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Abstract: In industrial process fault monitoring, it is very important to collect accurate data, but in
the actual process, there are often various noises that are difficult to eliminate in the collected
data due to sensor accuracy, measurement errors, or human factors. Existing statistical process
monitoring methods often ignore the problem of data noise. To solve this problem, a sliding window
wavelet denoising-global local preserving projections (SWWD-GLPP) process monitoring method
is proposed. In the offline stage, the wavelet denoising method is used to denoise the offline data,
and then, the GLPP method is used for offline modeling, and then, the control limit is obtained by
the kernel density estimation method. In the online phase, the sliding window wavelet denoising
method is used to denoise the online data in real time. Then, use the model of the GLPP method to
find the statistics, compare them with the control limit, judge the fault situation, and finally, use the
contribution graph method to determine the variable that caused the fault, so as to diagnose the fault.
This article uses a numerical case to illustrate the effectiveness of the algorithm, using the Tennessee
Eastman (TE) process to compare the traditional principal component analysis (PCA) and GLPP
methods to further prove the effectiveness and superiority of the method.

Keywords: process monitoring; sliding window; wavelet denoising; global local preserving projec-
tions; Tennessee Eastman; principal component analysis

1. Introduction

The production safety and product quality of industrial processes have always been
two important issues in industrial processes [1]. With the development of modern technol-
ogy, industrial processes work under larger scales, higher speeds, and more complex and
even more dangerous operating conditions, so it becomes more and more important to be
able to detect faults in time and accurately [2]. The purpose of the process monitoring field
is to detect and diagnose faults caused by control process faults, equipment faults, or other
events as soon as possible, so as to ensure safe production and guarantee the high quality
of products. Effective process monitoring can help operators eliminate faults before they
affect the product quality and threaten production safety. Industrial process monitoring is
a challenging problem, because industrial processes often have complex process character-
istics, such as dynamics, multi-parameters, multimodality, and nonlinearity. In addition,
the problem of noise interference in industrial processing data cannot be ignored.

In recent years, with the development of sensor technology and the improvement of
computer computing capabilities, the ability to obtain and processing data has also been
continuously improved. Therefore, data-based multivariate statistical process monitoring
methods have been widely used to improve the quality and safety of industrial process
products [3–5]. A common feature of multivariate statistical process monitoring methods
is to reduce the dimensionality of processing data to obtain latent variables and then use
latent variables to establish a monitoring model [6]. For example, traditional multivariate
statistical process monitoring methods are based on the principal component analysis
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(PCA) [7], partial least squares (PLS) [8], and independent component analysis (ICA) [9].
In order to solve the nonlinear problem in the data, by combining the kernel method to
project the original data into a feature space that makes the data linearly correlated and
then perform dimensionality reduction, scholars proposed the kernel PCA (KPCA) [10],
kernel PLS (KPLS) [11], and kernel ICA (KICA) methods [12]. In order to solve the problem
of the poor KPCA effect in the case of dynamic systems and large training datasets, Fezai
proposed the online reduced KPCA method [13]. However, these methods often only
consider the global structure of the data. In order to better preserve the local structure of
the data, by searching for the optimal linear approximation of the characteristic function of
the Laplace Beltrami operation on the manifold, He et al. proposed a locality preserving
projections (LPP) method. LPP can well-preserve the local neighbor relationship of the
data [14]. Later, in order to apply the LPP algorithm to the intermittent process by expand-
ing the three-dimensional data into two-dimensional data, Hu et al. proposeda multiway
LPP (MLPP) [15]. In order to consider the global and local characteristics of the retained
data at the same time, by introducing some adjustment parameters and combining the
dimensionality reduction constraints of the PCA and LPP, Luo proposed the global local
preserving projections (GLPP) method [16]. For the problems of nonlinear processes and
fault classification, Luo et al. and Tang et al. further improved the GLPP algorithm and
proposed the kernel global local preserving projections (KGLPP) algorithm and the fisher
discriminant global local preserving projections (FDGLPP) algorithm [17,18], respectively.

Most of the above multivariate statistical methods do not consider the noise problem of
the data. Due to the influence of factors such as sensor interference, equipment degradation,
and human error, the measured processing data is often polluted by random noise. Since
the execution of the monitoring task depends on the quality of the information extracted
from the measurement data, it is necessary to clean up or correct the collected data to
improve the monitoring effect. The most commonly used denoising method is wavelet
denoising [19]. Martin et al. proposed a nonlinear wavelet transform threshold method to
denoise, which is widely used [20]. However, industrial process monitoring is often applied
to an online process, and traditional wavelet denoising is often not directly applicable to
an online process. This indicates that it is necessary to consider the use of a processing
strategy that uses wavelet denoising online. Professor R. Bakshi et al. proposed an online
multiscale (OLMS) method [21], which has been proven, as the online processing data
still has good results. In order to solve the noise problem in the data and apply it to the
online monitoring process, this paper first uses the traditional wavelet denoising method
to denoise the offline data, then uses GLPP for offline modeling, and then uses the kernel
density estimation method to find the control limit. In the online stage, the sliding window
wavelet denoising method is used to denoise the online data in real time. Then, we use the
model of the GLPP method to obtain statistical information, compare that with the control
limit, judge the fault condition, and diagnose the fault.

In the next part, we will introduce some commonly used multivariate statistical process
monitoring methods. Section 3 introduces the sliding window wavelet denoising-global
local preserving projections (SWWD-GLPP) method and the monitoring steps. Section 4
illustrates the advantages of the SWWD-GLPP monitoring method over the PCA and GLPP
algorithms through a simple mathematical case and the Tennessee Eastman (TE) process.
Finally, the conclusions will be given in Section 5.

2. Process Monitoring Method
2.1. PCA

The PCA is a commonly used multivariate statistical method that can solve the prob-
lem of dimensionality reduction of linear, multidimensional, and gaussian data. Its purpose
is to retain the largest variance information after projection, so it has been widely used in the
field of monitoring. Assuming that the standardized data is X = [x1, x2 · · · xn]

T ∈ Rn×m,

there are m variables and n samples. Let
→
p be the projection vector and yi =

→
p

T
xi; ac-
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cording to the principle of maximum variance of dimensionality reduction, the objective
function of PCA is JPCA(

→
p ).

JPCA(
→
p ) = max

→
p

1
n ∑

i
(yi)(yi)

T

s.t.
→
p

T→
p = 1

(1)

For data X, it can be decomposed into:

X = TPT + E (2)

C =
1
n

XXT (3)

where X is the standardized data, and T ∈ Rn×k is the principal component matrix.
P ∈ Rm×k is the load matrix, which can be obtained by eigen decomposition of the
covariance matrix C. E is the residual matrix. k represents the number of principal
components. Generally, it can be obtained by the cumulative variance contribution rate [22]:

k

∑
i=1

λi/
m

∑
i=1

λi × 100% ≥ ρ (4)

where ρ is the set index, which is generally set to 85%, and λi is the eigenvalue obtained by
the eigen decomposition of the covariance matrix C, and it is arranged from large to small.

PCA-based process monitoring actually judges whether an industrial process fails
by monitoring two multivariate statistics: T2 and Q [23]. The definition of T2 statistics is
as follows:

T2 = xi
T PS−1PTxi (5)

where xi is the sample vector, and S is a diagonal matrix composed of λi.
The Q statistic is also called the squared prediction error (SPE), which represents the

deviation distance between the measured value and the principal component model and is
defined as follows:

SPE = eTe (6)

The method of calculating the control limits DC and QC,a of T2 and Q statistics in the
PCA is as in Formula (7).

DC ∼
k(n2 − 1)
n(n− k)

Fa(k, n− 1) (7)

where n is the number of training data samples, a is the significance level, and k is the
number of principal components retained in the principal components. The critical value
of the F distribution under the condition of k and n− k degrees of freedom can be found
through the statistical table.

QC,a = θ1

[
1− θ2h0

(
1−h0
θ1

2

)
+

√
Ca(2θ2h0

2)
θ1

]1/h0

θi =
m
∑

j=k+1
λi

j (i = 1, 2, 3)

h0 = 1− 2θ1θ3
3θ2

2

(8)

The critical value of the normal distribution under the significance level a is Ca, where
λj represents the smaller characteristic roots in the data covariance matrix.
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2.2. LPP

LPP is an emerging dimensionality reduction algorithm. It is a linearized version of
Laplacian Eigenmaps (LE) [24].Compared with the PCA method, which only focuses on
maintaining the global structure, LPP can maintain the local neighbor structure of the data
well. Assuming the standardized data X = [x1, x2 · · · xn]

T ∈ Rn×m, the objective function
of LPP is:

JLPP(
→
a ) = min

→
a

1
2 ∑

ij
(yi − yj)

2Wij

s.t.
→
a

T
XDXT→a = 1

(9)

Wij =

{
e−||

→
x i−

→
x j ||2/σ →

x j ∈ Ω(
→
x i) or

→
x i ∈ Ω(

→
x i)

0 others
(10)

where W is the weighted neighbor matrix, Wij represents the element in the ith row and jth

column of W, and σ is an appropriate constant determined by experience [24]. e−||
→
x i−

→
x j ||2/σ

is the heat kernel, and Ω(
→
x i) represents theneighborhood of

→
x , which can be obtained by

the K-nearest neighbor method and the ε neighbor method [14,25]. x is a diagonal matrix
Dii = ∑

j
Wij.

XLXT→a = λXDXT→a (11)

Through Formula (11), we can get the eigenvalue λ and the eigenvector
→
a , where

L = D−W and L are Laplace matrices.

2.3. GLPP

The PCA is only to retain the global structure with the largest variance of the data after
projection, while LPP retains only the local structure. In order to combine the advantages
of the PCA and LPP, Luo proposed the GLPP algorithm. GLPP is a new linear dimen-
sionality reduction algorithm that can simultaneously keep the local structure and global
structure of the dimensionality reduction data [16]. Assuming that the standardized data is
X = [x1, x2, · · ·, xn] ∈ Rm×n, the objective function of GLPP is as follows:

JGLPP

(→
a
)

= min
→
a

1
2

{
η∑

ij
(yi − yj)

2Wij − (1− η)∑
ij
(yi − yj)

2Wij

}
= min

→
a

1
2 ∑

ij
(yi − yj)

2Rij

= min
→
a

{
∑
i

→
a

T→
x i Hii

→
x i

T→a −∑
ij

→
a

T→
x iRij

→
x j

T→a

}
= min

→
a

→
a

T
X(H − R)XT→a

= min
→
a

→
a

T
XMXT→a

(12)

where yi = ATxi(i = 1, · · ·, n) and
→
a are projection vectors, and A is a projection matrix

composed of projection vectors, η is the weighted coefficient.

Wij =

{
e−||xi−xj ||2/σ1 xj ∈ Ω(xi) or xi ∈ Ω(xj)
0 others

(13)

Wij =

{
e−||xi−xj ||2/σ2 xj /∈ Ω(xi) and xi /∈ Ω(xj)
0 others

(14)
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where σ1 and σ2 are the empirical constants, and Ω(x) represents the K neighborhood of
x. In order to find the optimal projection vector, GLPP solves the following optimization
problems:

min
a

aTXMXTa

s.t. aT Na = 1
(15)

where N = ηXHXT + (1 − η)I and H = ηD − (1 − η)D. D and D are the diagonal
matrices. Where Dii = ∑

j
Wij and Dii = ∑

j
Wij. I is the identity matrix.

XMXT→a = λN
→
a (16)

Through Formula (16), we can get the eigenvalue λ and the eigenvector
→
a , and the

eigenvector
→
a forms the eigenmatrix A.

The GLPP algorithm can be transformed into a PCA algorithm or LPP algorithm in
some cases. When η = 0 and σ1, σ2 → ∞ , the GLPP algorithm is equivalent to the PCA
algorithm, and when η = 1, the GLPP algorithm is equivalent to the LPP algorithm [16].

3. Process Monitoring Based on the SWWD-GLPP
3.1. Sliding Window Wavelet Denoising

Wavelet analysis is a new signal analysis and processing method developed in recent
years and has been applied in many fields.With its good timedomain positioning charac-
teristics, it can successfully eliminate the interference of local high-frequency noise in the
signal. Threshold filtering can effectively eliminate white noise.

The basic idea of wavelet denoising is to transform the signal through a wavelet, and the
wavelet coefficients generated by the signal contain important information of the signal.
After the signal is decomposed by the wavelet, the wavelet coefficient is larger, the wavelet
coefficient of the noise is smaller, and the wavelet coefficient of the noise is smaller than
that of the signal. By selecting a suitable threshold, the wavelet coefficients larger than the
threshold are considered to be generated by the signal and should be retained. If the threshold
is less than the threshold, it is considered that the noise is generated and set to zero, so as to
achieve the purpose of denoising.From the point of view of signal science, wavelet denoising
is a problem of signal filtering. Although wavelet denoising can be regarded as a low-pass
filter to a great extent, it is superior to the traditional low-pass filter, because it can retain the
signal characteristics successfully after denoising. Therefore, wavelet denoising is actually a
combination of feature extraction and low-pass filtering.

Suppose there is a model representation of a noisy signal as follows:

s = f + σz (17)

where s represents the observed signal, and z represents the noise signal.Under normal
circumstances, we think it obeys the normal distribution. f represents the real signal, and σ
represents the noise intensity.

In wavelet denoising, the selection of an appropriate wavelet often directly affects the
filtering effect. At present, there are many kinds of wavelets, and because of the rapidity of
online monitoring, we choose the Haar wavelet, which is simple in calculations. The details
are as follows:

ψ(x) =


1 0 ≤ x ≤ 1/2
−1 1/2 ≤ x < 1
0 others

(18)

where ψ(x) is the mother wavelet. A set of wavelet basis functions can be obtained by x
translation and scaling.

The process of wavelet denoising is as follows:
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Step1: Perform wavelet decomposition on the observation signal s. That is, select the
appropriate wavelet and determine the number of decomposition layers and then perform
wavelet decomposition to obtain the corresponding wavelet decomposition coefficients.

Step2: Select an appropriate threshold for the high-frequency coefficients of each layer
(hard threshold or soft threshold can be used according to the situation) for quantization.

Hard threshold:

x̂ = Th(X, t) =
{

X |X|≥ t
0 |X|< t

(19)

where x̂ represents the input variable after threshold processing, t represents the threshold,
and X represents the original input variable.

Soft threshold:

x̂ = Th(X, t) =
{

sgn(X)(|X|−t) |X|≥ t
0 |X|< t

(20)

where sgn(·) represents the sign function.
Step3: Finally, wavelet reconstruction is performed.
Although the offline analysis effect of wavelet denoising is much better than the

traditional filtering methods, it is only meaningful to apply wavelet denoising to the
online monitoring status of industrial processes. In order to use wavelet denoising for
online process monitoring, this paper uses a sliding window wavelet denoising method.
The essence of sliding window wavelet denoising is to reduce the level of random noise
by applying wavelet threshold filtering in a moving data window. Compared with offline
wavelet filtering, sliding window wavelet denoising has a feature that is a binary sliding
window. It retains the advantages of wavelet decomposition in each active window and
allows each measurement to be corrected online. Here, the binary length sliding window
refers to the sliding window with a positive integer length, because we need to carry out
dyadic wavelet transform in each window.

lx =

{
L L = 2n

2n 2n+1 > L > 2n(n = 1, 2, · · ·N)
(21)

Xonline = [xi−lx+1, · · ·xi−1, xi] (22)

Formulas (21) and (22) express the strategy for determining the window length,
where L represents the number of existing online data, lx represents the window length,
n represents an integer, N is a positive integer, and Xonline represents the online data to
be denoised. xi represents the online data at the ith moment. With the continuous update
of online data and the continuous change of the sliding window, the same historical data
([xi−lx+1, · · ·xi−1]) may have different results.

Online multiscale correction is based on the multiscale re-correction of binary length
window data, as shown in Figure 1 [21]. The sliding window wavelet denoising method
can be summarized as follows:

Step 1 Use wavelet decomposition to decompose the data within the window of 2n length.
Step 2 Use threshold wavelet denoising to reconstruct the signal.
Step 3 The last data point of the offline data is reserved for online use.
Step 4 When new measurement data is available, the window is moved in time to contain

the latest measurement data while maintaining the maximum binary window length.
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larger errors.In order to solve the noise problem, wavelet threshold denoising is per-
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Figure 1. Schematic diagram of the online multiscale (OLMS) sliding window.

3.2. Offline Data Modeling Based on the SWWD-GLPP

Consider that there will be various interferences in the industrial process, and the
sensor will also have measurement noise. If you directly model the data, there may be
larger errors.In order to solve the noise problem, wavelet threshold denoising is performed
on the data in the modeling stage to reduce the influence of noise on the model. The specific
process of this article is shown in Figure 2, including three main parts: offline data modeling,
online monitoring, and fault diagnosis.
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Figure 2. Sliding window wavelet denoising-global local preserving projections (SWWD-GLPP) flow
chart.

Step1: Assuming that there is a set of offline training data X = [x1, x2 · · · xn]
T ∈

Rn×m, the offline data matrix X after wavelet threshold denoising is standardized, and the
processed data is X̃.
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Step2: The GLPP algorithm contains many parameters; these parameters often affect
the final effects of the algorithm, which makes it very important to choose the right
parameters.In the GLPP algorithm, the value of η has a great influence on the monitoring
results. This paper uses Formula (23) to determine the value of η:

η =
tr(D−W)

tr(D−W) + tr(D−W)
(23)

where tr(•) represents the trace of the matrix. D, W, D, and W can be obtained by the
method in Section 2.3. In addition to finding η, according to Formula (23), other methods
or adjustments can be made according to the actual situation.

Step3: After determining the parameters, use the denoised data to establish a monitor-
ing model based on the GLPP. The specific modeling method is shown in Formula (24):

X̃ = YAT + E
Y = X̃A(AT A)

−1

E = X̃−YAT
(24)

where E represents the residual matrix, and Y ∈ Rn×l represents the matrix after projection.
Step4: Using Formulas (25) and (26), calculate the T2 and SPE statistics of the offline

training data sample and form a dataset.

T2(i) = y(i)TS−1y(i) (25)

where y(i) is the sample of Y in Formula (23), which is different from the PCA, where S−1

represents the inverse of the diagonal matrix with eigenvalues arranged from small to large.

SPE(i) = e(i)Te(i) (26)

where e(i) is the residual vector of the ith sample, and SPE(i) represents the value of the
SPE statistics of the ith sample.

Step5: Determine the control limits
In order to determine whether the process is running under normal operating condi-

tions, the control limits of the T2 and SPE statistics must be calculated. When the value
of the statistics calculated by the online collected data is greater than the control limit,
it is considered that a fault has occurred. This paper uses the kernel density estimation
method to determine the control limit of each monitoring statistic [20]. The kernel density
estimation method needs to obtain the monitoring statistics of the offline processing data
first and then set the confidence limit. Compared with the traditional control limit deter-
mination method, the kernel density estimation method can track the distribution of data
more closely, and the scope of application is wider.

fh(x) =
1
n

n

∑
i=1

Kh(x− xi) =
1

nh

n

∑
i=1

K(
x− xi

h
) (27)

where h is the smoothing parameter, n is the number of observations, K(•) is the kernel
function (non-negative, conforms to the nature of probability density, and has a mean value
of 0). In general, Gaussian kernel function is used:

K(x) =
1√
2π

e(−x2/2) (28)

Finally, the calculated control limits are marked as T2
lim and SPElim.
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3.3. Online Monitoring

Step1: Collect online data, use the sliding window wavelet denoising method in
Section 2.1 to denoise, and the standardized data is x̃new ∈ Rm.

Step2: Use the projection matrix A obtained in the offline process and use the newly
collected data to establish the following online monitoring model based on GLPP:

x̃new = Aynew + enew

ynew = (AT A)
−1 AT x̃new

enew = x̃new − Aynew

(29)

where ynew is the vector after projection,enew is the residual vector of the online model, and
A is the projection matrix, which can be obtained by Formula (11).

Step3: Calculatethe T2 and SPE statistics.

T2 = ynew
TS−1ynew (30)

SPE = enew
Tenew (31)

where S represents the diagonal matrix in which the eigenvalues are arranged from small
values to large values.

Step4: Detection failure
By comparing with the control limits determined in the offline modeling, it is judged

whether the process fails. Generally, there are two judgment methods. The first is the most
commonly used method. As long as one of the two statistics exceeds the control limit, it is
judged as a fault. This method of judgment can increase the sensitivity of the diagnosis,
but it often leads to a high false report rate. The other method is to determine that a failure
occurs only when both statistics fail. This method will greatly reduce the false report rate.
The other method is to determine that a fault occurs only when both statistics are faulty.
This method will greatly reduce the false report rate. The final accuracy of fault monitoring
is the ratio of the number of detected faults in the fault data to the total number of faults,
and the false alarm rate of fault monitoring is the ratio of the number of samples that are
falsely reported as faults in the normal data samples to the number of normal samples.

T2 > T2
lim or SPE > SPElim (32)

Step5: Diagnose the fault
After the fault is detected, the abnormal variables in the data can be found by the

method of a contribution graph, so as to determine the cause of the failure [26].

contj =
d

∑
i=1

tj,i
Ttj,i

λη(j, i)
(33)

where d is the number of principal components, and contj represents the contribution value
of T2 statistics at the jth sample.

qj = ej
2 (34)

where ej represents the residual value of the jth element, and qj represents the contribution
value of the SPE statistics at the jth sample.

4. Simulation Process
4.1. Numerical Case

This section uses a simple mathematical case to prove the improvement of data
monitorability after the use of sliding window denoising. For the convenience of viewing,
a two-dimensional data set is used. First, set x to be the normal distributed random data
with 5 as the mean and 2 as the variance and y to be the normally distributed random data
with 1 as the mean and 1 as the variance. Both x and y contain 300 sets of data, and both
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contain gaussian noise. In the 101th sample of y data, a random fault disturbance with a
mean of 1 and a variance of 0.5 is introduced.

Figure 3 shows the data scatter diagram under the two processing methods, in which
the red circle represents the normal data, and the blue cross represents the fault data. It can
be found that the normal data and fault data of the unprocessed data (Figure 3a) are partly
intertwined. This part of the data is often difficult to distinguish its true state during
subsequent processing, resulting in a decrease in accuracy or an increase in the false alarm
rate. After the data is processed by sliding window wavelet denoising (Figure 3b), we can
clearly see the good separation of normal and fault data, which is obviously beneficial to
the subsequent fault monitoring and fault diagnosis and, also, proves the effectiveness of
our method.
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4.2. TE Simulation Process

The TE simulation process is widely used because of its complicated reaction process
and production structure.It has 21 types of faults. For detailed information, please refer
to the literature [27] and select 33 variables among them as monitoring variables [28].
In the stage of offline modeling, the denoising offline samples are used to build process
monitoring models of PCA, GLPP, and SWWD-GLPP.In the online monitoring stage,
the sliding window wavelet denoising method is used to denoise the online samples.
The confidence limit of all algorithms is 99%.

Use PCA, GLPP, and SWWD-GLPP, the three process monitoring methods, to monitor
21 faults in the TE process and calculate the accuracy of the corresponding fault monitoring,
as shown in Table 1. Since past research has proven that, in the TE processing data, fault 3,
fault 9, and fault 15 are difficult to detect [27], the same situation is also in our experiment,
so these three faults are not considered, and these three fault types are excluded from
the table. In Table 1, the best performing indicators are marked in bold black.Obviously,
the SWWD-GLPP method is better than the other two methods in most types of faults,
especially for fault 11, fault 18, and fault 20. The accuracy of the monitoring is greatly
improved.Although the performance of some fault types is not as good as the two methods
compared, such as fault 1, fault 2, and fault 10, the differences can be found to be very
small.At the end, we averaged the results of all fault monitoring quasi-removal rates, and it
is obvious that the comprehensive situation of SWWD-GLPP proposed in this paper is
better than PCA and GLPP.
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Table 1. Monitoring accuracy rate of the faults (%). PCA: principal component analysis and SWWD-
GLPP: sliding window wavelet denoising-global local preserving projections. SPE: squared prediction
error. Bold numbers: the best indicator results of all the methods.

No.
PCA GLPP SWWD-GLPP

T2 SPE T2 SPE T2 SPE

1 100 100 99.9 99.4 99.9 99.4
2 99.0 99.3 98.6 98.0 98.9 98.3
4 9.7 100 100 33.1 100 100
5 26.1 25.8 100 99.9 100 100
6 99.5 100 100 100 100 100
7 100 100 100 100 100 100
8 98.0 96.6 98.0 97.3 98.0 97.4
10 41.5 52.6 89.5 41.1 88.8 45.1
11 37.6 91.2 77.0 47.8 91.5 77.6
12 99.4 97.7 99.9 98.8 100 99.6
13 95.2 95.7 95.3 94.3 95.8 94.5
14 100 100 100 99.9 100 100
16 22.9 50.1 92.4 24.0 93.6 31.1
17 80.5 97.5 96.3 84.0 97.9 90.5
18 89.7 90.8 90.1 89.3 100 94.8
19 14.2 60.3 91.0 0.1 74.3 0.4
20 51.0 60.2 90.9 45.4 92.4 59.1
21 46.5 48.0 59.8 36.9 60.4 42.3
Avg. 67.3 81.4 93.3 71.6 94.0 79.4

In order to more intuitively reflect the superiority of SWWD-GLPP compared to
the other two methods, the monitoring results of fault 11 and fault 16 are shown in
Figures 4 and 5, respectively. For fault 11, it can be found that the T2 statistics of the
PCA method missed most of the faults. The two statistics of SWWD-GLPP and GLPP
are better to detect the fault, and the effect of SWWD-GLPP is better.For fault 16, the two
monitoring statistics of the PCA method failed to detect the fault well, while the T2 statistics
of SWWD-GLPP and GLPP detected the fault, and the SPE statistics performed generally.
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Figure 4. (a) Monitoring charts of the principal component analysis (PCA) for fault 11. (b) Monitoring charts of GLPP for fault 11.
(c) Monitoring charts of SWWD-GLPP for fault 11.
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SWWD-GLPP for fault 16.
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After the fault is detected, the contribution diagram method can be used to determine
the cause of the fault. This article uses fault 10 of the TE process as the test sample. From
Figure 6, it can be found that the largest cause of the fault is variable 31.
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Figure 6. Fault diagnosis diagram of fault 10.

In process monitoring, the performance of the false alarm rate is also very important,
because if the false alarm rate is too high, even with a high accuracy rate, it is often
unusable. This article uses the nonfaulty test data provided in the TE dataset as the test
sample. The monitoring statistics are shown in Figure 7, and the results of the false alarm
rate are shown in Table 2. It can be found that the proposed SWWD-GLPP method has a
lower false alarm rate. Combining the results of Tables 1 and 2 can prove the effectiveness
and superiority of the method proposed in this paper.
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Table 2. False alarm rates of normal data (%).

No.
PCA GLPP SWWD-GLPP

T2 SPE T2 SPE T2 SPE

0 1.38 0.88 1.88 1.13 1.38 0.75

5. Conclusions

Aiming at the noise problem in industrial process measurement data, a sliding window
denoising method is proposed, which makes wavelet denoising applicable to the online
processing of processing data.In the offline phase, the wavelet denoising method is first
used to denoise the offline data, and then, GLPP is used for offline modeling, and then,
the control limit is obtained by the kernel density estimation method. In the online phase,
the sliding window wavelet denoising method is used to denoise the online data in real
time. Then, we used the model of the GLPP method to find the statistics, compare with the
control limit, judge the fault situation, and diagnose the cause of the fault.The simulation
study of the TE process fully shows that the SWWD-GLPP method is better than the
traditional PCA and GLPP methods. However, SWWD-GLPP is still a monitoring method
for linear data, and applying it to nonlinear processes is a problem that needs to be solved
in subsequent research.
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