
Differential Evolution (DE)

Trace Trajectory Inspired, i.e., Tabu Search (TS)

Food-Hunting Inspired Swarm based, i.e.,
Artificial Colony Optimization (ACO)
Particle Swarm Optimization (PSO)
Pigeon based Optimization

Predatory based, i.e.,
Wolf based Optimization
Whale based Optimization
Bats based optimization

Breeding–Hunting Inspired, i.e., Honey-Bee Mating Algorithm (HBMO)
Hybrid behavior

Physical Behaviour Inspired, i.e.,
Big-Band optimization
Expansion optimization
Simulated Annealing (SA)

3.1. Heuristics

Classical heuristic algorithms can be briefly interpreted as an algorithm initiated by
a suggested solution, chasing an optimal solution or near optimal through an iterative
process of sharing information. The algorithm can be executed in parallel mode in order to
expedite the running process, and disclose the search space, as well [28,29]. Parallel mode
distils the considered problem into smaller sub-problems of the same scheme, causing
diverse scenarios of pointed solutions. This heterogeneous enlarges the ability to discover
the search space [30].

Discovering the solution is a process of intensifying and diversifying the search space,
where the algorithm manipulates the data to generate a solution over number of iterations
in one of two forms. A population form lists several suggested solutions as a pool of
solutions upgraded from parents’ generation to a children’s generation. A single solution
form discovers the neighbors of a given initial solution. The rapid upgrade of Computing
Processing Units (CPU) and Graphic Processing Units (GPU), plus the need for more
hands to analyses data, attract both the evolutionary- and the mathematical model-based
algorithms [31,32]. Hereby, both algorithms are capable of sharing information within
multiple levels; the straightforward level as in mono-pool execution, and the plane level
between the sub-populations—recognized as migration. Several topologies draw traces for
the migration process such as: chain topology, ring topology, tours topology, etc., [33].

3.2. Common Components of Heuristic Based Algorithms

Being either population based or neighborhoods/single based, the study begins with
a potential representation of individual(s) coded as genes. Multiple genes ensemble the
assigned problem solution—known as chromosome or individual Thus, the first step is to
introduce the code process.

3.2.1. Problem Encoding and Decoding

Encoding encrypts the concerned information of a problem in a handler format directly
or indirectly, wherein the imported analyses model/method effectively able to operate
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it. In heuristic based, it is the process of representing the suggested solution of the per-
formed problem as a chromosome of genes. The chromosome intra structure acclaimed as
trees/graph, arrays/strings, lists, or any other objects. The inter representation, the gene, is
coded as an element of binary or decimal numbers or in any other suitable representation.
At this end, JSSP and its relatives concern arrays/strings and directed graph encoding,
composed of bits, numbers, or rather values [22,34–36].

In that respect, permutation encoding adopts a string of real numbers in sequence.
Hence, permutation encoding is preferable in problems having violent ordering or prece-
dence constraint(s). Instead of numbers, value encoding approves values in a suitable form
regarding the represented problem.

As a still growing problem, job scheduling based problems have brought viable
derivatives of the aforementioned encoding forms. Therefore, the performance of the
implemented algorithm depends to a great extent on the encoding strategy. Job, operation
and machine information, three terms mainly govern the FJSSP, but the FJSSP is not limited
to them. Thus, researchers tried to represent the individual as a single string of tuples,
of three or more elements accordingly. Others have carried double and triple strings for
each. The presence of information may be found as an indication, for case of explanation,
operation cell could refer to the used strategy of performed path not the operation itself.
Figures 1–3 represent varied examples of the chromosomes constructions.
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Figure 3. Examples of chromosome coding: (a) chromosome is a bi-part coding multiple routes of a
job indexation and the corresponding operation sequence [39], (b) chromosome is a machine coded
of job-operation number as a tuple, (c) chromosome cell is a triple tuple of job-operation-machine
coding [40], and (d) three chromosomes of a single cell information represents job as a feature string
followed by operation and machine strategy indexation.

3.2.2. Mating Procedures

In a more general construction, population based algorithms are rather a discrete
nature or a continuous nature. As the JSSP approach is a discrete field, applying discrete
heuristic based algorithms in such an approach is a forthright process. The process observes
the evolution of chromosomes through a crossover and mutation procedures. Wherein, the
evolution mostly follows a pattern of two-to-two mating that is two individuals—parents—
produce corresponding two updated individuals—children—e.g., GA.

In different circumstances, continuous algorithms evolve, relying on adjustment
of a point in a continuous solution space. Continuous based algorithms dominate the
optimization race, since they achieve better results than the discrete based algorithms [41].
To make use of continues based algorithms in discrete approaches several suggestions have
been contributed. The premise behind most of these suggestions is to project continuous
variable parameters as a logical or a crossover method [17,42]. Through that, the related
evolution pattern appeared as a multiple-to-one pattern, mostly two-to-one.

a. Crossover Procedure

In discrete space, crossover operation mimics the natural chromosomes mating process,
aiming to recombine parents’ genes, in order to produce new chromosome(s). Crossover is
the main engine that defines how children inherit genes from their parents, since crossover
manipulates the genes and in turn the genes representation directs the used crossover
method. As discussed previously, an array of indexes coding is frequently used, thus,
correspondingly array based crossover forming the main cluster [43]. Additionally, it is
worth mentioning that the number of individuals resulting from the crossover process
varied depending on the way the evolution based algorithm implements the mating
procedure.

Earlier discussions in crossover partitioned a single parent array of genes around a
cut-point, creating two shortened arrays—sub-arrays. With parent I and parent II, either
part of parent I, the sub-array attached to the opposite part of parent II sub-array generates
a chromosome. The procedure is known as Single Point crossover (SPX). SPX expanded to
Double cut-points crossover (DPX), and also multiple points—known as uniform crossover.
In a wider scope, if it is a two-to-two mating process, the second chromosome will be
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generated by merging the unused complementary parts in the same positioned order.
The inherited parts are similarly traversed in an opposite complementary manner. In the
case of determining specified genes permutations, repeated genes appear while others are
absence. For the sake of solution feasibility, Choi et al. [44] exchanged only a sub-array and
rearrange the missing genes regarding to the opposite sub-array. The arrangement order
derived additional types of crossovers, known as Ordered crossover (OX), Linear Ordered
crossover (LOX), and Partially Mapped crossover (PMX) [43,45]. Besides, the generalized
form of OX and PMX that taken into count permutation repetition demands had acronyms
of GOX and GPMX respectively [46].

Selecting the crossover point(s) is where most of new trends in crossover studies
have evolved. The simplest way is to select point(s) randomly. Recently, in a crossover
sub-scale, methods such as local search neighborhood, distributed mathematical models
mostly as a filter/mask and evolution based strategies have emerged to determine the
selected cut-points. As a particular case, in FJSP wherein multiple combined-chromosomes
represented a job-operation-machine, Xinyu et al. [47] presented two crossovers, which
exhibits multiple points as masked points applied to the job chromosome and operation
strategy chromosome shorted as JOX and POX, respectively. Figure 4 depicts some of the
frequently mentioned strategies.
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b. Mutation Procedure

Mutation is a unary evolutionary operator that has a tendency to manipulate a single
individual functioning in a probability factor to produce another version of it. Mutation
diversifies the search space. The search space type and gene probability evoke varied types
of mutation methods [48]. In discrete space, especially in a JSSP based instance, mutation is
best represented as swapping operator, reversion operator and insertion operator, pictured
in Figure 5. There is also, a fragment mutation, where the child inherits the exact gene(s)
from a specified parent. Similar to the crossover operator, mutated genes/points are fre-
quently selected randomly. Recently, uniform random mutation and normally distributed
mutation have prevailed, as well as heuristics based in mutation sub-scales [34].
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c. Selection Procedure

Selection is a priority engine that defines the chance of a solution to be recommended
over others regarding to the occupied strategy. The selected strategy defines a weight that
supports the solution probability to be selected. To the best of our knowledge, there is
no concise explanation supports a strategy over another in JSSP based fields. However,
some strategies are utilized on a large scale through the population generating mechanism.
Tournament selection strategy, a prescribed number of solutions are randomly selected
and the fittest represented as a winner of a race. In tournament, a weight is responsible
for the times the procedure implemented. Displaying a trade-off between intensification
and diversification, Roulette Wheel Selection (RWS) yields a weight proportional to the
relative fitness of a solution. Thus, as a role of thumb, the higher the fitness, the higher the
probability of a solution to be picked. Rank Based Selection (RBS) normalizes the RWS,
producing a weight corresponds to the solution rank [43].

d. Objective Function

A fitness function is used to evaluate the quality of a chromosome, also known as
objective function. The comprehensive perspective of optimization problems disclose inter-
dependency among diverse elements, either as a configuration set or a consequence results.
In other words, multiple conflicts, wherein enhancing the objective of one aspect affects
another, a manner that may be a cycle of deterioration in total. Such an instance—which is
almost everywhere in real-world—triggers a multi-objective optimization algorithm. Multi-
objective optimization is mainly discussed as: aggregation selection, criterion selection and
Pareto selection.

Aggregation selection presses linearly a multi-objective case to a mono-objective.
For that purpose, the multi-objectives is aggregated as a penalty cost in terms of weight,
constraint, or as a goal with a priority, depending on the studied circumstance. Aggregation
based is commonly functioned in large number of evolutionary based studies in both
general perspectives and JSSP related perspectives. Criterion based methods paid attention
to the fitness function one at a time. Late studies focused on Pareto selection based, wherein
a representative set deploying a relation based dominance [49,50], as depicted in Table 2.
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Table 2. Literature survey.

Publication Method Coding
Search/Mating Strategy

Objective Function Problem Perspective
Cross-Over Mutation

Ahmadi et al.
[51]

A Pareto based approach
employing New version of

non-dominated sorting
genetic algorithm (NSGA-II)

and
non-dominated ranking

genetic algorithm (NRGA)

Matrix permutation-based
chromosome of three

columns represented Gantt
chart as (current job,
operation, machine)

POX

modified Position
Based Mutation (PBM)

as well as Machine
Based Mutation

(MBM)

Multi-objective: make-span
and stability measure

FJSSP/IPPS Multiple
machines problem

Singh et al. [52] Quantum behaved PSO
stochastic particle

(operation, machine priority
sequencing representation)

Particles updated
based on masked

procedure

Random position
swapping mutation

that happened
governed by a

condition

Minimize make-span FJSSP Multiple machines
problem

Li et al. [53]
Sequencing operation based
Hybrid Artificial Bee Colony

(ABC)

Two vectors of operation
based coding: (position,

operation, machine)
combination

Random positioning
Multiple stage

swapping based on
random points

Minimize make-span
DFJSSP

Multiple machines
problem

Nouiri et al. [54] Two stage of PSO
Two vector parts of process
and corresponding assigned

machine

Particles updated based on mathematical
formulation

Multi-objective:
Minimize make-span and

stability measure
simultaneously.

FJSSP, Generates
predictive schedules

insensitive to
breakdowns [55].

Wu et al. [56]
Mathematical model and
non-dominated sorting

genetic algorithm (NSGA-II)

Row vector of positioned
operations. LOX Random points

swapping

Multi-objective:

(i) Minimize energy con-
sumption.

(ii) Minimize make-span

FJSSP

Che et al. [57]

mixed-integer linear
programming (MILP) model

based on position
assignment

Mathematical representation Pareto front considering Stochastic calculation
that paid attention to machine idle period

Multi-objective:

(i) Minimizing total en-
ergy consumption, and

(ii) Maximum tardiness

JSSP
Single machine

scheduling

García-León et al.
[40]

General local neighbour
search based on a

disjunction graph model

Two disjunction graph;
operation- and machine-

sequencing graph

Pareto front employing four search strategies and
two neighbourhood structures based on

semi-random three variable selected criteria.

Multi-objective based on
criteria FJSSP
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Table 2. Cont.

Publication Method Coding
Search/Mating Strategy

Objective Function Problem Perspective
Cross-Over Mutation

Mokhtari et al.
[58] Hybrid GA and SA Matrix based mathematical

model

Two cross-over:
uniform- and position
based- crossover are
mixed as a masked

crossover

Two mutations
technique are mixed
reverse sequence and

swapping

Multi-objective:

(i) Minimize completion
time,

(ii) Maximize total avail-
ability of the system,
and

(iii) Minimize energy con-
sumption

FJSSP
Considering different
paths of each machine

Dai et al. [59] Modified GA based on
mathematical model

Multi-layer encoding strings
composed horizontally of:
alternative process plan

strategy positioned in job
sequenced order, and

scheduling plan gene-string

Multiple Single point
cross-over

SA-based mutation
operator

Multiple objective:

(i) Minimize energy con-
sumption, and

(ii) Minimize make span

IPPS

Li et al. [60] Hybrid of HBMO and SA Feature string Single point cross-over Adjacent swapping
Minimize energy through

tool change time and
travelling time (make-span)

JSSP
Single job optimization,

No precedence
constraints

Defersha et al.
[42] Two stage GA

(job, operation) string in first
stage and then Indirect (job,
operation, machine) string

Three cross- over: (i)
single-point randomly

selected, (ii) job
cross-over and (iii)

assignment cross-over
both are exchanged

based on a probability

Operations swapping
mutation, and

assignment altering
mutation

Minimize make-span FJSSP

Meng et al. [61] Mixed models of integer
linear programming (MILP) Mathematical representation Sequenced stages of mathematical formulation of

nine decision variables

Minimize energy
consumption summation:

idle, total and common

FJSSP
Environmental

awareness point of view
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Table 2. Cont.

Publication Method Coding
Search/Mating Strategy

Objective Function Problem Perspective
Cross-Over Mutation

Luo et al. [31]

Heterogeneous parallel GA
with developed event driven
strategy with a two level of

parallelization

Modified operation based
encoding (two paired

patterns)

Random chosen point
cross over

Different arbitrary
genes randomly

chosen to exchange
values

Muti-objective into single:

(i) Minimize the total tar-
diness.

(ii) Minimize the total en-
ergy cost.

(iii) Minimize the schedule
changes delay

DJSSP

Min et al. [62]
Enhanced heuristic based on

combination of GA, PSO
and SA

two-layer horizontally
encodes machine gene string

and operation gene string

Cross over design
based on PSO Based on SA

Multi-objective optimization
model:

(i) Minimize energy con-
sumption.

(ii) Minimize make-span.

DJSSP
Energy efficient

perspective

Mahmoodjanloo
et al. [63]

Mathematical model relying
on two Mixed Integer-Linear

Programming (MILP)

Mathematical
Representation

Modified masked
crossover based on rate

factor

Two main strategies of:
(i) Based on differential

evolution and
(ii) Multiple

self-adaptive strategies
based on indices

Minimize completion time
(make-span)

FJSSP
Reconfigurable machine

tool included

Ambrogio et al.
[64] Mathematical model Mathematical formulation based on three main decision making variables Minimize consumption time

as energy saving indicator FJSSP

Deng et al. [65]

Timetable method of a local
search algorithm applied

with Nawaz-Enscore-Ham
based heuristic

Two square matrices,
operation matrix and

corresponding machine
matrix

- - Minimize Total flow time JSSP

Li et al. [47]
Hybrid based of a genetic

algorithm and variable
neighbourhood search

Three strings:
Job-Feature string indexes

feature appearance,
operation string insert
alternative operation
strategy and machine
alternative operation

strategy string

JOX, POX, POX
respecting t feature,
operation, machine

strings.

Two-points swapping Minimize make-span

FJSSP
Precedence constraint

included with a
correctness step
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Table 2. Cont.

Publication Method Coding
Search/Mating Strategy

Objective Function Problem Perspective
Cross-Over Mutation

Li et al. [15] Discrete PSO based
algorithm

Three strings:
Job-Feature string indexes

feature appearance,
operation string insert
alternative operation
strategy and machine
alternative operation

strategy string

JOX, POX, POX
respecting t feature,
operation, machine

strings.

Two-points swapping Minimize make-span

FJSSP
Precedence constraint

included with a
correctness step

Jing et al. [66] Integrated optimization GA Operation string Single cut-point Random swapping
mutation

Multi-objective:

(i) Minimize completion
time, and

(ii) Minimize total load

FJSSP
preventive maintenance

scope

Cao et al. [39]

Heterogeneous earliest
finish

time (HEFT) adopting
arbitrary directed acyclic
graph (DAG) on Parallel

CPU

DAG—Graph based Two-cut points Two-cut points Minimize make-span DJSSP
Manipulate setup time

Lin et al. [67]
Developed GA based on

incomplete Graph
representation

Two-hand sides strings;
process plan and sequence
of operation, respectively.

Two crossover
operators—one

crossover per side;
Process plan: random

cut-points with
orderbased

generator.Operation
sequence: masked

Two mutation
operators:

Random swapping
based on two genes,
and escalation based

on random single gene.

Minimize Make-span IPPS/DFJSSP

Zhang et al. [68] Mathematical formulation
included into a GA based

Array of layer-coded of (job,
process plan strategy,

assigned machine), and the
gene position indicates the

processing sequence

PMX based on job and
process plan matching

along the whole
parent.

Two mutation
strategies:

Operation conditioned
exchange

Machine based on
random selection

Minimize total energy
consumption

IPPS
Considered tool power

profile of different
machining parameters
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Table 2. Cont.

Publication Method Coding
Search/Mating Strategy

Objective Function Problem Perspective
Cross-Over Mutation

Liu et al. [69] Hybrid of mathematical
model and GA based

Matrix of available machines
by operation sequence Random cut-point Random swapping

point

Minimize
make-span/completion time

respecting work load

DFJSSP
Single

machine—maintenance
perspective

Yavari et al. [70]

Mixed-integer linear
programming model (MILP
Model) cooperated with GA

based two local search
windows.

Two strings; 1- jobs sequence
string on a machines and 2-

parts ordering string.

Single cut-point
attached to the first

string only

Random swapping
point, attached to the

first string only.

Minimize completion time,
parts ordering and holding

cost

JSSP
Supply chain perspective

Zhou et al. [71]

A Pareto front explored by
two multi-objective

approached via three models
of multi-agent structure: (i)
NSGA II, and (ii) Strength

Pareto searching algorithm.

Disjunction graph based Single-cut point (node
randomly selected)

Based on a probability,
a selected root

inherited from parents

Minimize three objectives:

(i) Weighted tardiness,
(ii) Max tardiness, and
(iii) Mean wait time of op-

eration tasks.

FJSSP
Parallel computing

Lu et al. [72] GA based
1D-to-3D representation
based on a job string and
operation-machine matrix

Single point cross-over Two genes swapping Minimize cell make-span

DFJSSP
New order arrival with
transportation time is

considered

Caldeira et al.
[55]

Backtracking search based
on GA with directed old

population

Two vector representation:
operation sequence and

machine assignation

A similarity based
POX (SPOX)

Dynamic mutation
relying on rate factor

Multi-objective:

(i) Minimize make-span.
(ii) Minimize energy con-

sumption, and
(iii) Instability

DFJSSP
Considering new job

arrival

Wu et al. [73]

A Self-deterioration model
and energy consumption

model are optimized
through a hybrid pigeon
inspired followed by SA.

String of two tuples genes:
job number—operation

number
LOX Swapping mutation

Multi-objective:

(i) Minimize make-span,
and

(ii) Minimize energy con-
sumption.

DFJSSP
Machine wearing

included
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Table 2. Cont.

Publication Method Coding
Search/Mating Strategy

Objective Function Problem Perspective
Cross-Over Mutation

Zheng et al. [41]

Integer programming model
and

Based on Non-dominated
Sorting GA II (NSGA-II).

Chromosome of job routes
and the corresponding
sequence of operations

Exchange two selected
operation gene

between the parents

Two positions
swapping

Bi-objective:

(i) Minimize make-span,
and

(ii) Minimize cost of pro-
cessing

FJSSP

Zhu et al. [74]

Multiple-independent
micro-swarm of hierarch
communication structure
paired with constraints

mathematical model

Two-vectors encode job
sequence and process

sequence

Multi-
masked/conditioned

cross-over

Three mutations
techniques: insertion,
swap and inversion.

Minimize interval grey
make-span

FJSSP
with job precedence

constraints

Yang et al. [75]

Creating two phases of
optimizations via prediction
model and robustness model
deploying learning machine

and NSGA-II

Single long string of two
parts; operation sequences

of multiple jobs followed by
machine assignment. [76]

Single point cross-over Swapping mutation

Bi-objective:

(i) Minimize make-span,
and

(ii) Maximize workload
(robustness)

DFJSSP
Machine breakdowns

considered

Vela et al. [77]
Fuzzy uncertainty model
combined with a schedule

based a hybrid TS-GA

Disjunction graph model
representation JOX, GOX and GPMX Insert, swap and

partial inversion
Maximize due-date

satisfaction FJSSP

Zhang et al. [78]

Improved GA through
enhancing the inter

procedures behaviours,
combined with a greedy

operation.

Two arrays of machine
selection and operation
sequence. Each array is

consisted of two parts, the
chromosome length is the
total number of operations

Machine selection
chromosome had

multiple point
crossover, and

operation sequence
used POX cross-over

Machine selection used
roulette-wheel,

Operation sequence
used adaptive

neighbourhood search

Multi-objective:

(i) Minimizing the make-
span time,

(ii) Minimizing total time,
and

(iii) Minimize setup time

FJSSP

Samarghandi
et al. [79]

GA based on mixed integer
programming model, a local
search is added to enhance

the pool chromosomes

Job routing matrix

Random selected jobs
to be inherited from
each parent with a

corresponding order

Reorder position of
multiple points

regarding a threshold
value

Minimize make-span JSSP
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Table 2. Cont.

Publication Method Coding
Search/Mating Strategy

Objective Function Problem Perspective
Cross-Over Mutation

Tang et al. [80]
Hybrid of discrete PSO and

SA, implementing two
neighbourhood structures.

Two vectors:
Operation scheduling vector

and resource assignment
vector

POX and Rand-point
Preservation Crossover

Conditioned two
elements exchange

Multi-objective:

(i) Minimize the tolerated
overtime.

(ii) Minimize the total tar-
diness, and

(iii) Minimize make-span

FJSSP
Workers are included as

a resources

Sotskov et al. [81]
Five heuristic algorithms

split between job sequencing
and machine assignation

Mixed graph model function at resource and precedence constraints creating a
train timetable for a railroad Minimize the make-span.

FJSSP
Concerning on the case
where the number of

jobs is less than the total
number of the available

machines

Fanjul-Peyro [82]

Mixed Integer linear
programming developed

along three phases of
assignment, sequencing and

timing.

Three graph for resources; presents resources, setup resources and shared
resources Minimize the make-span. FJSSP
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A typical JSSP based instance mostly uses make-span/completion time, labor cost and
total profit as optimized targets. A few studies have paid marginal attention to dynamic
JSSP throughout new job arrival cases. With the big data tool and industry 4.0 concepts,
the JSSP objective is extended to cope with higher levels of real-time factors and resources
enriched manufacture consensus. Energy sustainability directs the evaluation to attain
machine-energy consumption. Material resources, predictive maintenance and workload,
however, they are not common along the new trends studies, they present a salient and
viable analysis tool.

4. Literature Review

Several studies have been introduced in JSSP fields. Notable here are the recent studies
introduced in Table 2, as they show premises scopes and higher information manipulation
that serve smart manufacturing best. The table introduces those studies respecting to the
previous discussed elements for better comprehensive view. The review mostly focuses on
the recent years to avoid redundant information and to be more integrated and process
planning oriented.

5. Case Study Formulation

For flexibility terms, there are a large number of research papers in that field, however,
a lot of them suffer from limited flexibility dimensions [15], as they ignore alternative ma-
chine/operation strategies [47], or rather discuss flexibility from a single machine point of
view. A number of them do not examine precedence constraints. The studies are conflicted
between suboptimal and optimal problems [83], where limited information about the
environment or the time life cycle were eliminated. Furthermore, expanding the problem to
adopt more information (i.e., inserted tool information, features location, machining speed,
etc.) reflects upon the structure of the chromosomes, and hence the searching space. The
more the available data types are increased the more the chromosomes total numbers—in
vertical structural chromosomes or length in horizontal designed chromosomes—increased.
As a consequence, the randomness exploration progressed between generations may result
as exhausted diversification steps of the increased number of chromosomes.

The current case study is going to tackle the JSSP based problem as a FJSP problem
with dynamic term that is being submitted as machine-tool state. In that, a path based
assignation strategy is designed to explore the searching space with less randomness. The
new perspective of the problem formulation is designed as the discussed following points:

(1) Each work-piece has its job that is independent from others.
(2) Each machine within the cell can process a single job per time, and each machining

concurrent time slot can only has a job once.
(3) No job pre-emption present.
(4) A machine availability is governed by its efficiency.
(5) An operation may be performed by multiple machines.
(6) Processing a job along machines takes into count the transmission time, no immediate

processing.
(7) Tool insertion setup time is considered.
(8) Supporting flexibility, alternative strategies for machining present in more than a

level: feature level, process level and machine level.
(9) Precedence constraints are considered during feature-operation level or operation

machine level.

Depending on the aforementioned, this study urges that, no matter the number
of variables to be considered during the machining process, the complexity of the new
perspectives can be transferred to computational levels only. Meaning that, the valid
suggested solutions through optimization levels are better differentiated and may lead to a
specified solution, wherein, the data can be handled to a realistic optimized solution.
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6. The Proposed Algorithm

Now, since the potential elements are identified, the modification on that elements
can be introduced through the proposed method. This study tackles the problem in two
sequential stages. The first stage is capable of producing earlier proper valid chromosomes
that can be the near enough to the optimal solution. The second stage is where a neighbor
search checks the near optimal solution, targeting the optimal individual. The two stages
have a dual beneficial influence, the first stage enhances the quality of the second stage
initial solution, where the second ensures escaping from a local optima, if the first step
result stuck in it. The following steps are applied in compatible sequence with the flow
chart indicated in Figure 6.
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6.1. Coding Steps

The objective of this step is to represent the features, operations and assigned machines
of the cell jobs as geno-types (machines encoded sequence). This piece of research adopts
two strings upon two-steps, dealing with multiple alternative levels. A single gene of
the first string codes a tuple of a selected feature paired with the assigned operation
strategy, as shown in Figure 7. The second is a selection operation that produces an
operation-machine that can accept any additional inserted data, i.e., tool, etc., the string
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refers to machine path. For either string, the position of each gene refers to the execution
order. The occurrence pairs the feature-operation and machining data as a path enable
feature-operation precedence check as an intra-check, and machines precedence check as
inner-check.
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6.2. Path Creation Phase

Machining an operation on the ith machine requires additional data, such as inserted
tool or feature position, which makes a list of collocations to choose between. Each
collocation in that list is a machining path to be considered. A designed function is created
to select a machining path, structured on a modified roulette-wheel selection. The roulette-
wheel suffers from ignoring less occurred probability that may diminish appearance of
available solutions over generation, and thus affects diversification. Therefore, the wheel
gained score built on exponential mapping, as following:

Pi =

exp
∑FMP
µMPi , all path machines efficiency > threshold

0 , otherwise
(1)

Such that a single path probability Pi increases exponentially respecting to the total
number of feasible paths scored on the ith machine ∑FMP over a single path MPi. Consider-
ing only a tool as additional data, a single MPi presented as:

MPi = MTip + Ti + MCj (2)

And,
MCj = MDj/E f fi (3)

For a job, MTip is the machine transmission cost between the ith machine and the
previous recorded machine, Ti is the tool changing cost, MCj is the duration cost regarding
machine efficiency E f fi, and MDj is the ideal operation machining duration. Setup con-
figuration duration can be added to the calculation as well. In cases where there are large
differentiation between the scored paths cost, µ is used to save the computation resources.
If the path has a machine with efficiency gain less than a specific threshold value, the path
will be eliminated conditioned to the maintenance action.
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6.3. Mating Phase

The algorithm uses a modified two-parents-to-single child mating as a discrete version
of PSO to be implemented in parallel. A single PSO particle has a predefined feature-
operation string to follow based on the crossover and mutation procedures, but, the
machine chosen path has is selected by step. In other words, the particle own experience
term in continuous algorithm discretized in path list selection step. The designed sub-pool
attaches chromosomes respecting to the survival rate and the migration rate.

Survival rate: A rate that defines the number of candidate chromosomes to be trans-
ferred from generation to the next. The candidates follow score pattern, which categorizes
the sub-pool into classes based on the fitness.

Migration rate: For the parallel computing, depending on the chosen migration
topology, each sub-pool communicates with the adjacent one through sending and receiving
candidate chromosomes.

Both rates are defined using a practical trial and error. Tracing back the PSO structure,
a sub-population elects a lead/local-best chromosome respecting the best scored fitness,
and a global best respecting the history of the best local. The global-best mates all other
individuals to generate new off-springs.

6.3.1. Crossover

The applied crossover is a LOX on feature part of chromosome and POX upon opera-
tion strategy part, respectively.

6.3.2. Mutation Procedure

A random single point mutation is performed along a feature-operation strategy. In
the case where one of the swapped results exceeds the chosen limitation, the strategy is
randomly chosen from the operation available strategies.

6.3.3. Precedence Repairing Mechanism

The resulted off-spring undergoes a precedence repair mechanism to reconsider
the precedence constraints, to avoid wasting resources upon illegal chromosomes Awad
et al. [84]. The mechanism is performed before the machine assignment step (path creation),
in order to correct any confliction happened after the crossover and mutation procedures.
As a shifting based strategy, wherein a dependent gene is dropped out from the string and
the must-be-preceded genes shifted back corresponds to the gap gene, then the dropped
out gene placed at the end array gap, as depicted in Figure 8.
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6.4. Objective Function

The objective function is a machine oriented programmed function. During each
assignation step, the corresponding machine record the duration slots as in Figure 9, while
Figure 10 indicates the difference between assigning tool change and machine transmission
cost. The machine class has a history record that includes, the assigned job, feature,
operation and the actual duration, plus the corresponding duration cost. During each new
assignation the job-machine data is updated. Based on that the station cost is calculated
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regarding the completed working time of all machines, for machine ith, the machine ends
at Miend, and station cost is:

Station Cost = max(Miend) (4)
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operation, running on machine 3, machine 5 prepares the operation 4 selected tool that performs
feature 3, of the same job. The same logic applied for job 6 and 8, as long as there is available time.

6.5. Neighborhood Searching Algorithm

As a starting point to evade from local optima repercussion, our problem-solving
methodology employs a later stage of heuristic to ensure optimality in such complicated
case. For that sake, a comparison is made between two modified single heuristics algo-
rithms to find the best suitable next added stage. The considered modified single heuristics
is an adaptive SA based and TS based as the following discussion. This section starts
by stating the shared modified element that is shared through both modifications: the
neighbors’ local search. In neighborhood searching techniques, the effectiveness of an
algorithm depends on the strategy of the employed local search.

In general, single heuristics provide higher chances for near optimal solutions to
escape local optima, which makes it more appropriate to be extensively utilized throughout
a followed stage to the population based heuristics [68,85]. TS and SA used at JSSP are
based as supplemented algorithms. The reason behind that can be deduced from two
reciprocal inferences. One of them relates to the used single solution search itself. Applying
upon the aforementioned techniques as the common used techniques. In SA, temperature
behavior propels the early achieved solutions to better influence the individual progress,
while in TS case, memory list length to ovoid repetitions [86–88]. On the same hand, in a
discrete searching space with a single discovering step, available neighbor permutations
run in O(n2) time, what is appeared as size-quality trade-off. Thus in order to satisfy near
optimality in search space, the iterations gained extensive cost [43].

The local search improvements distilled to a parallel multi-start and a straightforward
looping. The former enhancing step is wherein parallel multi-cores that can provide the
advantage of emerging a Multi-Start (MS). While the straightforward step coordinates the
variable neighbors search. Thus, instead of a large iterative local search, the adaptive single
search algorithm is compressed into alleviated straightforward enhanced shake along each
job upon a single-core and another horizontal shake up among cores at the same time.

6.5.1. Modified SA

The SA adaptability is entailed in three terms seeking improvements in neighbor local
search as aforementioned and the move condition. The MS-SA shakes the best aforemen-
tioned chromosome resulted from the previous stage in random differently. Moreover,
additional enhancement step is performed upon the rejection condition to avoid going
through the same path of a deadlock progress. In that, where no progress happened in the
inner phase of, the search back to the last scored best solution as a new initiated point. The
adaptive SA for a single core is introduced in Table 3.
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Table 3. Modified SA Procedure.

Functions

1

SA Initialization
current_solution← initial solution
best_solution← initial_solution
current_cost← evaluate (current_solution)
best_cost← evaluate (best_solution)

2

Searching Progress
T← Tinit
While (T > Tstopping)

For i = 1 to iterations (T)
new_solution←Modified_Move (current_solution)
new_cost← evaluate (new_solution)
∆cost← new_cost—current_cost
If (∆cost ≤ 0 or e−(

∆cost
T ) > random ())

/* accept new solution */
current_solution← new_solution
current_cost← new_cost

If new_cost < best_cost
best_solution← new_solution
best_cost← new_cost

Else
/* escape deadlock state */
current_solution← best_solution
current_cost← best_solution

6.5.2. Modified TS

Parallelization introduces a small memory for each core. As an accumulated case,
the neighbors are explored in feature-of-job arrangement and feature-of-cell arrangement.
The feature-of-job arrangement utilizes the variable neighbors’ structure adopted by Li
et al. [15] to discover per job feature adjacent combinations amidst consistent adjacent jobs.
The feature-of-cell arrangement switches the search between adjacent jobs as an intra-loop.

7. Results and Discussions

In the software context, all the models coding and formulation are executed in python
upon a Spyder 4.1.4 environment. The codes are implemented on Lenovo PC with an Intel
Core i7-4720HQ processor of 2.6GHZ. The result of this study is discussed considering
a number of problems that were recorded as benchmarks from previous studies. The
algorithm is carried out on python Spyder 4.1.4 environment, meanwhile, the parallel
implementation is performed through the CPU using the encapsulated DEAP library. To
further evaluate the proposed algorithm accurately, the benchmarks are tested as their
original studies suggest with the same parameters mapped on the designed algorithm.
Then, some of them are tested respecting to the new considerations. The desired fitness
function is structured to obey the following criteria:

• Minimum transmission cost.
• Workload to maintenance balance based.
• Minimum make-span.

7.1. Experiments Set

The first group of experiments are carried out through the original data sets taken from
Kacem et al. [89,90], Chan et al. [91], Gao et al. [92], Teekeng et al. [93], Zhang et al. [94,95],
as indicated in Table 4, in order to check the algorithm validity using varied configurations.
The data sets have no precedence constraints, which make them sufficient to test only the
first stage of the proposed method. GA algorithms the simple two-to-two mating termed
as GA and the GA introduced by Li et al. [47], and two types of PSO, the designed PSO
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(DPSO) and the PSO mating according to Li et al. [15], all are implemented upon parallel
CPU, and the parameters are tuned as in Table 4.

Table 4. Parallel implementation parameters.

Parameters Value

No. of islands 8

Sub-pop size 70

No. of emigrant chroms 5

No. of history chroms 3

Crossover probability 0.6

Mutation Probability 0.2

The second set of data recorded by Naseri et al. [96], Li et al. [15], Shao et al. [97] and
Leung et al. [98] display a precedence constraints and machine transmission is considered.

The second set of experiments are designed to trace the effect of first stage migration
and history rates. Figure 11 concludes the rates effect by example upon 12× 7 case included
in Table 5, where the rates presented as a percentage of the total number of chromosomes
of sub-pool size. Supplementing the sub-pool with around 10 % of its total number of
chromosomes shows a stable improvement along the GA and the DPSO algorithms. This
may be resulted as enhancement in the explored solution or the minimum hit fitness value.
That progress encourages the experiments to follow the 10:15 % rate divided between the
rates as indicated in Table 5.
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Table 5. Recorded results.

Case
No.

Total No. of
Jobs per

Machines

E × Act
Solution

GA GA Li et al. [47] PSO Li et al. [15] DPSO

Adopted From
Best Average

Average
Convergent
Generation

Best Average
Average

Convergent
Generation

Best Average
Average

Convergent
Generation

Best Average
Average

Convergent
Generation

1 3 × 4 5 5 5.2 18 5 5 10 5 5 12.1 5 5 5

Kacem et al.
[89,90], and

Zhang et al. [94]

2 4 × 5 11 11 11.5 23 11 11 12 11 11 12.6 11 11 8

3 8 × 8 14 14 14 27 14 14 12 14 14 11.6 14 14 9

4 10 × 10 7 7 7.1 29 7 7 12.4 7 7 13.1 7 7 9

5 15 × 10 11 11 13.1 39 11 11 19.1 11 11 20 11 11 15

6 10 × 7 11 11 13.2 41 11 11 25.1 11 11 26.8 11 11 13

7 6 × 8 148 152 154.6 68.1 148 149.7 24.4 148 150.9 31.4 148 149.1 18
Based on Shao

et al. [97]
8 10 × 8 253 257 259.8 81.2 253 256.1 28.1 253 259.2 36.1 253 255.2 22.4

9 15 × 8 288 305 305.8 89.6 288 290 29 288 291.9 38.4 288 289.5 23.7

10 3 × 4 24 24 24.1 56.4 24 24.2 23.2 24 24.7 27.8 24 24.1 11.1

Based on Naseri
et al. [96]

11 6 × 4 43 43 43.6 72.1 43 43.3 22.3 43 44.3 32.1 43 43.4 18.6

12 8 × 4 54 55 57.1 79.3 54 54.3 56.1 54 55.2 36.3 54 54.3 19.1

13 12 × 7 58 64 67.3 82.1 58 58.89 60.2 58 60.2 38.5 58 59.4 26.3

14 1 × 15 377 377 377.1 61 377 377 21 377 377 22.1 377 377 11

Based on Li et al.
[15,47]

15 1 × 5 222 222 222.3 45.1 222 222 18 222 222 19.8 222 222 8

16 9 × 15 395 418 423.2 70.5 395 406.7 30.2 395 410.7 29.2 395 404.2 18.9

17 17 × 15 455 473 481.5 90.1 455 469.9 40.1 455 472.9 39.1 455 466.8 28.5
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Till that point, the first stage is studied in strict scope, which moves the investigation
to the second stage. The used neighbors searching algorithm is going to be the multi-start
TS algorithm, since it produces the best followed progress across studied cases, some of
them are used during the comparison. As declared by Figure 12, the multi-start adaptive
SA (ASA) improves the SA results as expected, but multi-start TS is still obtaining the
overall best scored values.
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7.2. Experiments Set 2

This set of experiments are performed upon the previous mentioned data sets, in
addition to Falih et al’s [99] recorded benchmark, in addition to other extended problems.
The corresponding solutions are presented in Table 6. The transmission cost, the tool
change cost and the work-load effect are included later, where the Table 7 is referring to
that case as a complete case. In Table 7, total cost exhibits the resulted final cost considering
the penalties, where actual cost points the exact time duration of the executed jobs. A
threshold value is set equal to 50%, since if a tool exceeds that point, a tool change is
needed. During that set, the tool electricity profiles are recorded as an indicator referring
to machine-tool efficiency. The recorded profiles are calibrated before applied to the cosine
similarity measure. Furthermore, a deterioration factor is tuned roughly for the sake of
a tool model life-cycle wearing. Here, a deterioration factor of 0.98 is included during
the process, such that a deterioration penalty balances the workload with the operation
duration Od and machine-tool state Ms as:

Penalty = Od * (−log(Ms)) (5)

Table 6. Falih et al. [98] based problems best recorded solutions.

Case No. Total No. of Jobs
per Machines Reported Solution GA + TS DPSO + TS

18 1 × 3 423 441 423

19 1 × 4 790 800 790

20 1 × 5 393 398 388

21 4 × 3 1089 1193 1089

22 2 × 3 510 522 510
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Table 7. Complete progress of different resulted scenarios.

Id
ea

ls
ce

na
ri

o
of

3
×

4

Processes 2021, 9, x FOR PEER REVIEW 23 of 31 
 

 

 

This set of experiments are performed upon the previous mentioned data sets, in ad-
dition to Falih et al’s. [99] recorded benchmark, in addition to other extended problems. 
The corresponding solutions are presented in Table 6. The transmission cost, the tool 
change cost and the work-load effect are included later,, where the table 7 is referring to 
that case as a complete case. In table 7, total cost exhibits the resulted final cost considering 
the penalties, where actual cost points the exact time duration of the executed jobs. A 
threshold value is set equal to 50%, since if a tool exceeds that point, a tool change is 
needed. During that set, the tool electricity profiles are recorded as an indicator referring 
to machine-tool efficiency. The recorded profiles are calibrated before applied to the co-
sine similarity measure. Furthermore, a deterioration factor is tuned roughly for the sake 
of a tool model life-cycle wearing. Here, a deterioration factor of 0.98 is included during 
the process, such that a deterioration penalty balances the workload with the operation 
duration Od and machine-tool state Ms as: 

Penalty = Od * (−log(Ms)) (5) 

Table 6. Falih et al. [98] based problems best recorded solutions. 

Case No. Total No. of Jobs per Machines Reported Solution 
GA + 

TS 
DPSO + 

TS 
18 1x3  423 441 423 
19 1x4  790 800 790 
20 1x5  393 398 388 
21 4x3 1089 1193 1089 
22 2x3 510 522 510 

Table 7. Complete progress of different resulted scenarios. 

Id
ea

l s
ce

na
ri

o 
of

 3
 ×

 4
 

 

 

Total Cost = 24 
Actual Cost = 24 
Jobs completion cost : 

J1 J2 J3 
24 24 16 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
3 3 1 2 

 

Total Cost = 24
Actual Cost = 24
Jobs completion cost:

Processes 2021, 9, x FOR PEER REVIEW 23 of 31 
 

 

 

This set of experiments are performed upon the previous mentioned data sets, in ad-
dition to Falih et al’s. [99] recorded benchmark, in addition to other extended problems. 
The corresponding solutions are presented in Table 6. The transmission cost, the tool 
change cost and the work-load effect are included later,, where the table 7 is referring to 
that case as a complete case. In table 7, total cost exhibits the resulted final cost considering 
the penalties, where actual cost points the exact time duration of the executed jobs. A 
threshold value is set equal to 50%, since if a tool exceeds that point, a tool change is 
needed. During that set, the tool electricity profiles are recorded as an indicator referring 
to machine-tool efficiency. The recorded profiles are calibrated before applied to the co-
sine similarity measure. Furthermore, a deterioration factor is tuned roughly for the sake 
of a tool model life-cycle wearing. Here, a deterioration factor of 0.98 is included during 
the process, such that a deterioration penalty balances the workload with the operation 
duration Od and machine-tool state Ms as: 

Penalty = Od * (−log(Ms)) (5) 

Table 6. Falih et al. [98] based problems best recorded solutions. 

Case No. Total No. of Jobs per Machines Reported Solution GA + 
TS 

DPSO + 
TS 

18 1 × 3 423 441 423 
19 1 × 4 790 800 790 
20 1 × 5 393 398 388 
21 4 × 3 1089 1193 1089 
22 2 × 3 510 522 510 

Table 7. Complete progress of different resulted scenarios. 

Id
ea

l s
ce

na
ri

o 
of

 3
 ×

 4
 

Total Cost = 24 
Actual Cost = 24 
Jobs completion cost : 
 

J1 J2 J3 
24 24 16 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 3 1 2 

 

Machine usage as followed:

Processes 2021, 9, x FOR PEER REVIEW 23 of 31 
 

 

 

This set of experiments are performed upon the previous mentioned data sets, in ad-
dition to Falih et al’s. [99] recorded benchmark, in addition to other extended problems. 
The corresponding solutions are presented in Table 6. The transmission cost, the tool 
change cost and the work-load effect are included later,, where the table 7 is referring to 
that case as a complete case. In table 7, total cost exhibits the resulted final cost considering 
the penalties, where actual cost points the exact time duration of the executed jobs. A 
threshold value is set equal to 50%, since if a tool exceeds that point, a tool change is 
needed. During that set, the tool electricity profiles are recorded as an indicator referring 
to machine-tool efficiency. The recorded profiles are calibrated before applied to the co-
sine similarity measure. Furthermore, a deterioration factor is tuned roughly for the sake 
of a tool model life-cycle wearing. Here, a deterioration factor of 0.98 is included during 
the process, such that a deterioration penalty balances the workload with the operation 
duration Od and machine-tool state Ms as: 

Penalty = Od * (−log(Ms)) (5) 

Table 6. Falih et al. [98] based problems best recorded solutions. 

Case No. Total No. of Jobs per Machines Reported Solution GA + 
TS 

DPSO + 
TS 

18 1 × 3 423 441 423 
19 1 × 4 790 800 790 
20 1 × 5 393 398 388 
21 4 × 3 1089 1193 1089 
22 2 × 3 510 522 510 

Table 7. Complete progress of different resulted scenarios. 

Id
ea

l s
ce

na
ri

o 
of

 3
 ×

 4
 

Total Cost = 24 
Actual Cost = 24 
Jobs completion cost : 
 

J1 J2 J3 
24 24 16 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 3 1 2 

 

Tr
an

sm
is

si
on

an
d

To
ol

ch
an

ge
in

cl
ud

ed
of

3
×

4

Processes 2021, 9, x FOR PEER REVIEW 24 of 31 
 

 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 3

 ×
 

4 

 

 

Efficiency = [100, 100, 100, 
100] % 
Total Cost = 36 
Actual Cost = 36 
Jobs completion cost: 

J1 J2 J3 
36 32 22 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
3 1 2 3 

 

D
et

er
io

ra
tio

n 
fa

ct
or

 e
ffe

ct
. T

ra
ns

m
is

si
on

 a
nd

 to
ol

 
ch

an
ge

 c
os

t i
nc

lu
de

d.
 (C

om
pl

et
e 

C
as

e)
 3

x4
 

 

 

Eff = [100, 100, 100, 100] % 
Total Cost = 41 
Actual Cost = 36 
Jobs completion cost: 

J1 J2 J3 
36 32 24 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
3 2 1 3 

 

C
om

pl
et

e 
C

as
e 

 O
f 3

 ×
 4

 

 

 

Eff = [65, 92, 73, 68] % 
Total Cost = 61 
Actual Cost = 38 
Jobs completion cost: 

J1 J2 J3 
38 35 26 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
1 3 3 2 

 

Efficiency = [100, 100, 100, 100]%
Total Cost = 36
Actual Cost = 36
Jobs completion cost:

Processes 2021, 9, x FOR PEER REVIEW 24 of 31 
 

 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 3

 ×
 4

 

Efficiency = [100, 100, 100, 
100] % 
Total Cost = 36 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 
 
 

D
et

er
io

ra
tio

n 
fa

ct
or

 e
ffe

ct
. T

ra
ns

m
is

si
on

 a
nd

 
to

ol
 c

ha
ng

e 
co

st
 in

cl
ud

ed
. (

C
om

pl
et

e 
C

as
e)

 
3x

4 

 

Eff = [100, 100, 100, 100] % 
Total Cost = 41 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 24 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 2 1 3 

 

C
om

pl
et

e 
C

as
e 

 O
f 3

 ×
 4

 

Eff = [65, 92, 73, 68] % 
Total Cost = 61 
Actual Cost = 38 
Jobs completion cost: 
 

J1 J2 J3 
38 35 26 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
1 3 3 2 

 

Machine usage as followed:

Processes 2021, 9, x FOR PEER REVIEW 24 of 31 
 

 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 3

 ×
 4

 

Efficiency = [100, 100, 100, 
100] % 
Total Cost = 36 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 
 
 

D
et

er
io

ra
tio

n 
fa

ct
or

 e
ffe

ct
. T

ra
ns

m
is

si
on

 a
nd

 
to

ol
 c

ha
ng

e 
co

st
 in

cl
ud

ed
. (

C
om

pl
et

e 
C

as
e)

 
3x

4 

 

Eff = [100, 100, 100, 100] % 
Total Cost = 41 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 24 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 2 1 3 

 

C
om

pl
et

e 
C

as
e 

 O
f 3

 ×
 4

 

Eff = [65, 92, 73, 68] % 
Total Cost = 61 
Actual Cost = 38 
Jobs completion cost: 
 

J1 J2 J3 
38 35 26 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
1 3 3 2 

 

D
et

er
io

ra
ti

on
fa

ct
or

ef
fe

ct
.T

ra
ns

m
is

si
on

an
d

to
ol

ch
an

ge
co

st
in

cl
ud

ed
.(

C
om

pl
et

e
C

as
e)

3
×

4

Processes 2021, 9, x FOR PEER REVIEW 24 of 31 
 

 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 3

 ×
 

4 

 

 

Efficiency = [100, 100, 100, 
100] % 
Total Cost = 36 
Actual Cost = 36 
Jobs completion cost: 

J1 J2 J3 
36 32 22 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
3 1 2 3 

 

D
et

er
io

ra
tio

n 
fa

ct
or

 e
ffe

ct
. T

ra
ns

m
is

si
on

 a
nd

 to
ol

 
ch

an
ge

 c
os

t i
nc

lu
de

d.
 (C

om
pl

et
e 

C
as

e)
 3

x4
 

 

 

Eff = [100, 100, 100, 100] % 
Total Cost = 41 
Actual Cost = 36 
Jobs completion cost: 

J1 J2 J3 
36 32 24 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
3 2 1 3 

 

C
om

pl
et

e 
C

as
e 

 O
f 3

 ×
 4

 

 

 

Eff = [65, 92, 73, 68] % 
Total Cost = 61 
Actual Cost = 38 
Jobs completion cost: 

J1 J2 J3 
38 35 26 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
1 3 3 2 

 

Eff = [100, 100, 100, 100]%
Total Cost = 41
Actual Cost = 36
Jobs completion cost:

Processes 2021, 9, x FOR PEER REVIEW 24 of 31 
 

 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 3

 ×
 4

 

Efficiency = [100, 100, 100, 
100] % 
Total Cost = 36 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 
 
 

D
et

er
io

ra
tio

n 
fa

ct
or

 e
ffe

ct
. T

ra
ns

m
is

si
on

 a
nd

 
to

ol
 c

ha
ng

e 
co

st
 in

cl
ud

ed
. (

C
om

pl
et

e 
C

as
e)

 
3x

4 

 

Eff = [100, 100, 100, 100] % 
Total Cost = 41 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 24 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 2 1 3 

 

C
om

pl
et

e 
C

as
e 

 O
f 3

 ×
 4

 

Eff = [65, 92, 73, 68] % 
Total Cost = 61 
Actual Cost = 38 
Jobs completion cost: 
 

J1 J2 J3 
38 35 26 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
1 3 3 2 

 

Machine usage as followed:

Processes 2021, 9, x FOR PEER REVIEW 24 of 31 
 

 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 3

 ×
 4

 

Efficiency = [100, 100, 100, 
100] % 
Total Cost = 36 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 
 
 

D
et

er
io

ra
tio

n 
fa

ct
or

 e
ffe

ct
. T

ra
ns

m
is

si
on

 a
nd

 
to

ol
 c

ha
ng

e 
co

st
 in

cl
ud

ed
. (

C
om

pl
et

e 
C

as
e)

 
3x

4 

 

Eff = [100, 100, 100, 100] % 
Total Cost = 41 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 24 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 2 1 3 

 

C
om

pl
et

e 
C

as
e 

 O
f 3

 ×
 4

 

Eff = [65, 92, 73, 68] % 
Total Cost = 61 
Actual Cost = 38 
Jobs completion cost: 
 

J1 J2 J3 
38 35 26 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
1 3 3 2 

 



Processes 2021, 9, 1700 26 of 32

Table 7. Cont.

C
om

pl
et

e
C

as
e

of
3
×

4

Processes 2021, 9, x FOR PEER REVIEW 24 of 31 
 

 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 3

 ×
 

4 

 

 

Efficiency = [100, 100, 100, 
100] % 
Total Cost = 36 
Actual Cost = 36 
Jobs completion cost: 

J1 J2 J3 
36 32 22 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
3 1 2 3 

 

D
et

er
io

ra
tio

n 
fa

ct
or

 e
ffe

ct
. T

ra
ns

m
is

si
on

 a
nd

 to
ol

 
ch

an
ge

 c
os

t i
nc

lu
de

d.
 (C

om
pl

et
e 

C
as

e)
 3

x4
 

 

 

Eff = [100, 100, 100, 100] % 
Total Cost = 41 
Actual Cost = 36 
Jobs completion cost: 

J1 J2 J3 
36 32 24 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
3 2 1 3 

 

C
om

pl
et

e 
C

as
e 

 O
f 3

 ×
 4

 

 

 

Eff = [65, 92, 73, 68] % 
Total Cost = 61 
Actual Cost = 38 
Jobs completion cost: 

J1 J2 J3 
38 35 26 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
1 3 3 2 

 

Eff = [65, 92, 73, 68]%
Total Cost = 61
Actual Cost = 38
Jobs completion cost:

Processes 2021, 9, x FOR PEER REVIEW 24 of 31 
 

 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 3

 ×
 4

 

Efficiency = [100, 100, 100, 
100] % 
Total Cost = 36 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 
 
 

D
et

er
io

ra
tio

n 
fa

ct
or

 e
ffe

ct
. T

ra
ns

m
is

si
on

 a
nd

 
to

ol
 c

ha
ng

e 
co

st
 in

cl
ud

ed
. (

C
om

pl
et

e 
C

as
e)

 
3x

4 

 

Eff = [100, 100, 100, 100] % 
Total Cost = 41 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 24 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 2 1 3 

 

C
om

pl
et

e 
C

as
e 

 O
f 3

 ×
 4

 

Eff = [65, 92, 73, 68] % 
Total Cost = 61 
Actual Cost = 38 
Jobs completion cost: 
 

J1 J2 J3 
38 35 26 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
1 3 3 2 

 

Machine usage as followed:

Processes 2021, 9, x FOR PEER REVIEW 24 of 31 
 

 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 3

 ×
 4

 

Efficiency = [100, 100, 100, 
100] % 
Total Cost = 36 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 
 
 

D
et

er
io

ra
tio

n 
fa

ct
or

 e
ffe

ct
. T

ra
ns

m
is

si
on

 a
nd

 
to

ol
 c

ha
ng

e 
co

st
 in

cl
ud

ed
. (

C
om

pl
et

e 
C

as
e)

 
3x

4 
 

Eff = [100, 100, 100, 100] % 
Total Cost = 41 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 24 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 2 1 3 

 

C
om

pl
et

e 
C

as
e 

 O
f 3

 ×
 4

 

Eff = [65, 92, 73, 68] % 
Total Cost = 61 
Actual Cost = 38 
Jobs completion cost: 
 

J1 J2 J3 
38 35 26 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
1 3 3 2 

 

C
om

pl
et

e
C

as
e

of
3
×

4

Processes 2021, 9, x FOR PEER REVIEW 25 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

O
f 3

 ×
 4

 

 

 

Eff = [85, 55, 79, 78] % 
Total Cost = 56 
Actual Cost = 36 
Jobs completion cost: 

J1 J2 J3 
36 32 22 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
3 1 2 3 

 

Id
ea

l s
ce

na
ri

o 
of

 6
 ×

 4
 

 

 

Total Cost = 35 
Actual Cost = 35 
Jobs completion cost: 

J1 J2 J3 J4 J5 J6 
26 13 32 35 26 33 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
4 5 5 4 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 6

x4
  

 

Eff = [100, 100, 100, 100] % 
Total Cost = 49 
Actual Cost = 49 
Jobs completion cost: 

J1 J2 J3 J4 J5 J6 
48 25 30 49 33 48 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
5 5 5 3 

 

Eff = [85, 55, 79, 78]%
Total Cost = 56
Actual Cost = 36
Jobs completion cost:

Processes 2021, 9, x FOR PEER REVIEW 25 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

O
f 3

 ×
 4

 

Eff = [85, 55, 79, 78] % 
Total Cost = 56 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 

Id
ea

l s
ce

na
ri

o 
of

 6
 ×

 4
 

Total Cost = 35 
Actual Cost = 35 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
26 13 32 35 26 33 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
4 5 5 4 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 

6x
4 

Eff = [100, 100, 100, 100] % 
Total Cost = 49 
Actual Cost = 49 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
48 25 30 49 33 48 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 5 5 3 

 

Machine usage as followed:

Processes 2021, 9, x FOR PEER REVIEW 25 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

O
f 3

 ×
 4

 

Eff = [85, 55, 79, 78] % 
Total Cost = 56 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 

Id
ea

l s
ce

na
ri

o 
of

 6
 ×

 4
 

Total Cost = 35 
Actual Cost = 35 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
26 13 32 35 26 33 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
4 5 5 4 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 

6x
4 

Eff = [100, 100, 100, 100] % 
Total Cost = 49 
Actual Cost = 49 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
48 25 30 49 33 48 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 5 5 3 

 

Id
ea

ls
ce

na
ri

o
of

6
×

4

Processes 2021, 9, x FOR PEER REVIEW 25 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

O
f 3

 ×
 4

 

 

 

Eff = [85, 55, 79, 78] % 
Total Cost = 56 
Actual Cost = 36 
Jobs completion cost: 

J1 J2 J3 
36 32 22 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
3 1 2 3 

 

Id
ea

l s
ce

na
ri

o 
of

 6
 ×

 4
 

 

 

Total Cost = 35 
Actual Cost = 35 
Jobs completion cost: 

J1 J2 J3 J4 J5 J6 
26 13 32 35 26 33 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
4 5 5 4 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 6

x4
  

 

Eff = [100, 100, 100, 100] % 
Total Cost = 49 
Actual Cost = 49 
Jobs completion cost: 

J1 J2 J3 J4 J5 J6 
48 25 30 49 33 48 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
5 5 5 3 

 

Total Cost = 35
Actual Cost = 35
Jobs completion cost:

Processes 2021, 9, x FOR PEER REVIEW 25 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

O
f 3

 ×
 4

 

Eff = [85, 55, 79, 78] % 
Total Cost = 56 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 

Id
ea

l s
ce

na
ri

o 
of

 6
 ×

 4
 

Total Cost = 35 
Actual Cost = 35 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
26 13 32 35 26 33 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
4 5 5 4 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 

6x
4 

Eff = [100, 100, 100, 100] % 
Total Cost = 49 
Actual Cost = 49 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
48 25 30 49 33 48 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 5 5 3 

 

Machine usage as followed:

Processes 2021, 9, x FOR PEER REVIEW 25 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

O
f 3

 ×
 4

 

Eff = [85, 55, 79, 78] % 
Total Cost = 56 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 

Id
ea

l s
ce

na
ri

o 
of

 6
 ×

 4
 

Total Cost = 35 
Actual Cost = 35 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
26 13 32 35 26 33 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
4 5 5 4 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 

6x
4 

Eff = [100, 100, 100, 100] % 
Total Cost = 49 
Actual Cost = 49 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
48 25 30 49 33 48 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 5 5 3 

 



Processes 2021, 9, 1700 27 of 32

Table 7. Cont.

Tr
an

sm
is

si
on

an
d

To
ol

ch
an

ge
in

cl
ud

ed
of

6
×

4

Processes 2021, 9, x FOR PEER REVIEW 25 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

O
f 3

 ×
 4

 

 

 

Eff = [85, 55, 79, 78] % 
Total Cost = 56 
Actual Cost = 36 
Jobs completion cost: 

J1 J2 J3 
36 32 22 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
3 1 2 3 

 

Id
ea

l s
ce

na
ri

o 
of

 6
 ×

 4
 

 

 

Total Cost = 35 
Actual Cost = 35 
Jobs completion cost: 

J1 J2 J3 J4 J5 J6 
26 13 32 35 26 33 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
4 5 5 4 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 6

x4
  

 

Eff = [100, 100, 100, 100] % 
Total Cost = 49 
Actual Cost = 49 
Jobs completion cost: 

J1 J2 J3 J4 J5 J6 
48 25 30 49 33 48 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
5 5 5 3 

 

Eff = [100, 100, 100, 100]%
Total Cost = 49
Actual Cost = 49
Jobs completion cost:

Processes 2021, 9, x FOR PEER REVIEW 25 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

O
f 3

 ×
 4

 

Eff = [85, 55, 79, 78] % 
Total Cost = 56 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 

Id
ea

l s
ce

na
ri

o 
of

 6
 ×

 4
 

Total Cost = 35 
Actual Cost = 35 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
26 13 32 35 26 33 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
4 5 5 4 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 

6x
4 

Eff = [100, 100, 100, 100] % 
Total Cost = 49 
Actual Cost = 49 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
48 25 30 49 33 48 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 5 5 3 

 

Machine usage as followed:

Processes 2021, 9, x FOR PEER REVIEW 25 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

O
f 3

 ×
 4

 

Eff = [85, 55, 79, 78] % 
Total Cost = 56 
Actual Cost = 36 
Jobs completion cost: 
 

J1 J2 J3 
36 32 22 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
3 1 2 3 

 

Id
ea

l s
ce

na
ri

o 
of

 6
 ×

 4
 

Total Cost = 35 
Actual Cost = 35 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
26 13 32 35 26 33 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
4 5 5 4 

 

Tr
an

sm
is

si
on

 a
nd

 T
oo

l c
ha

ng
e 

in
cl

ud
ed

 o
f 

6x
4 

Eff = [100, 100, 100, 100] % 
Total Cost = 49 
Actual Cost = 49 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
48 25 30 49 33 48 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 5 5 3 

 

C
om

pl
et

e
C

as
e

of
6
×

4

Processes 2021, 9, x FOR PEER REVIEW 26 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

of
 6

x4
 

 

 

Eff = [85, 55, 79, 78] % 
Total Cost = 102 
Actual Cost = 53 
Jobs completion cost: 

J1 J2 J3 J4 J5 J6 
50 30 48 47 39 53 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
5 4 5 4 

 

D
ee

ri
or

at
io

n 
sn

d 
to

ol
 c

ha
ng

e 
of

 2
x3

 

 

 

Total Cost = 510 
Actual Cost = 510 
Jobs completion cost: 

J1 J2 
510 495 

 
Machine usage as 
followed: 

M1 M2 M3 
28 13 4 

 

C
om

pl
et

e 
C

as
e 

O
f 2

x4
 

 

 

Eff = [1, 1, 1, 1] %  
Total Cost = 793 
Actual Cost = 641 
Jobs completion cost: 

J1 J2 
641 623 

 
Machine usage as 
followed: 

M1 M2 M3 
28 11 5 

 

 

Eff = [85, 55, 79, 78]%
Total Cost = 102
Actual Cost = 53
Jobs completion cost:

Processes 2021, 9, x FOR PEER REVIEW 26 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

of
 6

x4
 

Eff = [85, 55, 79, 78] % 
Total Cost = 102 
Actual Cost = 53 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
50 30 48 47 39 53 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 4 5 4 

 

D
ee

ri
or

at
io

n 
sn

d 
to

ol
 c

ha
ng

e 
of

 2
x3

 

Total Cost = 510 
Actual Cost = 510 
Jobs completion cost: 
 

J1 J2 
510 495 

 
Machine usage as followed: 
 

M1 M2 M3 
28 13 4 

 

C
om

pl
et

e 
C

as
e 

O
f 2

x4
 

Eff = [1, 1, 1, 1] %  
Total Cost = 793 
Actual Cost = 641 
Jobs completion cost: 
 

J1 J2 
641 623 

 
Machine usage as followed: 
 

M1 M2 M3 
28 11 5 

 
 

 

8. Conclusions and Future Work 
This study discusses FJSP scheduling as a case that can benefit from the smart man-

ufacturing big data in order to make scheduling more realistic and up to date with the 

Machine usage as followed:

Processes 2021, 9, x FOR PEER REVIEW 26 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

of
 6

x4
 

Eff = [85, 55, 79, 78] % 
Total Cost = 102 
Actual Cost = 53 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
50 30 48 47 39 53 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 4 5 4 

 

D
ee

ri
or

at
io

n 
sn

d 
to

ol
 c

ha
ng

e 
of

 2
x3

 

Total Cost = 510 
Actual Cost = 510 
Jobs completion cost: 
 

J1 J2 
510 495 

 
Machine usage as followed: 
 

M1 M2 M3 
28 13 4 

 

C
om

pl
et

e 
C

as
e 

O
f 2

x4
 

Eff = [1, 1, 1, 1] %  
Total Cost = 793 
Actual Cost = 641 
Jobs completion cost: 
 

J1 J2 
641 623 

 
Machine usage as followed: 
 

M1 M2 M3 
28 11 5 

 
 

 

8. Conclusions and Future Work 
This study discusses FJSP scheduling as a case that can benefit from the smart man-

ufacturing big data in order to make scheduling more realistic and up to date with the 

D
ee

ri
or

at
io

n
sn

d
to

ol
ch

an
ge

of
2
×

3

Processes 2021, 9, x FOR PEER REVIEW 26 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

of
 6

x4
 

 

 

Eff = [85, 55, 79, 78] % 
Total Cost = 102 
Actual Cost = 53 
Jobs completion cost: 

J1 J2 J3 J4 J5 J6 
50 30 48 47 39 53 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
5 4 5 4 

 

D
ee

ri
or

at
io

n 
sn

d 
to

ol
 c

ha
ng

e 
of

 2
x3

 

 

 

Total Cost = 510 
Actual Cost = 510 
Jobs completion cost: 

J1 J2 
510 495 

 
Machine usage as 
followed: 

M1 M2 M3 
28 13 4 

 

C
om

pl
et

e 
C

as
e 

O
f 2

x4
 

 

 

Eff = [1, 1, 1, 1] %  
Total Cost = 793 
Actual Cost = 641 
Jobs completion cost: 

J1 J2 
641 623 

 
Machine usage as 
followed: 

M1 M2 M3 
28 11 5 

 

 

Total Cost = 510
Actual Cost = 510
Jobs completion cost:

Processes 2021, 9, x FOR PEER REVIEW 26 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

of
 6

x4
 

Eff = [85, 55, 79, 78] % 
Total Cost = 102 
Actual Cost = 53 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
50 30 48 47 39 53 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 4 5 4 

 

D
ee

ri
or

at
io

n 
sn

d 
to

ol
 c

ha
ng

e 
of

 2
x3

 

Total Cost = 510 
Actual Cost = 510 
Jobs completion cost: 
 

J1 J2 
510 495 

 
Machine usage as followed: 
 

M1 M2 M3 
28 13 4 

 

C
om

pl
et

e 
C

as
e 

O
f 2

x4
 

Eff = [1, 1, 1, 1] %  
Total Cost = 793 
Actual Cost = 641 
Jobs completion cost: 
 

J1 J2 
641 623 

 
Machine usage as followed: 
 

M1 M2 M3 
28 11 5 

 
 

 

8. Conclusions and Future Work 
This study discusses FJSP scheduling as a case that can benefit from the smart man-

ufacturing big data in order to make scheduling more realistic and up to date with the 

Machine usage as followed:

Processes 2021, 9, x FOR PEER REVIEW 26 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

of
 6

x4
 

Eff = [85, 55, 79, 78] % 
Total Cost = 102 
Actual Cost = 53 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
50 30 48 47 39 53 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 4 5 4 

 

D
ee

ri
or

at
io

n 
sn

d 
to

ol
 c

ha
ng

e 
of

 2
x3

 

Total Cost = 510 
Actual Cost = 510 
Jobs completion cost: 
 

J1 J2 
510 495 

 
Machine usage as followed: 
 

M1 M2 M3 
28 13 4 

 

C
om

pl
et

e 
C

as
e 

O
f 2

x4
 

Eff = [1, 1, 1, 1] %  
Total Cost = 793 
Actual Cost = 641 
Jobs completion cost: 
 

J1 J2 
641 623 

 
Machine usage as followed: 
 

M1 M2 M3 
28 11 5 

 
 

 

8. Conclusions and Future Work 
This study discusses FJSP scheduling as a case that can benefit from the smart man-

ufacturing big data in order to make scheduling more realistic and up to date with the 



Processes 2021, 9, 1700 28 of 32

Table 7. Cont.

C
om

pl
et

e
C

as
e

of
2
×

4

Processes 2021, 9, x FOR PEER REVIEW 26 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

of
 6

x4
 

 

 

Eff = [85, 55, 79, 78] % 
Total Cost = 102 
Actual Cost = 53 
Jobs completion cost: 

J1 J2 J3 J4 J5 J6 
50 30 48 47 39 53 

 
Machine usage as 
followed: 

M1 M2 M3 M4 
5 4 5 4 

 

D
ee

ri
or

at
io

n 
sn

d 
to

ol
 c

ha
ng

e 
of

 2
x3

 

 

 

Total Cost = 510 
Actual Cost = 510 
Jobs completion cost: 

J1 J2 
510 495 

 
Machine usage as 
followed: 

M1 M2 M3 
28 13 4 

 

C
om

pl
et

e 
C

as
e 

O
f 2

x4
 

 

 

Eff = [1, 1, 1, 1] %  
Total Cost = 793 
Actual Cost = 641 
Jobs completion cost: 

J1 J2 
641 623 

 
Machine usage as 
followed: 

M1 M2 M3 
28 11 5 

 

 

Eff = [1, 1, 1, 1]%
Total Cost = 793
Actual Cost = 641
Jobs completion cost:

Processes 2021, 9, x FOR PEER REVIEW 26 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

of
 6

x4
 

Eff = [85, 55, 79, 78] % 
Total Cost = 102 
Actual Cost = 53 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
50 30 48 47 39 53 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 4 5 4 

 

D
ee

ri
or

at
io

n 
sn

d 
to

ol
 c

ha
ng

e 
of

 2
x3

 

Total Cost = 510 
Actual Cost = 510 
Jobs completion cost: 
 

J1 J2 
510 495 

 
Machine usage as followed: 
 

M1 M2 M3 
28 13 4 

 

C
om

pl
et

e 
C

as
e 

O
f 2

x4
 

Eff = [1, 1, 1, 1] %  
Total Cost = 793 
Actual Cost = 641 
Jobs completion cost: 
 

J1 J2 
641 623 

 
Machine usage as followed: 
 

M1 M2 M3 
28 11 5 

 
 

 

8. Conclusions and Future Work 
This study discusses FJSP scheduling as a case that can benefit from the smart man-

ufacturing big data in order to make scheduling more realistic and up to date with the 

Machine usage as followed:

Processes 2021, 9, x FOR PEER REVIEW 26 of 31 
 

 

 

C
om

pl
et

e 
C

as
e 

of
 6

x4
 

Eff = [85, 55, 79, 78] % 
Total Cost = 102 
Actual Cost = 53 
Jobs completion cost: 
 

J1 J2 J3 J4 J5 J6 
50 30 48 47 39 53 

 
Machine usage as followed: 
 

M1 M2 M3 M4 
5 4 5 4 

 

D
ee

ri
or

at
io

n 
sn

d 
to

ol
 c

ha
ng

e 
of

 2
x3

 

Total Cost = 510 
Actual Cost = 510 
Jobs completion cost: 
 

J1 J2 
510 495 

 
Machine usage as followed: 
 

M1 M2 M3 
28 13 4 

 

C
om

pl
et

e 
C

as
e 

O
f 2

x4
 

Eff = [1, 1, 1, 1] %  
Total Cost = 793 
Actual Cost = 641 
Jobs completion cost: 
 

J1 J2 
641 623 

 
Machine usage as followed: 
 

M1 M2 M3 
28 11 5 

 
 

 

8. Conclusions and Future Work 
This study discusses FJSP scheduling as a case that can benefit from the smart man-

ufacturing big data in order to make scheduling more realistic and up to date with the 

8. Conclusions and Future Work

This study discusses FJSP scheduling as a case that can benefit from the smart manufac-
turing big data in order to make scheduling more realistic and up to date with the machine
life cycle. Via that available new data, the scheduling will be able to gain awareness as
the other manufacturing terms. In that, the machine tool change and maintenance can be
scheduled as a part of the FJSP scheduling cycle. The challenge is in how the inserted data
will be handled to serve the diversification and the intensification terms of the heuristic
based algorithms without fall only in the diversification terms.

The designed algorithm utilizes the PSO with a modified selection algorithm imple-
ment such a continuous algorithm in the discrete domain considering the machine/tool
efficiency data. The suggested data can be extended to include the features position in
future cases. Energy consumption and the tool cracking through an image processing
based techniques can be added as well.

In terms of implementations, the advances in parallel computing have brought GPU
techniques into the spotlight. These techniques may be inserted in a future work with the
current tested CPU parallel implementation, especially when image processing comes into
action. Therefore, the JSSP based problems will be capable of achieving fully dynamic
environment.
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