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Abstract: The complexity of the waste stream of spent lithium-ion batteries poses numerous chal-
lenges on the recycling industry. Pyrometallurgical recycling processes have a lot of benefits but
are not able to recover lithium from the black matter since lithium is slagged due to its high oxygen
affinity. The presented InduRed reactor concept might be a promising novel approach, since it does
not have this disadvantage and is very flexible concerning the chemical composition of the input
material. To prove its basic suitability for black matter processing, heating microscope experiments,
thermogravimetric analysis and differential scanning calorimetry have been conducted to character-
ize the behavior of nickel rich cathode materials (LiNi0.8Co0.15Al0.05O2 and LiNi0.33Mn0.33Co0.33O2)
as well as black matter from a pretreatment process under reducing conditions. Another experimental
series in a lab scale InduRed reactor was further used to investigate achievable transfer coefficients
for the metals of interest. The promising results show technically feasible reaction temperatures of
800 ◦C to 1000 ◦C and high recovery potentials for nickel, cobalt and manganese. Furthermore, the
slagging of lithium was largely prevented and a lithium removal rate of up to 90% of its initial mass
was achieved.

Keywords: lithium-ion-batteries; pyrometallurgical recycling; carbothermal reduction

1. Introduction

Since 1979, when Goodenough et al. finally tested LiCoO2 (short: LCO) as a cathode
material, the development and commercialization of electrochemical energy storage based
on the lithium-ion technology has been steadily pushed forward [1,2]. Lithium-ion-batteries
(LIBs) basically consist of the same components such as anode, cathode, separator or
electrolyte as can be found in other battery technologies. This basic principle has not
changed since 1979 and therefore also applies to modern LIBs. However, the initially
used LCO cathode material is now just one option on a long list of alternatives like NCA
(LiNixCoyAlzO2), NMC (LiNixMnyCozO2) or LFP (LiFePO4) materials [3]. The variety
of cathode materials is not only based on the fields of possible applications that reach
from mobile electronics to e-mobility or stationary storages and their respective demand
for performance (energy and power density) or safety aspects, but also on factors like
raw material prices, supply risks or social and ecological sustainability. Concerning the
development of the LIB market numerous publications can be found. Especially the electric
automotive sector will benefit from decreasing costs made possible by mass production
and optimized cell chemistry. Berckmans et al. [4] states that by 2030, the cut of fully
electric or hybrid vehicles will rise to 25% of the total vehicles sold. In view of the high
amount of valuable metals that are contained in LIBs, especially in their cathode materials,
and the predicted market demand [5], an efficient recycling process in order to recover the
mentioned valuable metals is absolutely necessary.

In general, the recycling of LIBs can be divided into three processing steps, namely pre-
treatment, metal extraction and metal refining. The recycling chain of LIBs usually starts
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with pre-treatment processing which aims to separate battery components like the battery
management system or the housing and the corresponding materials such as plastics or iron
from the active materials of the battery electrodes. For pre-treatment, various processes can
be found which differ more or less from each other. Basically, steps during pre-treatment are
sorting, dismantling deactivation and mechanical processing and separating. Said active
materials–after pre-treatment they are also known as black matter–mainly consist of lithium
metal oxides or lithium iron phosphate, carbon and residues from the electrode conductor
foils. Umicore’s Valéas process, for example, is an exception since it does not need a usual
pre-treatment but uses the batteries directly in their pyrometallurgical process. [2,6–12].

While the obtained metal and plastic scrap can be recycled directly, the produced
black matter that contains the valuable metals needs to be further treated in a metal
extraction step to recover Li, Ni, Co and Mn, at best in a quality that is suitable for
closed loop recycling. Therefore, pyro-, bio- and hydrometallurgical methods can be used.
Biometallurgical processes like bioleaching are considered as environmentally friendly and
low cost alternatives to conventional hydrometallurgy, capable of reaching recovery rates
of more than 98% for Ni and Co and more than 80% for Li but suffering from low kinetics
and resulting poor throughput rates [13–19].

Typical hydrometallurgical procedures, used to recover metals from black matter, are
leaching, solvent extraction, chemical precipitation or electrochemical deposition, with
which a high selectivity and therefore product purity can be achieved [20]. The possible
recovery rates for Ni, Mn, Co and Li, as for example reported by He et al. [21], can be close
to or even higher than 99%. The obtained salts or concentrates can usually be directly used
for the production of new cathode materials as it is the case for the Duesenfeld process
described by Elwert and Frank [22]. An indication of the importance of hydrometallurgical
recycling of spent LIBs is, among other things, the high intensity of research activities in
this field. According to Huang et al. [23], more than half of the recycling processes that are
currently under investigation are related to hydrometallurgical processing.

Pyrometallurgical approaches use high temperatures, usually above 1400 ◦C, and
reducing conditions to recover valuable metals as a metal alloy. The advantages lie in
the experience with and the properties of conventional pyrometallurgical units which
are less complex and less vulnerable, e.g., to organic impurities in the black matter, than
their hydrometallurgical counterparts. The decisive factor in this regard is the oxygen
potential of the contained metals, which is for example low for Ni and Co, leading to a
relatively low-effort recovery. On the other hand, the similarity of the oxygen potential
between Ni and Co reduce the selectivity of pyrometallurgical processes since they cannot
be recovered separately but only as an alloy. The oxygen potential is also responsible for
one of the biggest disadvantages of pyrometallurgy. Lithium, which has a much higher
oxygen affinity, cannot be recovered as part of the metal alloy but is bound as an oxide in
the slag instead [2,20,24–26].

The refining step is usually based on hydrometallurgical methods and aims for a closed
loop recycling. Hence, it mainly applies on the metal alloy and slag from pyrometallurgical
processing, which without further treatment, cannot be used for the production of new
LIBs. The treatment of the metal alloy aims for a separation of the contained metals, while
the slag treatment’s goal is to recover Li, which is often technically but not economically
feasible due to the low Li content in the slag. [2,20,22,27]

However, it can be summarized that there are still a lot of uncertainties in the LIB
recycling chain. Not only the development of the waste stream itself, also the number
and diversity of pre-treatment processes lead to varying black matter compositions and
qualities. For pyrometallurgy, the lack of Li recovery options is a major problem that is not
yet solved, but however, gives the desired novel approach with the InduRed reactor a good
opportunity to establish itself as an alternative to conventional processes.

The mentioned InduRed reactor might be a possibility to achieve a simultaneous
recovery of Ni, Co, Mn as well as Li with a pyrometallurgical process. The existing pilot-
scale reactor concept, shown in Figure 1a,b, consists of a packed bed of graphite pieces that
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is inductively heated by surrounding copper coils. The input material is fed continuously
with up to 10 kg/h from the top onto the hot graphite bed. The uppermost induction coil
powers the upper third of the reactor where the input material melts and forms a thin
molten layer that moves downwards. A second induction coil, placed half way down the
reactor, induces enough power so that reduction reactions can take place. Gaseous reaction
products are then removed from the reactor via a flue gas pipe whereas the liquid products
move further down. The third induction coil makes sure that the temperature within the
reactor can be maintained well above the melting temperature of the mixture and enables
a continuous flow out of the bottom of the reactor. The advantages of the reactor are the
low oxygen partial pressure, the possibility to control different temperature zones, and the
big reaction surface due to the graphite bed. Furthermore, the contact time and intensity
between gaseous reaction products and the molten phase can be limited because they
only need to pass a thin layer or droplets instead of a molten bath like in conventional
pyrometallurgical furnaces. Originally, the reactor concept was developed for the recovery
of phosphorus from sewage sludge ashes, which is described by Schönberg [28]. The
concept was later also adapted by Ponak et al. [29,30] to treat basic oxygen furnace slag
with limited iron phosphide formation.
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Figure 1. (a) Schematic illustration of the so called InduRed reactor and (b) said reactor operating at
a test series for metal recovery from basic oxygen furnace slag. [29,30].

The aim of this work is to investigate if said reactor concept can potentially also
provide a solution for LIB black matter recycling.

For the determination of the basic suitability of black matter as an input material
for the InduRed reactor, thus its melting and reaction behaviour, heating microscope
experiments, thermogravimetric analysis (TGA) and differential scanning calorimetry
(DSC) were carried out. Since black matter can have different properties and contents
of impurities depending on the pre-treatment procedure, the influence of which on the
properties being investigated is difficult to assess, the investigations are also carried out
with pure cathode materials. The ability of the InduRed reactor concept to eliminate one
of the biggest disadvantages of pyrometallurgical LIB recycling, namely lithium slagging,
is finally evaluated by experiments in a lab-scaled batch reactor, which is based on the
InduRed concept. The results, in particular the required reaction temperatures and the Li
removal rate via the gas phase from the reactor, form the basis on which a decision is made
about the fundamental suitability of the reactor to be part of the LIB recycling chain.

2. Materials and Methods

The cathode materials (LiNi0.8Co0.15Al0.05O2, sample abbreviation: NCA and LiNi0.33
Mn0.33Co0.33O2, sample abbreviation: NMC) which were used for the experiments have
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been produced by Gelon Energy Corporation in Linyi, China, while the black matter (sam-
ple abbreviation: AM) was provided by a LIB recycling facility operated by Redux GmbH
in Bremerhaven, Germany. The chemical composition of said materials is summarized in
Table 1 below.

Table 1. Chemical composition of used materials. (mass fraction, w/%).

Species C Li Ni Co Mn Al P Fe Cu Zn Pb

AM 1 29.5 2.4 20.9 4.2 1.1 5.8 0.4 0.6 5.7 0.8 0.1

NCA 2 - 7.2 48.9 9.2 1.4

NMC 2 - 7.2 20.3 20.4 19.0 -
1 Data from ICP-MS analysis. 2 Calculated from the molar composition of the cathode materials.

In experiments with NCA and NMC, where reducing conditions were desired (sample
abbreviation: NCA_C, NMC_C), fine powdered coke was used as a reducing agent. Since
AM already contains 29.5 w/% carbon there was no need to further add a reducing agent.

In order to investigate the general behavior of the cathode materials at high tempera-
tures and under reducing conditions, the work started with two preliminary experimental
series. First, heating microscope experiments were conducted in a Hesse Instruments EM
201 with an HR18-1750/30 furnace (Hesse Instruments, Osterode am Harz, Germany) to
investigate at which temperatures reactions or transformations in the sample occur. In the
heating microscope experiments, black matter and the cathode materials with and without
carbon addition were tested at least twice to check the reproducibility of the results. In
the reduction experiments, carbon was added in extents of 10 w/% to the NCA and NMC
materials. An argon purge with a flow rate of approximately 2.5 l/min was used to inhibit
oxidization reactions of the materials. The settings for the heating rate (80 ◦C/min until
1350 ◦C, 50 ◦C/min until 1550 ◦C and 10 ◦C/min until 1650 ◦C with a holding time of
5 min at 1650 ◦C), the used Al2O3 sample plates and the sample size of approximately 0.1 g
of powder, pressed in a cylindrical shape, were the same for all experiments.

The second series were simultaneous thermal analyses (STA), more precisely thermo-
gravimetric analysis (TG) and differential scanning calorimetry (DSC), which have been
conducted in a Setaram Setsys Evo 2400 at the Chair of Physical Metallurgy and Metallic
Materials at the Montanuniversitaet Leoben. The aim of the STA was to confirm the temper-
ature zones in which changes of the materials could be observed in the heating microscope
and to further characterize the underlying reaction mechanisms. An argon purge was used
to inhibit oxidization reactions of the materials. For carrying out the analyses, graphite
crucibles and a carbon addition of 25 w/% were used in order to prevent damages to the
analysis hardware. The need for this is due to reactions between standard Al2O3 crucibles
and the produced metal alloy when carbon is added to the mixture. The reactions lead to a
destruction of the Al2O3 crucible and the thermocouple underneath gets destroyed. The
higher amount of carbon in the STA experiments is needed to prevent reactions between
the cathode material and the graphite crucible, which would take part as a reductant.

To simulate the conditions of the InduRed reactor and check its suitability, a third set
of experiments has been performed in the so-called InduMelt plant (sample abbreviation
starts with: IM_). The InduMelt plant is a single coil induction furnace that is modeled on
the InduRed reactor concept and used to perform preliminary experiments. This is due
to the fact that the InduMelt plant is easier to use and requires less effort compared to the
continuous InduRed reactor but still provides the same reaction conditions. The crucible
concept used for these experiments is therefore based on the InduRed reactor and consists
of a bed of packed graphite cubes (25 mm edge length) within an Al2O3 ceramics ring
(70 mm radius, 100 mm height) and is shown in Figure 2a. In Figure 2b, the setup of the
InduMelt plant is presented.
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Figure 2. (a) Schematic illustration of the crucible concept used in the InduMelt experiments [29] and (b) setup of the
experimental InduMelt plant.

During the preparation of the experiments, the ceramic ring is fixed on a mortar plate
with refractory mortar and alternatingly filled with graphite cubes and input material. In
the conducted experiments, the initial sample mass was 552.3 g for IM_NMC_C, 520.0 g for
IM_NCA_C and 561.9 g for IM_AM. The filled crucible is then insulated, using 20 mm thick
Cerachrome fiber wool with a classification temperature of 1500 ◦C and placed within the
induction coil. The inductive energy input is controlled in such a way that the temperature
increases at a maximum rate of 200 ◦C/h. For the measurement of temperatures of the
reactor, two k-type thermocouples are used inside of the reactor to control temperatures
up to 1200 ◦C. To keep track of the temperature after the k-type couples fail due to the
high temperatures, two separate s-type couples are mounted on the outer wall of the
Al2O3 ceramics ring. The temperature distribution in the reactor is known from previous
experiments with other waste streams and can show a gradient of several 100 ◦C towards
the end of the experiment, with the highest temperatures occurring at the top of the reactor.
The s-type thermocouples are therefore placed at the lower third of the reactor in order
to reach the necessary temperatures in the area in which the material is supposed to
accumulate.

After the experiments, the reactor needs to cool down for at least 24 h before the
sampling can start. Hereby, every graphite cube was picked from the reactor one after
another and checked for any metal or slag depositions, which, if present, were removed
from the cube’s surface and collected. The difficulty to collect every little metal deposition
and its influence on the overall mass balance of each experiment is discussed in the results
section of this work.

However, representative samples were taken from the collected products and the
content of species of interest was examined using inductively coupled plasma mass spec-
trometry (ICP-MS). For all ICP-MS measurements, which were conducted at the Chair of
Waste Processing Technology and Waste Management at the Montanuniversitaet Leoben,
the sample preparation was done by aqua regia digestion according to the ÖNORM EN
13657 standard. The measurement of the respective species was carried out according to
the ÖNORM EN ISO 17294-2 standard.

3. Results
3.1. Heating Microscope

In the heating microscope experiments, the relative cross-sectional area (CSA) of the
sample, thus the trend of cross sectional area of the sample cylinder during heating in
relation to its initial value, was observed to investigate at which temperatures changes in
the material occur. In Figure 3a, where the results of the test series with NMC are shown,
one can see a significant difference between the graphs of NMC_1 and NMC_2 without
carbon addition and, respectively, NMC_C_1 and NMC_C_2 in which carbon was added.
In this case, the first change of the CSA for NMC_C_1 and NMC_C_2 can be observed at
approx. 800 ◦C, which is almost 200 ◦C lower than in the tests without carbon addition.
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Moreover, the extent to which the change occurs is significantly higher in experiments with
carbon addition. The steep decline of NMC_C_1 and NMC_C_2 at approx. 1500 ◦C was
also observed with other cathode materials and can be explained by the melting point of
the contained metals. The difference in the trends of the CSA with and without carbon
addition can be explained by the origin of the changes. Mao et al. [31] and Kwon and
Sohn [32] investigated and described the reaction behaviour of LCO (LiCoO2) with and
without carbon addition. According to their findings and due to the fact, that NCA and
NMC are structurally identical to LCO, we assume that the changes in experiments without
carbon addition are caused by thermal decomposition of the lithium metal oxides, while
in experiments with carbon addition, reduction reactions with Li2O formation led to the
observed changes. About the reproducibility it can be said that in the repeated attempts the
characteristic changes of the CSA appear at the same temperatures to about the same extent.
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Figure 3. (a) Comparison of the cross sectional area of NMC with and without carbon addition in the heating microscope;
(b) Comparison of the cross sectional area of different mixtures of NMC and NCA, each with carbon addition.

The results, mainly temperature zones and the extent of the correspondence of changes
of the CSA, for NCA and NCA_C are very similar to those for NMC and NMC_C. However,
since future waste streams are likely to consist of mixtures of different cathode materials,
another set of experiments was performed in which NCA and NMC in different com-
positions and carbon were mixed to investigate if the materials influence each other. In
Figure 3b, where the changes of the CSA of NCA_C, NMC_C and mixtures with varying
composition are shown, no direct influence can be seen. The following Figure 4a,b show
the NMC_C sample before and after the heating microscope experiment. In Figure 4b a
perfectly molten metal sphere, indicated by the change of the CSA at approx. 1500 ◦C,
and a fine white crystalline structure can be seen. The blue colour of the Al2O3 ceramic is
most likely caused by reactions with cobalt and was also observed in all other experiments,
especially in those with carbon addition.
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Figure 4. (a) NMC_C sample before and (b) after heating to 1600 ◦C in the heating microscope.

In contrast, the black matter material (AM) showed a completely different behavior, as
can be seen in Figure 5a,b in which its CSA does not decrease during heating but increase
to almost 120% of its initial value. The lack of the first change of the AMs CSA as well
as the absence of any sign of melting at temperatures around 1500 ◦C indicates that pre-
treatment might have a big influence on basic thermophysical properties of the produced
black matter.
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Reasons for the deviating behavior of AM compared to NMC_C and NCA_C could lie
in impurities, thus residues from the mechanical processing and separation step during pre-
treatment, like Cu and Al from conductor foils. A closer look at the chemical composition
of AM in Table 1 reveals that the mass content of Cu and Al with almost 6% each is
much higher than anticipated. Moreover, the carbon content is much higher than would
be stoichiometrically necessary for the reduction reactions. An example of a disruptive
reaction could be the formation of aluminum oxide which, in the appropriate amount,
could form a supporting structure and thereby reduce the informative value of the CSA.
On the other hand, it is also possible that the anode graphite has a lower reactivity than the
fine powdered coke which is used in NMC_C and NCA_C.

The origin of AM, a pre-treatment process that uses thermal deactivation before
mechanical shredding, could also cause the observed differences, since some of the reac-
tions might already have taken place if certain temperatures are overcome during this
step. By this, the layered structure of the lithium metal oxides could probably have been
changed, e.g., due to thermal decomposition which, as can be seen in Figure 3, occurs at
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approx. 1000 ◦C and could change the materials properties permanently. However, reliable
information about these thermal processes is difficult to access. In our opinion, however, it
is quite possible that at certain points in such a process, temperatures above 1000 ◦C can
occur and that therefore the possibility of influencing the material must not be excluded.

3.2. Simultaneous Thermal Analysis

The experiments in the heating microscope gave some first impressions on how NMC,
NCA and AM behave at high temperatures and under reducing conditions. For further
characterization of the underlaying reactions that cause respective changes in the materials
and to create a basis for a kinetics model in the long term, thermogravimetric analysis and
differential scanning calorimetry was conducted. The results of the STA are summarized in
Figure 6a, showing the trends of the relative mass of the samples, and Figure 6b, which
shows the corresponding trends of the heat flow. The evaluation of the measurements,
which also includes a correction of the data by reference measurements, was carried out in
MATLAB.
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In Figure 6a the beginning of the mass loss at approximately 800 ◦C matches the
observations from the heating microscope experiments. The first mass loss first declines
slowly before it becomes steeper around 1000 ◦C and stops at approximately 70 % of the
initial mass which was 40.1 mg for NCA_C and 39.8 mg for NMC_C. At the end of the
thermogravimetric curve, the relative mass is about 55% of the initial mass. This means,
that additionally to carbon, which had an initial mass content of 25 w/%, also components
of the lithium metal oxide, most likely O2 and Li, had been removed from the sample.
Another indication for the presence of reduction reactions between 800 ◦C and 1000 ◦C
is the trend of the heat flow, shown in Figure 6b. In both samples, the heat flow between
800 ◦C and approximately 1050 ◦C is endothermic with a negative peak around 1000 ◦C
where also the biggest slope of the sample mass occurs. The outstanding exothermic peak
in the NCA_C at 700 ◦C heat flow trend could be the result from Al2O3 formation whereby
a significant amount of heat could be released. In order to confirm this, the samples must
be heated in a controlled manner to or just above this temperature and analysed using XRD
analysis, which is planned within the further scope of the research project.

As in the heating microscope experiments, the behaviour of the sample AM differs
greatly from that of NCA_C and NMC_C. The overall mass loss only accumulates to
around 10% and there are no sharp peaks in the heat flow trend. The lower mass loss is
on the one hand due to the comparatively lower lithium metal oxide content (<60 w/%)
compared to NCA_C and NMC_C (75 w/%) and the resulting decreased ability for CO or
CO2 generation. Since the heating rate was the same in all experiments, the less steep mass
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loss between 800 ◦C and 1000 ◦C and the absence of significant peaks in the heat flow trend
indicate a lower reactivity of AM in general. The suspicion from the heating microscope
experiments that certain reactions already took place during the thermal deactivation step
has gotten stronger.

Finally, the results from the heating microscope experiments and the STA are summa-
rized in Figure 7.
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3.3. InduMelt Experimients

The last experimental series was conducted in the presented InduMelt reactor (Figure 2)
to investigate the achievable transfer coefficients for Li, Ni, Co and Mn under the particular
conditions of the reactor. The trend of the measured temperatures in- and outside of
the reactor during one of the experiments is presented in Figure 8a. As explained in the
materials and methods section, the slope of the outer s-type couples is used to control the
temperature inside of the reactor after the operating temperature of the k-type couples
is exceeded.
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Figure 8. (a) Trend of reactor temperatures during IM_NMC_C. (b) Picture showing the crucible and the packed bed of
graphite cubes with metal depositions after IM_NMC_C.

In Table 2 the compositions of the input mixtures for the InduMelt experiments are
shown. For NMC_C and NCA_C the composition matches the stochiometric proportion
of the used cathode materials (NCA, LiNi0.8Co0.15Al0.05O2; NMC, LiNi0.33Mn0.33Co0.33O2)
with carbon addition of 10 w/%. If the whole added carbon is used and all oxides are
removed the mass loss should accumulate to 40–46% of the input mass depending on
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the amount of Li that can be removed. For AM, which is a mixture of different cathode
materials from LIBs and considering its composition most likely also other battery types,
the volatile components also accumulate to around 42 w/%.

Table 2. Chemical composition of the input mixtures for the InduMelt experiments. (w/%).

Sample/Element Li Ni Mn Co Al O2 C Sum

AM 2.42 20.90 1.08 4.19 5.83 11.16 2 29.50 75.08 1

NCA_C 6.50 43.98 0.00 8.28 1.26 29.97 10.00 100.00
NMC_C 6.48 18.25 17.09 18.33 0.00 29.85 10.00 100.00

1 Cu and other impurities are not specified here since they are not in focus of the experimental series. 2 Calculated
on basis of the stochiometric Li-O2 ratio.

Because the aim of the experimental series is to investigate possible recovery and
removal rates for certain metals contained in the cathode materials, Cu and other impurities
of the sample AM are not further analyzed.

For the first InduMelt experiments with LIB cathode materials and black matter a
maximum temperature of approx. 1550 ◦C was chosen. At this temperature, no further
changes of the CSA or mass during the STA and heating microscope were observed and
the expected metal alloy’s melting point is also some ten degrees lower. This temperature
was then held for approx. one hour before the heat input was stopped.

In Figure 8b the reactor after the experiment is shown. All graphite cubes were
removed and cleaned from metal and slag deposits which were subsequently weighed.
The individual mass of input material and product phases for each experiment can be seen
from Table 3.

Table 3. Masses of the input sample and the obtained products in InduMelt experiments. (g).

Experiment/Product Input Metal phase Slag Phase Powder Product Sum

IM_NMC_C 552.3 244.2 37.7 11.6 293.5
IM_NCA_C 520.0 267.3 21.6 15.6 304.5

IM_AM 1 561.9 - - 396.1 396.1
1 Neither metal accumulations nor slag depositions could be found.

The obtained product phases are subdivided into metal phase, slag phase and powder.
On the first look at Table 3, one can see that the product distribution differs greatly between
the experiments IM_NMC_C, IM_NCA_C and the experiment IM_AM. Therefore, the
results are presented and discussed separately.

For IM_NCA_C and IM_NMC_C the metal and slag phase accumulates at the bottom
of the reactor or can be found as depositions on the graphite cubes and the crucible. To
achieve the best mass balance possible, the depositions have been rubbed of the graphite
cubes and the metal particles were magnetically separated. By this, 244.2 g respectively
267.3 g of a metal product, which—if we assume that the metal phase only consists of
Ni, Co and Mn—accounts for 81% and, respectively, 91% of the said metals in the input
material of IM_NMC_C and IM_NCA_C. According to the oxygen potentials of the metals,
the slag phase should mainly consist of Li2O and Al2O3. With 37.7 g and 21.6 g of obtained
slag for IM_NMC_C and IM_NCA_C compared to an input of approximately 36 g of pure
Li alone one can say that this result looks promising, since the amount of oxygen—and
of course Al—must also be taken into account. Furthermore, the refractory mortar and
the crucible material also consist of Al2O3 and can take part in the reactions causing slag
formation. Because this discussion is more complex than for the metal phase it will be
continued later together with the chemical analyses of the phases. The powder phase of
IM_NMC_C and IM_NCA_C is caused by abrasion during the removal of the small metal
particles from the graphite cubes and therefore mainly consists of carbon. Summarized,
the overall weight loss of IM_NMC_C and IM_NCA_C is 46.8% and, respectively, 41.4%
of the input mass. If we assume that Li, O and C are the only volatile components in the
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input material a maximum weight loss of 47.2% for IM_NMC_C and 50.2% for IM_NCA_C
is achievable. For IM_NMC_C, the obtained slag phase is shown in Figure 9a, the metal
accumulation in Figure 9b.
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Figure 9. Obtained slag (a) and metal sample (b) from the experiment IM_NMC_C.

As can be seen, the separation of the metal and slag phase in IM_NMC_C for further
chemical analysis was relatively easy since large specimens without fusions could be
found. In contrast, the obtained products from IM_NCA_C were harder to separate as
Figure 10a–d shows. Therefore, the ICP-MS analysis was performed for both, samples with
and without inclusions, and the results weighted during data evaluation.
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Figure 10. Obtained metal and slag samples from the IM_NCA_C experiment. (a) Metal sample 1
which is strongly fused with the produced slag. (b) Metal sample 2 with very little slag inclusions. (c)
Slag sample 1 with metal depositions. (d) Slag sample 2 without inclusions or depositions.

To intensify this discussion, we need to look at the results of the chemical analy-
sis, which were achieved by ICP-MS analysis. The discussion starts with the obtained
metal phase from the experiments IM_NMC_C and IM_NCA_C for which the results are
contained in Table 4.
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Table 4. Mass fractions of certain metals in the obtained metal phases. (w/%).

Experiment/Species Li Ni Co Mn Al

IM_NMC_C 0.09 38.40 36.10 28.10 0.01
IM_NCA_C_1 2 1.31 74.70 7.80 1 3.70
IM_NCA_C_2 3 0.05 92.20 9.89 1 1

1 Species was not analyzed in this experiment. 2 Small inclusions of slag in the metal matrix need to be considered.
3 Slightly over-determined due to weighted consideration of residuals from the aqua regia digestion.

For IM_NMC_C the metal composition mostly matches the expected result. There
is almost no Li and Al present in the metal alloy but Ni, Co and Mn. What is noticeable,
however, is the significantly lower Mn content compared to Ni and Co. With an equal stoi-
chiometric proportion and similar molecular weight—Mn is a little lighter—the difference
should not be that high, which indicates that Mn also accumulates somewhere else than in
the metal alloy.

As already explained, the sampling of NCA_C was not trivial due to small slag inclu-
sions within the metal particles. In order to increase the informative value, metal samples
with (IM_NCA_C_1) and without (IM_NCA_C_2) small slag particles were analyzed. By
this it can be stated that also for IM_NCA_C there was hardly an accumulation of Li and
Al in the metal alloy that mainly consists of Ni and Co.

A complete mass balance is hardly feasible due to the difficult collection of the small
metal particles. In future experiments and respective analyses, ICP-OES as well as XRD
analysis methods will be used to balance all the elements included in greater detail. Never-
theless, compared to the initial amount in the input material it was possible to find around
90% of Ni and Co and 76% of Mn in the metal phase of IM_NMC_C as well as more than
90% of Ni and Co in the metal phase of IM_NCA_C.

In order to investigate the whereabouts of Mn, to clarify whether Ni and Co can also
be found in the slag and to finally check the question of whether Li removal from the
reactor could be achieved or not we now look at the slag analysis shown in Table 5.

Table 5. Mass fractions of certain metals in the obtained slag phase. (w/%).

Experiment/Species Li Ni Co Mn Al

IM_NMC_C 8.22 0.13 3.06 0.15 6.08
IM_NCA_C_1 9.85 1.31 1 1 7.45
IM_NCA_C_2 4.52 0.24 0.03 1 2.48

Species was not analyzed in this experiment.

Beginning with IM_NMC_C it can be said that Ni does hardly accumulate in the slag
while a significantly higher but still low amount of Co could be found. For Mn, from which
only 76% of its initial input were found in the metal phase, can also not be found in the
slag phase. Since Mn is very reactive and has several oxidation states it is likely that parts
of it were removed from the reactor via the gas phase. For IM_NMC_C, analogous to the
metal phase results, there are again two samples, IM_NCA_1 with metal particles and
IM_NCA_2 without metal particles. The data shows that only a small amount of Ni and
Co is found in the slag while Li and Al accumulate to higher extents.

If we now compare the amount of Li that was initially inserted in the experiments,
which was approx. 36 g for IM_NCA_C and IM_NMC_C with the amount of Li that was
found in the metal and slag phase, a lithium removal of 96.72 w/% for IM_NCA_C and
90.76 w/% for IM_NMC_C was achieved.

Before these results are finally summarized, we have to take a look at IM_AM, which,
as mentioned at the beginning, behaved differently than IM_NCA_C and IM_NMC_C. As
can be seen in Table 3, neither a metal nor a slag accumulation was found but only a fine
powder that was optically identical to the input material. The weight loss of 29,5% matches
the initial carbon content exactly, which at first sight suggests that only the included carbon
was burned in the reactor. However, analysis of the carbon content of the resulting powder
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revealed a mass content of still 22.6%, which indicates that also in IM_AM reduction
reactions occurred. In the thermogravimetric analyses only a decrease in mass of 10% was
achieved. This could be an indication that certain reactions proceed more slowly in AM
and that longer holding times in the preliminary experiments would have provided better
results, which is going to be investigated in the further course of the project. Furthermore,
an increase of the average particle size was found that indicates at least an agglomeration
of particles even if there was no molten phase. Because there was no slag or metal phase in
IM_AM, the results are discussed by a comparison of the chemical composition before and
after the InduMelt experiment, which is shown in Table 6.

Table 6. Chemical composition of AM before and after the InduMelt experiment. (w/%).

Experiment/Species Li Ni Co Mn Al

AM before IM 1 2.42 20.90 4.19 1.08 5.83
AM after IM 2 0.77 35.00 7.00 1.76 4.12

1 Total mass of input material: 561.9 g. 2 Total mass of product: 396.1 g.

The mass content of Ni, Co and Mn has risen by about 65% each which can only
be caused by the mass loss of the sample. A statement about a possible discharge of
Mn via the gas phase, as it was observed in IM_NMC_C, should not be made due to
the already low concentration in IM_AM. Lithium had an input mass of 13.59 g and was
reduced to 3.04 g in the product powder, which corresponds to a decrease of 77.6 w/%.
This value is significantly lower than with pure cathode materials but in the light of the
different behavior of AM compared to NCA_C and NMC_C in all experimental series still
a promising result.

To finally summarize the InduMelt experiments, one must notice that the difficulties
to achieve a complete mass balance and the absence of an off-gas analysis lead to the fact
that the absolute numbers should only be considered to a limited extent. However, it is
not the claim of this work to precisely define transfer coefficients for all species in cathode
materials respectively black matter, but to evaluate the magnitude of possible recovery
rates for the valuable metals Ni, Co, Mn and Li by using the InduRed reactor technology.
In view of this, these tendencies are summarized in Figure 11.
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4. Conclusions

The literature research clearly shows that the possibility of simultaneous lithium
recovery with a pyrometallurgical process would close a large gap in the recycling chain.
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To evaluate if the presented InduRed technology can potentially provide a solution to this
problem, a series of experiments have been conducted. By heating microscope experiments
and simultaneous thermal analysis, the behavior of NCA and NMC cathode materials
as well as black matter (AM) at high temperatures and under reducing conditions was
investigated. The results showed that the significant reduction reaction between the lithium
metal oxides and carbon take place between 800 ◦C and 1000 ◦C and that the produced
metal alloy melts at approximately 1500 ◦C, which are technically feasible temperatures for
the desired process.

Experiments, conducted in the InduMelt plant, a lab scale reactor modeled on the
InduRed concept, were used to evaluate the transfer coefficients of Ni, Co, Mn and Li
in qualitative terms. It was shown that Ni and Co seem to be fully recoverable by this
technology while parts of manganese are removed from the reactor via the gas phase. For
Li, which is considered to be the bottleneck of pyrometallurgical LIB recycling approaches,
very promising results have been seen. In the InduMelt experiments with NCA and NMC
more than 90%, respectively more than 75% in the experiment with black matter, of the
initial Li were removed from the reactor. The fact that Li does neither accumulate in the
slag nor in the metal phase indicates a high potential of the technology to enable new
possibilities for Li recovery from the LIB waste stream. If Li is not obtained in small
amounts in a slag phase, as in other processes, but can be collected in a separate material
flow, its recovery from there can potentially be achieved with less effort and therefore
represented more economically.

In order to better examine the removal of Li and Mn from the reactor, the experiments
are going to be repeated using a gas vent with gas scrubbing. This should clarify in which
form the Li can be obtained from the exhaust gas and how its recovery from there could be
achieved. Furthermore, new cathode materials like NMC in other configurations (811, 622,
532 instead of 111) as well as LFP (lithium iron phosphate) are planned to be investigated
regarding their suitability for treatment in the InduRed reactor.

The results from experiments with black matter (AM) showed some significant differ-
ences, which could partly be attributed to residues from the pre-treatment or excessively
high temperatures during the thermal deactivation. Since the contrary behavior of AM in
all experimental series cannot be fully elucidated with the available data, further research
and experiments are necessary. In addition to that, it is planned to investigate black matter
from different pre-treatment processes and the influence of interfering species like Cu or
Al in general.
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