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Abstract: The dynamic responses of simply supported horizontal pipes conveying gas-liquid two-
phase slug flow are explored. The intermittent characteristics of slug flow parameters are mainly
considered to analyze the dynamic model of the piping system. The results show that the variations of
the midpoint transverse displacement could vary from periodic-like motion to a kind of motion whose
amplitude increases as time goes on if increasing the superficial gas velocity. Meanwhile, the dynamic
responses have certain relations with the vibration acceleration. By analyzing the parameters in the
power spectrum densities of vibration acceleration such as the number of predominant frequencies
and the amplitude of each peak frequency, the dynamic behaviors of the piping system like periodicity
could be calculated expediently.

Keywords: simply supported pipe; two-phase slug flow; intermittent; dynamic responses

1. Introduction

Fluid-conveying piping systems have been continually adopted in various processes
of modern chemical engineering. It is crucial to guarantee the safety of the process of
transporting materials. As is known, instability of the piping system may occur due to
the vibrations induced by the internal flow, which has drawn the attention of numerous
scholars. The explorations of the dynamics of the fluid-conveying piping system since the
1880s have been summarized systematically by Paidoussis and Issid [1].

It has been noted that with a sufficiently large constant flow velocity, divergence or
flutter could happen for the piping system. In addition, for harmonically varying flow
velocity, some complex dynamical behaviors like quasi-periodic may take place, which
would bring more damages to the operation of the pipeline, which have been further
confirmed by the researches of Ariaratnam and Namachchivaya [2] and Jin and Song [3].
Pipes conveying single-phase fluid have been researched deeply by scholars including the
above several experts.

Actually, piping systems conveying two-phase flow may have a wider range of
applications in science and engineering [4]. Alamian et al. [5] established a mathematical
model to explore the instantaneous flow inside the gas pipelines. They discussed the effects
of boundary conditions particularly. Goodarzi et al. [6] and [7] investigated the Erosion
phenomenon in pipes conveying two-phase flow. Pourfattah et al. [8] carried out the two-
phase flow simulation of the heat transfer characteristics of the manifold microchannel heat
sink. Almasi et al. [9] introduced an SPH method to explore the multiphase phenomenon.
Shadloo et al. [10] discussed the pressure drop which is one significant parameter that
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would define the two-phase system in the pipe by the artificial neural networks. The effects
of pressure drop on the dynamics of the piping system may be necessary to be explored in
the future.

Due to the different proportions of flow rates of the two phases, several typical flow
patterns could be observed in the pipes [11]. Among these flow regimes, slug flow has
received more attention due to its intermittent features [12]. For instance, Dukler and
Hubbard [13] and Zhang et al. [14] have developed their own models to calculate typical
slug flow parameters. According to their researches, local slug flow parameters such as
the velocities of gas and liquid would always vary with position and time, which would
make the vibration of the slug flow piping system more complex. Riverin et al. [15],
Cargnelutti et al. [16], Liu et al. [17], and Giraudeau et al. [18] indicated that the largest
vibrations appeared in the slug flow system. An and Su [19] established a differential
equation for a slug flow conveying riser subjected to vortex-induced force. They analyzed
the variation of the transverse displacement for the riser with different flow rates.

Recently, the dynamics of piping systems conveying two-phase flow have been attract-
ing the attention of scholars. Ebrahimi-Mamaghani et al. [20] emphasized the significance
of flow parameters for the dynamic behaviors of the vertical piping system conveying
two-phase flow. Sazesh and Shams [21] indicated the stabilities of the piping system
could be affected markedly by time-varying phenomena like pulsating two-phase flow.
Extraordinarily, some scholars paid attention to the piping system conveying two-phase
slug flow. Khudayarov et al. [22] explored the relationships between some typical slug
parameters such as the length of the gas bubble zone and the dynamic behaviors of the
piping system. Zhu et al. [23] suggested that for a piping system conveying two-phase slug
flow, the dynamic responses would be related to the intermittent characteristics of the slug
flow. Cabrera-Miranda and Paik [24] pointed out that two significant parameters including
the slugging frequencies and slug lengths should be deeply considered in the process of
design for the piping system. It could be noted that the intermittent characteristics of slug
flow leading to the dynamics of the piping system are extremely complicated.

Based on most scholars who are devoted to analyzing the dynamics of simply sup-
ported pipes conveying fluids, the flow parameters such as fluid velocity varying with the
position of the pipe should be calculated. For the pipes conveying single-phase flow, the
fluid velocity was supposed as constant along the pipe or written as a ripple value.

Nevertheless, for pipes conveying slug flow, the local flow velocity at every fixed
cross section over the time of the passage of a slug unit would be equal to the velocity in
the film zone for the case that a gas bubble passes the cross section at one moment while
would be equal to the velocity in the slug zone for the case that a liquid slug passes the
cross section at another moment, which was considered in this work. Then we can analyze
the dynamics of the piping system corresponding to various working conditions of slug
flow. While few scholars have analyzed the local flow parameters varying with time and
position to explore the pipes conveying slug flow.

In general, the piping system conveying slug flow deserves deep concern with few
scholars exploring the dynamic responses, which is the main objective of this study. The
dynamic model will be established in Section 2. Galerkin’s method is employed to discrete
higher-order differential equations while the Runge Kutta method is introduced to obtain
the variations of vibration parameters. Then the dynamic responses of the piping system
under different conditions will be discussed in Section 3. Finally, some significant findings
will be narrated in Section 4.

2. Materials and Methods

A simply supported pipe conveying gas-liquid two-phase slug flow is depicted
in Figure 1. It can be easily observed that the slug flow consists of several successive
slug units.
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Figure 1. Schematic of a simply supported pipe conveying two-phase slug flow.

As shown in Figure 2, a gas bubble and a liquid slug would constitute one stable slug
unit. It is assumed that the sectional area of the inner pipe is Ai and the volume flow rate is
Q. Then the superficial gas velocity uSG and superficial liquid velocity uSL are obtained by:

uSG =
QG
Ai

, uSL =
QL
Ai

(1)
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Referring to the work of Wang [25], the mathematical model of a slug flow conveying
pipe could be written as:

EI ∂4y
∂x4 + 2[mL(x, t)uL(x, t) + mG(x, t)uG(x, t)] ∂2y

∂t∂x +
[
mL(x, t)u2

L(x, t) + mG(x, t)u2
G(x, t)

] ∂2y
∂x2

+[mL(x, t) + mG(x, t) + mP]
∂2y
∂t2 −

[
EAi
2L
∫ L

0

(
∂y
∂x

)2
dx
]

∂2y
∂x2 = 0

(2)

The implications of the parameters of the above model could be found in the paper of
Liu and Wang [26].

The transient pattern of slug flow at two typical moments is shown in Figure 3. It
could be noted that uL(x,t) = uLF at t = t1 as shown in Figure 3a while uL(x,t) = uS at t = t2
as depicted in Figure 3b, which means that uL(x,t) is the function of the coordinate x and
the time t. Then it is pivotal to obtain the variations of flow parameters with x and t. to
analyze Equation (2), which could be found in Liu and Wang [26].
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The liquid flow velocity uL(0.5 L,t) is depicted in Figure 4, which could reflect the fea-
tures of intermittency. This characteristic will lead to some flow parameters in Equation (2)
varying with time, which would affect the dynamic responses of the pipes greatly.
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Galerkin’s method is employed in this work with the transverse displacement being
written as:

y(x, t) =
N

∑
i=1

ϕi(x)qi(t) = ΦTq (3)

where ϕi(x) are the eigenfunctions of the simply supported beam and qi(t) are the general-
ized coordinates. Two-mode expansion (n = 2) is utilized in this study.

By means of substituting Equation (3) into Equation (2), left multiplying by Φ and
integrating it from 0 to L, the following matrix equation can be obtained after a series of
operations:

M
..
q+C

.
q+Kq=0 (4)

where M, C and K are all two-order matrixes. The expressions of these matrixes could
be referred to Liu and Wang [26]. It is supposed that p =

[
q,

.
q
]T . Then Equation (4) is

transferred to a differential equation:
.
p=Ep (5)

The coefficient matrix E is written as

E = [
0 I

−M−1K −M−1C
] (6)

where I is the two-order unit matrixes. Considering the nonlinear factor, Equation (5)
is a differential equation set that is calculated by the Runge Kutta method in this work.
Then the variations of vibration parameters including vibration displacement, velocity, and
acceleration with time could be obtained.

3. Results and Discussion

In this study, the inner diameter of the pipe Di = 0.025 m, the outer diameter of the
pipe D = 0.028 m, the length of the pipe is 10 m, the density of the fluid ρL = 998 kg/m3,
and the density of the gas ρG = 1.20 kg/m3. uSL would be fixed as 1.0 m/s with uSG varying
from 3.0 m/s to 10.0 m/s. The flow regimes of these conditions are all slug flow based
on the flow pattern map mentioned in Zhang et al. [27]. In the following discussion, two
kinds of pipe including Young’s modulus E = 70 GPa and E = 120 GPa will be analyzed
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successively. The variations of the midpoint transverse displacement will be employed to
represent the dynamic responses of the piping system.

3.1. The Dynamic Responses of E = 70 GPa

The bifurcation diagram of E = 70 GPa is constructed to explore the dynamical be-
haviors of the piping system at different uSG and uSL, which can be obtained by recording
the midpoint displacement when the midpoint velocity is zero as shown in Figure 5. It
is observed that the dynamical behaviors are similar to each other when uSG is less than
7.0 m/s. However, a great change of the dynamical behaviors would happen when uSG
is larger than 7.0 m/s. Due to this, we will discuss the dynamic responses of the piping
system under six conditions where uSG are 3.0, 5.0, 7.0, 8.0 9.0, 10.0 m/s respectively.
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The dynamic responses of the piping system for the case of E = 70 GPa and uSL = 1.0 m/s
at different uSG are shown in Figure 6. It is observed from Figure 6a,b that the variations of
the midpoint transverse displacement at uSG = 3.0 m/s and uSG = 5.0 m/s are both similar
to a kind of cyclic motion but it is not the normal cyclic motion like simple harmonic motion
on account of the amplitude of the piping system varying with time. The variation of the
amplitude value at certain moments for uSG = 5.0 m/s is greater than that of uSG = 3.0 m/s.
Nevertheless, some differences may exist for the variations of the period of these two cases.
With the increase of uSG, the variations of the midpoint transverse displacement would
change considerably. For the case of uSG = 7.0 m/s as shown in Figure 6c, the absolute
value of the amplitude increases gradually with the lapse of time in the first 30 seconds.
However, the decrease of the amplitude would take place in the second 30 seconds. Al-
though we mainly discuss the dynamic responses of the first 60 seconds in this study, it
can be speculated that the increase and decrease may still continue to appear alternately
as time goes on further. It is worth noting that the variations of the midpoint transverse
displacement of uSG = 8.0 m/s are different from those of uSG = 7.0 m/s completely as
depicted in Figure 6d. The increase and decrease of the absolute value of the amplitude
appear alternately within a short time. When uSG increases to 9 m/s as shown in Figure 6e,
the midpoint transverse displacement seems to perform a similar varying pattern of the
case of uSG = 7.0 m/s. At the beginning stage of the vibration, the absolute value of the
amplitude increases first and then decreases just like the condition of uSG = 7.0 m/s. This
state will continue about four times for 40 seconds. Yet the amplitude will continue to
increase as time goes on. The condition of uSG = 10.0 m/s as shown in Figure 6f is similar
to the condition of uSG = 9.0 m/s. In summary, with the increase of superficial gas velocity,
the dynamic responses will vary from periodic-like motion to a kind of motion whose
amplitude increases with time.
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The vibration acceleration can be employed to explain the dynamic responses of
the piping system. The power spectrum densities (PSD) of the vibration acceleration for
various superficial gas velocities E = 70 GPa and uSL = 1.0 m/s are shown in Figure 7. The
PSD of the acceleration is obtained from the method of Fast Fourier Transform (FFT) for
the calculated vibration acceleration signal.
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It can be immediately found that visible distinctions exist with an increase of uSG.
In Figure 7a, three predominant frequencies could be observed with the amplitude de-
creasing as the peak frequency increases. When the superficial gas velocity is 5.0 m/s,
four predominant frequencies exist as shown in Figure 7b, which could prove that some
differences may exist for the variations of the period of these two cases as mentioned above.
The amplitudes of the minimum peak frequency and the maximal peak frequency are
almost the same. While the amplitudes of second and third peak frequencies are relatively
small. The condition of uSL = 7.0 m/s as depicted in Figure 7c seems to be similar to the
condition of uSG = 5.0 m/s. However, the amplitude of the maximal peak frequency is
larger than that of the minimum peak frequency. It was noted that the midpoint transverse
displacement would no longer present the characteristic of periodicity when the superficial
gas velocity is larger than 7.0 m/s. Some interesting phenomena will also occur for these
conditions. Firstly, four predominant frequencies exist in the case of uSG = 8.0 m/s as
shown in Figure 7d. The amplitudes of first and second peak frequencies are both very
small. As the peak frequency further increases, the amplitude will get bigger as well.
Secondly, when the superficial gas velocity increases to 10.0 m/s, only one obvious pre-
dominant frequency could be found as depicted in Figure 7f. It could be noted that the
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PSD for the case of uSG = 7.0 m/s and uSG = 9.0 m/s are similar to each other. Merely one
main peak with small amplitude exists in the case of uSG = 7.0 m/s. Then it seems that
conspicuous discrepancies exist in the vibration shapes for these two cases, which means
that the analysis of PSD of vibration acceleration could really reflect the dynamic responses
of the piping system.

3.2. The Dynamic Responses of E = 120 GPa

The bifurcation diagram of E = 120 GPa is shown in Figure 8. It can be found that the
dynamical behavior of uSG = 8.0 m/s seems to be different from other conditions. Yet it is
much similar to the situation of uSG = 10.0 m/s for E = 70 GPa. In the same way, we will
discuss the dynamic responses of the piping system of six conditions as shown in Figure 9.
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It can be immediately found that the dynamic responses of E = 120 GPa have certain
differences from those of E = 70 GPa. The variations of the midpoint transverse displace-
ment are all similar to a kind of cyclic motion unless the situation of uSG = 8.0 m/s. The
variation of uSG = 3.0 m/s is almost periodic vibration as shown in Figure 9. As shown
in Figure 9b, e, and f, the dynamic responses with uSG = 5.0 m/s, uSG = 9.0 m/s and
uSG = 10.0 m/s are all similar to periodic vibration with the amplitude of the piping system
varying as time goes on. Merely the amplitudes of uSG = 9.0 m/s and uSG = 10.0 m/s are
larger than that of uSG = 5.0 m/s. In the case of uSG = 7.0 m/s as shown in Figure 9c,
periodic vibration could also be observed which is similar to the variation of uSG = 7.0 m/s
for E = 70 GPa as shown in Figure 6c yet with a shorter cycle. The dynamic response of
uSG = 8.0 m/s is still distinctive as shown in Figure 9d. The amplitude will continue to
increase as time goes on. In summary, like the case of E = 70 GPa, with the increase of
superficial gas velocity, the dynamic responses will vary from periodic-like motion to a
kind of motion whose amplitude increases with time. However, with the further increase
of superficial gas velocity, the dynamic response will regain the periodic-like motion yet
the amplitude will become larger.

The power spectrum densities (PSD) of the vibration acceleration for various superfi-
cial gas velocities E = 120 GPa and uSL = 1.0 m/s are shown in Figure 10.
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In the following discussion, “the first” peak frequency will be employed to represent
the smallest peak frequency. “The second” will be the peak frequency which is just
larger than “the first”. The rest can be done in the same manner. Two predominant
frequencies could be observed In Figure 10a. The second peak frequency is about 13
orders of magnitude smaller compared to the first one. The dynamic responses with
uSG = 5.0 m/s, uSG = 9.0 m/s and uSG = 10.0 m/s are similar to each other. Then the
power spectrum densities (PSD) of the vibration acceleration of these three conditions
all have three predominant frequencies with the amplitude of the first peak frequency
being greater than those of the second and third ones as shown in Figure 10b. There are
four predominant frequencies when the superficial gas velocity is 7.0 m/s with the first
one having the largest amplitude as depicted in Figure 10(c). It is worth noting that the
variations of the midpoint transverse displacement of uSG = 9.0 m/s and uSG = 10.0 m/s
for E = 70 GPa and uSG = 8.0 m/s for E = 120 GPa are similar to each other, but the PSD of
uSG = 9.0 m/s is much different from those of E = 70 GPa and uSG = 8.0 m/s for E = 120 GPa.
The phase portraits of the piping system are employed to explain this phenomenon as
shown in Figure 11. It can be immediately found that the piping system may undergo
a kind of chaotic-like motion for uSG = 9.0 m/s and E = 70 GPa in Figure 11a which is
different from the dynamic behaviors of uSG = 10.0 m/s for E = 70 GPa and uSG = 8.0 m/s
for E = 120 GPa. It should be noted that the chaotic-like motion does not have to occur
for the higher gas flow rate as the slug parameters would affect the dynamic behaviors of
the piping system a lot, which means that the slug parameters induced by the intermittent
characteristics should be particularly considered to obtain the dynamic behaviors.
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4. Conclusions

Based on slug flow parameters, the dynamic model for a simply supported piping
system conveying two-phase slug flow is established to analyze the dynamic responses of
the piping system under several pipe materials and superficial gas and liquid velocities.
Some conclusions are listed as follows:

(1) For various pipe materials, the dynamic responses of the piping system perform
different patterns. The variations of the midpoint transverse displacement for E = 70 GPa
and E = 120 GPa will vary from periodic-like motion to a kind of motion whose amplitude
increases as time goes on with the increase of superficial gas velocity. However, for
E = 120 GPa the dynamic response will regain the periodic-like motion with the further
increase of superficial gas velocity.

(2) The dynamic responses have certain relations with the vibration acceleration.
Firstly, if there are four predominant frequencies in the PSDs of the vibration acceleration,
the piping system will perform periodic-like motion yet with the amplitude varying as time
goes on. Secondly, if there are three predominant frequencies with the first peak frequency
having the largest amplitude, the dynamic response will present the characteristic of
periodic while the vibration amplitude varies with time in each periodic. Finally, the
amplitude of the midpoint transverse displacement may continue to increase. For this
case, if there is only one peak frequency that occupies the dominant status, the dynamic
responses will follow certain rules. Otherwise, the piping system may perform a kind of
chaotic-like motion.
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Nomenclature
Ai sectional area of the inner pipe, m2

E Young’s modulus of the pipe, GPa
I inertial moment of cross-section area, m4

L length of the pipe, m
mL(x,t) mass of liquid phase per unit length at the coordinate x and moment t, kg/m
mG(x,t) mass of gas phase per unit length at the coordinate x and moment t, kg/m
mP mass of fluid per unit length, kg/m
QG volume flow rates of the gas, m3/s
QL, volume flow rates of the liquid, m3/s
uL(x,t) local velocity of liquid phase at the coordinate x and moment t, m/s
uG(x,t) local velocity of gas phase at the coordinate x and moment t, m/s
uSG superficial gas velocity, m/s
uSL superficial liquid velocity, m/s
y transverse displacement of the pipe, m
Greek
symbols
ρ density, kg/m3

Subscripts
L liquid phase
G gas phase
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