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Abstract: In cold orbital forging (COF) processes, large stress, displacement and vertical vibration
of the COF machine are bad for the quality of the part and the fatigue life of the COF machine. It
is necessary to investigate the static and dynamic performance of the COF machine and provide
methods for reducing the stress, displacement and vertical vibration of the COF machine. In this
paper, finite element analysis, theoretical analysis, numerical simulation and experimental analysis
were applied to study the static and dynamic performance of a 6300 KN COF machine. The static
and dynamic analyses were verified effectively by carrying out strain and vertical vibration test
experiments. In the static analysis, the large stress and displacement positions of the COF machine
were mainly distributed near the working table and the junction between the working table and the
column. Large stress and displacement will be bad for the quality of the part and the fatigue life of
the COF machine. Structural optimizations of the COF machine include ribbed plates on the working
table and beam. This structural optimization method of the COF machine obviously reduced the
stress and displacement of the COF machine. When the angular velocities of the eccentric rings were
8π rad/s, the vertical vibration of the swing shaft is a low-frequency vibration. The existence of
absorber obviously reduced the vertical vibration of the COF machine.

Keywords: cold orbital forging; finite element analysis; theoretical analysis; numerical simulation;
experimental analysis; static analysis; machine vibration; dynamic model

1. Introduction

Cold orbital forging (COF) is an advanced and complicated metal forming technol-
ogy [1]. Compared with conventional forging technology, COF can reduce forming force,
improve the flowing capability of metal and improve the loading state of the die. Hence,
COF is widely used to manufacture mechanical parts such as disks, rings, flanges and
gears. However, in the COF process, large stress, large displacement and vertical vibration
of the COF machine are bad for the quality of the part and the fatigue life of the COF
machine. In order to improve the quality of the part and the fatigue life of the COF machine,
investigations into the static performance and dynamic performance of the COF machine
and methods of reducing stress displacement and vertical vibration are necessary.

In recent years, some research on static and dynamic analysis of mechanical com-
ponents and structures has been carried out. In the static analysis aspect, Jiao et al. [2]
studied static stiffness and modal analysis of a large machine with the software Hyper-
works. Fu et al. [3] researched the static performance of a drilling machine. Markowski
et al. [4] investigated the static performance of a clinching joint machine by finite element
analysis. Syam et al. [5] studied the static properties of a machine frame and carried out
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experimental verification. Irfan et al. [6] reviewed finite element model development and
the recent research trends of finite element formulations developed for analyzing sandwich
plates. Gohari et al. [7] applied finite element analysis to investigate crack initiation and
unstable crack growth of the part resulting from gas pressure and the accompanying gas
temperature in the gas forming process. Sherbakov [8] applied finite element analysis
and theoretical analysis to study the three-dimensional stress–strain state of a pipe with
corrosion damage under complex loading. Sherbakov et al. [9] constructed and analyzed
equations for determining the three-dimensional stress–strain state for a multi-component
system of solids. Shcherbakov [10,11] established the mechanical and mathematical model
of a stress–strain state system subjected to action of contact and non-contact loads and
studied the change in the coefficient of rolling resistance as a function of the level of contact
and non-contact bending loads.

In the dynamic analysis aspect, Sosnovskiy et al. [12] substantiated and formulated the
main principles of the physical discipline mechanothermodynamics that united Newtonian
mechanics and thermodynamics. Li et al. [13] carried out dynamic modal analysis of
machine tool structures. Liu et al. [14] and Bar et al. [15] established a vertical dynamic
model of cold rolling machines with non-linear external excitation. Lu et al. [16,17] estab-
lished a vertical dynamic model and a horizontal dynamic model, and the accuracy of the
dynamic model was verified by comparing the results of the simulation and experiments.
Kim et al. [18,19] investigated several influencing factors of vibration on a rolling machine
and the results showed that a small rolling force, a small rotation speed of work roll and
small chatter frequency contributed to reducing the vibration of the rolling machine.

Based on research into static and dynamic analyses of mechanical components and
structures, ref. [20–25] investigated some effective structure optimization methods for
improving the performance of machines. However, investigations into the COF machine
are mainly investigations of the deformation mechanism, forging force and kinematic
mechanism of COF [26–33], and few investigations into the static performance and dynamic
performance of the COF machine have been carried out.

The objective of this paper was to investigate the static performance and dynamic
performance of a 6300 KN COF machine by finite element analysis, theoretical analysis,
numerical simulation and experimental analysis. By analyzing the static and dynamic
performance of the COF machine, we find that the large stress positions of the COF machine
are mainly distributed near the working table and the junction between the working table
and the inside of the column. Large displacement positions are mainly distributed near the
upper and lower working tables. The maximum equivalent stress of the COF machine is less
than the allowable stress of the material of the COF machine. In the COF process, material
yield will not take place in the COF machine. The minimum modal frequency of the COF
machine is higher than the excitation frequency of the COF machine. Resonance will not
take place on the COF machine and the COF process is stable. When the angular velocities
of the inner and outer eccentric rings are 8π rad/s, the peak values of the frequency-domain
curve of vertical vibration arose at 4 Hz and 61 Hz and the vertical vibration of the swing
shaft is a low-frequency vibration. In order to verify the accuracy of the static and dynamic
analysis of the COF machine, strain and vertical vibration test experiments on a 6300 KN
COF machine were carried out. According to the large stress positions and the large
displacement positions of the COF machine, a structural optimization method for the COF
machine is put forward to reduce stress and displacement. Based on the vertical dynamic
model, the absorber is set to reduce vertical vibration. The structural optimization method
and the existence of the absorber obviously reduced stress, displacement and vertical
vibration in the COF machine.

2. Static Analysis of COF Machine

The large load and high-speed stamping frequency produced in operation of the COF
machine will introduce deformation of the COF machine, influence quality of the part, and



Processes 2021, 9, 7 3 of 20

reduce the life of the COF machine. It is crucial to analyze the static performance of the
COF machine under nominal pressure.

2.1. Static Stress and Displacement Analysis of the COF Machine

The structure of a 6300 KN COF machine can be seen in Figure 1. The COF machine
is made of carbon structural steel (Q235). The elasticity modulus, Poisson ratio and the
density of material are 210,000 MPa, 0.31 and 0.00000000785 t/mm3, respectively. The
finite element mesh of the COF machine is shown in Figure 2. The mesh element type is a
quadratic tetrahedral element C3D10. The total number of nodes and elements is 369,524
and 219,114, respectively.

In the COF process, the upper and lower dies contact the part directly. COF force
is transferred to lower working table through the lower die. COF force is transferred to
the upper working table through the upper die and the swing shaft bearing. In static
performance analysis, boundary constraints and loads are shown in Figure 3. Displacement
of the undersurface of the COF machine is constrained as zero displacement. The load
on the COF machine is nominal pressure (6300 KN) on the COF machine, and the load is
applied on upper and lower working tables.

Figure 1. Structure (a) and equipment (b) of the 6300 KN cold orbital forging (COF) machine.
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Figure 2. Finite element mesh of the COF machine.

Figure 3. Boundary conditions of the COF machine.

In order to analyze the distribution of stress and displacement inside the COF machine,
half of the COF machine was applied to analyze the distribution of the stress and the
displacement. The equivalent stress distribution of the COF machine is shown in Figure 4.

Figure 4. Equivalent stress distribution of the COF machine.
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As shown in Figure 4, the maximum equivalent stress value of the COF machine is
112.5 MPa. When plastic material suffers from static load, the value range of the safety
coefficient of plastic material is 1.2–2.5. The material of the COF machine is the plastic
material (16Mn) and the yield stress of 16Mn is 345 MPa. The allowable stress of the
material of the COF machine can be calculated by Equation (1).

[σ] =
σS
n

=
345
2.5

= 138 (MPa) (1)

where [σ] is allowable stress of material of the COF machine (MPa), σS is the yield stress of
the material of the COF machine (MPa) and n is the safety coefficient of the material of the
COF machine. The maximum equivalent stress value of the COF machine is less than the
allowable stress of material of the COF machine.

Figure 5 shows the positions (non-black positions) where the equivalent stress is more
than 40 MPa, 50 MPa and 60 MPa. In the black positions, the equivalent stress is minor and
stiffness problems are less likely to exist. Large stress positions (Positions 1–6 in Figure 6)
are mainly distributed near the working table and the junction between the working table
and the inside of the column.

Figure 5. Positions where the equivalent stress is more than 40 MPa (a), 50 MPa (b) and 60 MPa (c).
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Figure 6. Large stress positions of the COF machine.

The equivalent stresses of Positions 1–6 are shown in Table 1. The equivalent stress
of Position 5 is maximum in the COF machine, and the equivalent stress of Position 5 is
less than the allowable stress of the material of the COF machine. Therefore, in the COF
process, material yield will not take place in the COF machine. However, the equivalent
stresses of Positions 1–6 are large and will reduce the quality of the part and the fatigue life
of the COF machine.

The displacement of the COF machine is shown in Figure 7. Z-scale displacement of the
COF machine is more obvious than the x-scale displacement and the y-scale displacement.
The large displacement positions (Positions 7–10 in Figure 8) are mainly distributed near
the upper and lower working tables, and the displacement of Position 8 (0.7267 mm) is the
maximum in the COF machine. Large displacements of Positions 7–10 will be bad for the
quality of the part and the fatigue life of the COF machine.

Figure 7. Main displacement (a), x-scale displacement (b), y-scale displacement (c) and z-scale displacement (d) of the
COF machine.
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Figure 8. Large displacement positions of the COF machine.

Table 1. Equivalent stresses of Positions 1–6.

Position Number 1 2 3 4 5 6

Equivalent stress 108.067 MPa 98.219 MPa 93.036 MPa 104.176 MPa 112.521 MPa 105.080 MPa

2.2. Static Modal Analysis of theCOF Machine

In the static modal analysis, the boundary condition of the COF machine is shown
in Figure 9. Displacement of the undersurface of the COF machine is constrained as zero
displacement. No other boundary constraint or load exists on the COF machine.

Figure 9. Boundary condition of the COF machine.

The first 10 orders of modal vibration of the COF machine are shown in Figure 10.
In first-order and second-order modals vibrations, large x-scale displacement and large
y-scale displacement exist on the COF machine. The upper and lower dies cannot be kept in
alignment. The quality of the part will be affected and the dies will get worn. In third-order
modal vibrations, the machine contorts around the z-axis. The forging stability of the part
will be affected. In fourth-order modal vibrations, local vibration takes place on the top
surface of the COF machine. In the fifth-order and sixth-order modal vibrations, x-scale
displacement and y-scale displacement exist on the COF machine and the displacement is
more obvious than the displacement in the first-order and second-order modal vibrations.
The upper and lower dies cannot be kept in alignment. The quality of the part will be
affected the and dies will get worn. In the seventh-order, eighth-order, ninth-order and
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tenth-order modal vibrations, local vibration occurs on the column of the COF machine.
The local vibration is drastic and noise will easily happen.

Figure 10. First 10 orders of modal vibrations of the COF machine.

The first 10 orders of modal frequency of the COF machine are 71.702 Hz, 99.525 Hz,
126.92 Hz, 324.30 Hz, 339.94 Hz, 406.92 Hz, 418.56 Hz, 422.38 Hz, 425.48 Hz and 427.77 Hz.
In the COF process, the revolving speed of the swing shaft is 4 r/s, and the excitation
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frequency is 4 Hz. The minimum modal frequency (71.702 Hz) of the COF machine is
higher than the excitation frequency. Resonance will not take place on the COF machine
and the COF process is stable.

3. Dynamic Analysis of the COF Machine

The structures of the critical components of the 6300 KN COF machine can be seen
in Figure 11. During the COF process, the swing shaft of the COF machine contacts the
forging part. The movement of the swing shaft directly influences the forging of the part.

Figure 11. Structures of the critical components of the 6300 KN COF machine.

Figure 12 provides the structure of the swing shaft. The swing shaft consists of two
cylinders and a cone; the cone represents the upper die; r04 and r05 are the radius (m) of
the upper cylinder and the middle cylinder, respectively; d1, d2 and d3 are the height (m) of
the upper cylinder, the middle cylinder and the cone, respectively. The total height of the
swing shaft (L) can be expressed by Equation (2).

L = d1 + d2 + d3 (2)

Figure 12. Structure of the swing shaft.
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The barycenter of the swing shaft (point B3) is on the rotation axis of the swing shaft.
The mass of the swing shaft (m3) can be calculated by Equation (3).

m3 = πρ0(r2
04d1 + r2

05d2 + r2
05d3/3) (3)

A vertical dynamic model of the swing shaft is shown in Figure 13. The vertical
dynamic model is simplified as a spring-damping-mass model, and the concentrated mass
is equivalent to the swing shaft. Here, k1 is the equivalent stiffness between the swing
shaft and the swing shaft bearing (N/m), c1 is the equivalent damping between the swing
shaft and the swing shaft bearing (N·S/m) and z3 is the vertical displacement of the swing
shaft (m), of which the vertically upward direction is the positive direction of vertical
displacement. The thickness of the cylindrical part after COF (h, m) can be calculated by
h = h0 + z3 and h0 represents the thickness of the cylindrical part after COF, ignoring the
effect of vibration (m); v is the vertical movement velocity of the forging part provided by
the hydraulic system (m/s), P is the COF force (N) and T is the vertical external excitation
of the swing shaft (T = Fsinωt, N).

Figure 13. Vertical dynamic model of the swing shaft.

The COF force (P) can be calculated by the following equation:

P = 10nHSnσσs (4)

where nH is the limit coefficient of the die, S is the contact area between the swing shaft
and the forging part (mm2), nσ is the stress state coefficient of the contact surface between
the swing shaft and the forging part and σs is the yield stress of the forging part. S and nσ

can be calculated by the following:

S =
4

3π
θ2
(

1 +
1
θ

) 3
2
πR2

0 (5)

nσ = 1 +
0.414
1 − θ

+
mR0

1000h

(
0.72θ2 + 0.591θ + 0.0987

)
(6)
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R0 represents the radius of the forging part (mm) and m is the friction factor of plastic
deformation. The relative movement of the lower die (θ) can be calculated by Equation (7).

θ =
s

2R0 tan γ
(7)

where s is the lower die’s movement of each turn (mm), and γ is angle between the swing
shaft axis and the z axis.

In the process of elastoplastic deformation, COF force and displacement conform to
the non-linear hysteresis due to the effect of periodic external excitation. The Taylor-series
of P near z3 = 0 is expanded as follows:

P(z3) = P(0) + z3
∂

∂z3
P(0) +

1
2!

z2
3

∂2

∂z2
3

P(0) +
1
3!

z3
3

∂3

∂z3
3

P(0) + O
(

z4
3

)
(8)

where P(0) represents the steady-state COF force and ∆P(z3) is the COF non-linear hysteretic
force, which can be expressed by Equation (9).

∆P(z3) = b1z3 + b2z2
3 + b3z3

3 (9)

b1, b2 and b3 can be expressed by the equation below:

b1 =
∂

∂z3
P(0)

b2 =
1
2!

∂2

∂z2
3

P(0)

b3 =
1
3!

∂3

∂z3
3

P(0)

(10)

By combining Equations (8)–(10), P can be expressed by the following equation:

P(z3) = P(0) + ∆P(z3) (11)

According to the generalized dissipation Lagrange principle, the vertical dynamic
equation of the swing shaft can be expressed by Equation (12).

m3
..
z3 + c1

.
z3 + k1(z3 + z0)− P(z3) = T (12)

where z0 is the equilibrium point in the COF process. In the process of steady-state COF
((T = 0), z3 = 0,

.
z3 = 0,

..
z3 = 0), the equilibrium equation below can be obtained:

k1z0 − P(0) = 0 (13)

By introducing Equations (9), (11) and (13) into Equation (12), the following equation
can be obtained:

m3
..
z3 + c1

.
z3 + k1z3 − b1z3 − b2z2

3 − b3z3
3 = T (14)

Equation (14) can be converted into Equation (15):

..
z3 + ω2

0z3 − αz2
3 − β

.
z3 − ηz3

3 = T0 (15)

where ω0, α, β, η and T0 can be expressed by the following:

ω0 =

√
k1 − b1

m3
α =

b2

m3
β = − c1

m3
η =

b3

m3
T0 =

T
m3

=
F sin ωt

m3
= F0 sin ωt (16)

The parameters of 6300 KN COF machine are shown in Table 2, bringing COF machine
parameters into the vertical dynamic model, so numerical simulation solutions can be
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obtained. Fast Fourier transform (FFT) is a kind of transformation method. FFT can
transform a vertical acceleration time-domain curve into a vertical acceleration frequency-
domain curve. After FFT of the vertical acceleration time-domain curve, the vertical
acceleration frequency-domain curve of the swing shaft can be obtained, shown in Figure 14.
As shown in Figure 14, the peak values of the frequency-domain curve of vertical vibration
arise at 4 Hz and 61 Hz, and the vertical vibration of the swing shaft is a low-frequency
vibration.

Table 2. Parameters of the 6300 KN COF machine.

Parameter Value

Upper cylinder radius of the swing shaft (r04, m) 0.105
Middle cylinder radius of the swing shaft (r05) 0.2625

Upper cylinder height of the swing shaft (d1, m) 0.805
Middle cylinder height of the swing shaft (d2, m) 0.245

Cone height of the swing shaft (d3, m) 0.0875
Density of steel (ρ0, kg/m3) 7900

Equivalent stiffness (k1, N/m) 9.763 × 107

Equivalent damping (c1, N·S/m) 1.073 × 104

Figure 14. Vertical acceleration frequency-domain curve of the swing shaft.

4. Experiment Verification
4.1. Experimental Verification of the Static Analysis

In order to verify the effectiveness of the static analysis of the COF machine, a strain
test experiment with the COF machine was carried out. The strain at Positions 11–14
(Figure 15) was tested to verify the effectiveness of the static analysis.

As shown in Figure 16, a strain test experiment was carried out on a 6300 KN COF
machine to verify the effectiveness of the static analysis. In the strain test experiment, the
value of the initial thickness of the part was 0.05 m and the value of the radius of the forging
part was 0.038 m. During the COF process, the strain of the COF machine was acquired by
a strain gage and the strain signal was transmitted to the strain tester. The strain values
of Positions 11–14 can be viewed and analyzed in the testing software. During the COF
process, the strain values of Positions 11–14 were time-varying and the maximum strain
value of each position was recorded.
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Figure 15. Positions of strain test.

Figure 16. Strain test experiment.

The simulation strain values and the experimental strain values of Positions 11–14 are
shown in Table 3. The error rates between simulation strain values and the experimental
strain values were less than 10%. The static analysis of the COF machine was verified
effectively.

Table 3. Comparison between the simulation strain values and the experimental strain values of the COF machine.

Position Number 11 12 13 14

Simulation value 0.000147 0.000132 0.000034 0.000035
Experimental value 0.000153 0.000141 0.000031 0.000037

Error rate 4.08% 6.81% −8.82% 5.71%

4.2. Experimental Verification of the Dynamic Analysis

As shown in Figure 17, a verification experiment was carried out on a 6300 KN COF
machine to verify the effectiveness of the dynamic model. The main equipment used for
the verification experiment is shown in Table 4. In the experimental process, the angular
velocities of the inner eccentric ring and the outer eccentric ring were 8π ad/s and the
hydraulic system drove the forging part to move upwards. In Figure 18, a unidirectional
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acceleration sensor is installed on the swing shaft. The unidirectional acceleration sensor
applied in the experiment was a piezoelectric unidirectional acceleration sensor (ICP). The
working principle of a piezoelectric unidirectional acceleration sensor is that the embedded
piezoelectric wafer is extruded by the shell mass during movement, thus generating a
voltage signal. Subsequently, the voltage signal will be converted into a charge signal
to achieve acceleration signal acquisition and processing. During the COF process, the
vertical acceleration signal of the swing shaft is acquired by an acceleration sensor, and the
vertical acceleration signal was transmitted to an LMS signal acquisition instrument. V The
vertical acceleration signal of the swing shaft can be viewed and analyzed in LMS.Test.Lab
software. Furthermore, in the verification experiment, it is necessary to avoid interference
caused by the relative movement between the data line and the swing shaft. The data line
should be a shielded line to avoid mutual interference between data lines. Meanwhile, the
data line should be fixed to avoid shaking, and the data line fixed on the ground should
avoid being compressed.

Table 4. Main equipment used for the verification experiment.

Equipment Type Quantity

Acceleration sensor Piezoelectric unidirectional acceleration sensor 1
Data line Shielded line 10

Signal acquisition instrument LMS signal acquisition instrument 1
Computer Computer installed with LMS.Test.Lab software 1

Auxiliary equipment Desk, paper and pen 1

Figure 17. Verification experiment of the dynamic model.
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Figure 18. Installation site of the unidirectional acceleration sensor.

In LMS software, the vertical acceleration signal of the swing shaft was fast Fourier
transformed. The time-domain signal of the vertical acceleration of the swing shaft
was transformed to a frequency-domain signal. The experimental vertical acceleration
frequency-domain curve of the swing shaft is shown in Figure 19. It can be seen that the
vertical vibration of the swing shaft is a low-frequency vibration and the frequencies of
vertical acceleration with high amplitude are 4 Hz and 69 Hz. If we compare Figures 14
and 19, the simulation frequencies of vertical acceleration with high amplitude are very
close to the experimental frequencies. The dynamic model of the COF machine is verified
effectively.

Figure 19. Vertical acceleration frequency-domain curve of the swing shaft.
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5. Methods for Reducing Stress, Displacement and Vertical Vibration
5.1. Methods for Reducing Stress and Displacement

As shown in the finite element simulation results of the static analysis, large equivalent
stress positions and large displacement positions are mainly distributed near the working
table and the junction between the working table and the inside of the column. The large
stress and large displacement of these positions are bad for the quality of the part and the
fatigue life of the COF machine. In order to reduce the stress and displacement of these
positions, a structural optimization method for the COF machine can be carried out.

The structural optimization method of the COF machine is shown in Figure 20. Ribbed
plates were added on the working table and the beam.

Figure 20. Initial structure (a) and optimized structure (b) of the COF machine.

In order to study the effect of the structural optimization method on the COF machine,
a static simulation of the optimized COF machine was carried out. The static equivalent
stress and static displacement of the optimized COF machine are shown in Figure 21. The
maximum equivalent stress of the optimized COF machine (80.2 MPa) was far less than
the maximum equivalent stress of the initial COF machine (112.5 MPa). The maximum
displacement of the optimized COF machine (0.4268 mm) was much less than the maximum
displacement of the initial COF machine (0.7267 mm). The structural optimization method
of the COF machine obviously reduced the stress and displacement of the COF machine.
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Figure 21. Static equivalent stress (a) and static displacement (b) of the optimized COF machine.

5.2. Methods for Reducing Vertical Vibration

As shown in the numerical simulation results of the dynamic analysis, the vertical
vibration of the swing shaft was large. The large vertical vibration of the swing shaft will
be bad for the quality of the part and the fatigue life of the COF machine. In order to
reduce the vertical vibration of the swing shaft, an absorber was set on the swing shaft.
A vertical dynamic model of the swing shaft is shown in Figure 22, where z4 is the absolute
displacement of the absorber (m), k2 is the equivalent stiffness between the swing shaft
and absorber (N/m), c2 is the equivalent damping between the swing shaft and absorber
(N·S/m) and m4 is the equivalent mass of the absorber (kg).

Figure 22. Vertical dynamic model of the swing shaft.
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According to the generalized dissipation Lagrange principle, the vertical dynamic
equation of swing shaft can be expressed by Equation (17).{

m3
..
z3 + c1

.
z3 + k1(z3 + z0) + c2

( .
z3 −

.
z4
)
+ k2(z3 − z4)− P(z3) = T

m4
..
z4 − c2

( .
z3 −

.
z4
)
− k2(z3 − z4) = 0

(17)

where z0 is equilibrium point in the COF process. In the process of steady-state COF
((T = 0), z3 = 0,

.
z3 = 0,

..
z3 = 0), the equilibrium equation below can be obtained:

k1z0 − P(0) = 0 (18)

Equation (17) can be converted into Equation (19):{ ..
z3 + ω2

0z3 − αz2
3 − β

.
z3 − ηz3

3 − γ
.
z4 − δz4 = T0..

z4 + ρ
.
z4 + σz4 − ρ

.
z3 − σz3 = 0

(19)

where ω0, α, β, η and T0 can be expressed by the following: ω0 =
√

k1+k2−b1
m3

α = b2
m3

β = − c1+c2
m3

η = b3
m3

T0 = T
m3

= F sin ωt
m3

= F0 sin ωt

γ = c2
m3

δ = k2
m3

ρ = c2
m4

σ = k2
m4

(20)

The vertical acceleration frequency-domain curve of the swing shaft is shown in
Figure 23. If we compare Figures 14 and 23, existence of the absorber obviously reduced
the vertical vibration of the COF machine.

Figure 23. Vertical acceleration frequency-domain curve of the swing shaft.

6. Conclusions

In this study, finite element analysis, theoretical analysis, numerical simulation and
experimental analysis were applied to analyze the static performance and dynamic perfor-
mance of the COF machine. The static and dynamic analyses were verified effectively by
carrying out strain and vertical vibration test experiments of a 6300 KN COF machine. In
the static and dynamic analyses of the COF machine, large stress positions, large displace-
ment positions and vertical vibration performance are explicit. According to the large stress
positions and large displacement positions of the COF machine, a structural optimization
method for the COF machine was put forward to reduce stress and displacement. Based
on the vertical dynamic model, an absorber was set to reduce vertical vibration. Several
conclusions can be drawn as follows:

In the static analysis, the large stress positions of the COF machine were mainly
distributed near the working table and the junction between the working table and the
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inside of the column. The large displacement positions were mainly distributed near upper
and lower working tables. The maximum equivalent stress of the COF machine was less
than the allowable stress of the material of the COF machine. In the COF process, material
yield will not take place in the COF machine. However, large stress and displacement
positions will be bad for the quality of the part and the fatigue life of the COF machine.
In order to reduce the stress and displacement of these positions, structural optimizations
of the COF machine was conducted. The structural optimization of the COF machine
involved ribbed plates on the working table and the beam. The structural optimization of
the COF machine obviously reduced the stress and displacement of the COF machine.

In the dynamic analysis, when the angular velocities of the inner and outer eccentric
ring were 8π rad/s, the peak values of the frequency-domain curve of vertical vibration
arose a t4 Hz and 61 Hz and the vertical vibration of the swing shaft was a low-frequency
vibration. The frequency interval between the two peaks of the frequency-domain curve of
vertical vibration was larger, the vertical vibration of the swing shaft was relatively stable.
However, the vertical vibration of the swing shaft will be bad for the quality of the part and
the fatigue life of the COF machine. In order to reduce the vertical vibration of the swing
shaft, the absorber was set up on the swing shaft. The existence of the absorber obviously
reduced the vertical vibration of the COF machine.

In this study, static performance and dynamic performance were analyzed and meth-
ods were put forward for reducing the stress, displacement and vertical vibration of the
COF machine. The investigations in this paper contribute to improving the quality of the
part and the fatigue life of the COF machine.
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