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Abstract: Traditional intelligent fault diagnosis methods focus on distinguishing different fault
modes, but ignore the deterioration of fault severity. This paper proposes a new two-stage hierarchical
convolutional neural network for fault diagnosis of rotating machinery bearings. The failure mode
and failure severity are modeled as a hierarchical structure. First, the original vibration signal is
transformed into an energy spectrum matrix containing fault-related information through wavelet
packet decomposition. Secondly, in the model training method, an adaptive learning rate dynamic
adjustment strategy is further proposed, which adaptively extracts robust features from the spectrum
matrix for fault mode and severity diagnosis. To verify the effectiveness of the method, the bearing
fault data was collected using a rotating machine test bench. On this basis, the diagnostic accuracy,
convergence performance and robustness of the model under different signal-to-noise ratios and
variable load environments are evaluated, and the feature learning ability of the method is verified
by visual analysis. Experimental results show that this method has achieved satisfactory results in
both fault pattern recognition and fault severity evaluation, and is superior to other machine learning
and deep learning methods.

Keywords: hierarchical fault diagnosis; energy spectrum matrix; dynamic adjustment of the learning
rate; convolutional neural network; rotating machinery

1. Introduction

Rotating machinery is the most critical component in the mechanical system and
is widely used in heavy machinery, automobile manufacturing, shipbuilding and other
industries. Bearing failure is considered to be the most common cause of failure in rotating
machinery. The failure of rolling bearings will affect the normal operation of the machine,
causing huge economic losses and even casualties. Effective and feasible fault diagnosis
technology is of great significance for avoiding dangerous accidents in modern industry
and improving the safety and reliability of equipment operation.

In recent years, people have proposed many fault diagnosis methods for rolling
bearings based on vibration signal analysis [1–4]. With the rapid development of machine
learning technology, intelligent fault diagnosis methods have become a research hotspot
in the field of fault diagnosis. More and more intelligent fault diagnosis methods have
been proposed, such as artificial neural networks and support vector machines [5,6].
Fu et al. [7] studied a diagnosis method based on empirical mode decomposition (EMD)
and integrated learning. Hu and Qin et al. [8] studied fault diagnosis methods based on
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wavelet packet decomposition and principal component analysis (KPCA). At this stage,
deep learning has strong nonlinear fitting ability and high feature representation ability.
As it can automatically learn discriminative features, it has been widely used in various
pattern recognition applications [9]. Various deep learning algorithms, such as deep
belief networks, convolutional neural networks and self-encoding networks, have been
widely used in fault diagnosis of rotating machinery [10–12]. Xia et al. [13] proposed a
rotating machinery fault diagnosis method based on multi-sensor and convolutional neural
network. Zhang et al. [14] proposed a rotating machinery fault diagnosis method based
on variational mode decomposition and integrated deep belief network. Hu et al. [15]
proposed a data driving method for rotating machinery based on compressed sensing and
multi-scale networks. However, these methods mostly focus on the research on the fault
location of rotating machinery and ignore the deterioration of the severity of the fault.

An effective bearing fault diagnosis method should include fault location identification
and fault severity identification. Fault location identification is an important technique
because it can guide the repair or replacement of corresponding parts. At this stage, a lot
of research is focused on the diagnosis of fault location, while ignoring the deterioration
of the degree of fault damage. For most machines, the deterioration of the degree of
failure is a gradual process. The identification of the severity of the failure provides
evidence about the remaining life of the equipment and helps determine the urgency
of repair. However, it is difficult to identify the fault location and fault severity at the
same time, requiring highly representative features and a powerful classification model.
This kind of complex fault diagnosis system will bring greater risk to the misjudgment
of fault type. Some scholars assign the failure mode and the severity of each failure to a
specific label. For example, Ding et al. [16] studied the use of wavelet packet multi-scale
feature extraction and deep convolutional neural networks for rotating machinery fault
diagnosis. You et al. [17] improved the traditional activation function and proposed a new
convolutional neural network for fault diagnosis of rotating machinery. However, in their
method, the model is still a single-level model. Although failure mode and failure severity
can be evaluated at the same time, the hierarchical information between failure mode and
severity is ignored. Model complexity is high, parameter adjustment is difficult, model
convergence performance and diagnosis accuracy are poor.

Aiming at the limitations of the current research and the problem of difficulty in
continuous identification between bearing fault location and severity, this paper proposes
an adaptive hierarchical diagnosis network (A-HDCNN) combining energy spectrum
matrix and deep convolutional neural network. A-HDCNN is a two-layer hierarchical
diagnostic network. The first layer is trained to identify the location of bearing faults
with mixed fault severity, while the second layer receives the results of the first layer to
further isolate the internal fault severity. In addition, the A-HDCNN structure has flexible
properties and can be configured accordingly according to specific diagnostic requirements.
This flexibility completely breaks through the limitations of traditional fault diagnosis
methods. For the hierarchical diagnosis network proposed in this paper, it is more necessary
to obtain a streamlined, fast adjustment speed and high robust performance model. This
paper proposes a feature representation method based on energy spectrum matrix. This
method can fully characterize the non-stationary characteristics of the original vibration
signal, while reducing the dimension of the input data with the subsequent model and
improving the model training speed and accuracy. In addition, in view of the shortcomings
of the current convolutional neural network model learning rate, which is still based on
experience and manual selection, resulting in slower training speed and poor convergence
performance, a staged adaptive dynamic update rule for learning rate is proposed, and the
application of fault diagnosis and fault severity assessment was studied. In order to more
accurately reflect the adaptive process, the traditional model training method has been
improved on the original basis, and the dynamic matching of the learning rate adaptive
dynamic adjustment and the number of training iterations has been achieved to avoid fail
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training due to inappropriate learning rate. The same A-HDCNN structure is used for fault
pattern recognition and fault severity evaluation.

The rest of this paper is organized as follows: The second part introduces the con-
struction rules of the energy spectrum matrix. In the third part, based on the DCNN
theory, a hierarchical diagnosis network is proposed to simultaneously evaluate the failure
mode and the severity of the failure, and further build an adaptive hierarchical deep con-
volutional model (A-HDCNN). The fourth part takes the bearing fault as an example to
verify the effectiveness of the proposed A-HDCNN network. Finally, the fifth part gives
the conclusion.

2. Energy Spectrums Matrix Construction

Since the commonly used data-driven methods cannot directly process the original
signal, it is necessary to preprocess the original signal. This paper proposes a feature
expression method based on energy spectrum matrix. This method can fully characterize
the non-stationary characteristics of the original vibration signal and realize the initial
dimensionality reduction in the original vibration signal. It is of great significance for the
subsequent reduction in model complexity and improvement of diagnosis accuracy. It
mainly includes two parts: wavelet packet decomposition (WPT) and energy spectrum
matrix construction, which will be introduced in detail below.

2.1. WPT

At present, mining features from vibration signal analysis have become the most
commonly used and most effective method for condition monitoring of rotating machin-
ery [18–20]. Yu et al. [21] analyzed the characteristics of pulse components in condition
monitoring signals and proposed a concentrated time–frequency analysis (TFA) method
based on time-reassigned synchrosqueezing transform (TSST), which can effectively extract
the pulse characteristics of vibration signals and help to accurately diagnose the fault type.
Huang et al. [22] used the original vibration signal as input to construct a one-dimensional
convolutional neural network to extract discriminative features. On this basis, they pro-
posed a robust weight-shared capsule network (WSCN), used for intelligent fault diagnosis
under different working conditions, and achieved good results. Ali et al. [23] applied
the EMD to extract the time–frequency domain features, and a back propagation (BP)
neural network to identify the faults. Taking into account the complexity of the mechanical
structure and changes in operating conditions, the measurement signal collected from
the running bearing is usually expressed as a non-stationary signal. Traditional vibration
signal analysis methods such as fast Fourier transform (FFT) cannot solve the problem
of non-stationary changes well [24]. This non-stationary dynamic characteristic can be
expressed in the time–frequency domain. In fact, various time–frequency representations,
such as short-time Fourier transform (STFT), empirical mode decomposition (EMD) and
wavelet packet decomposition (WPT), have been used in time–frequency analysis [25–27].
STFT uses a fixed time–frequency resolution. Although EMD can adaptively decompose
any signal into a set of intrinsic mode functions (IMFs) with different frequency charac-
teristics and can separate stationary and non-stationary components from the signal, it
lacks a theoretical basis, and this method still exists for some hard to solve problems. For
example, in the actual application of EMD, when there is a sudden change or disturbance
in the signal, EMD may lose some time scale. Multiple frequency components appear in
one eigenmode function (IMF), or one frequency component appears in multiple IMFs.
That is modal aliasing, which can lead to undesirable results. Modal aliasing is a basic
problem in EMD. In addition, the end point of the signal in EMD is not always the extreme
value. EMD uses interpolation methods such as spline function to calculate the envelope
surface, which may form an end effect. As a result, components that are not related to the
signal will be generated, which will distort the signal. The EMD method cannot guarantee
the better local characteristics and time scale of the signal, so it has certain limitations [28].
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Compared with STFT and EMD, WPT has the characteristics of multi-resolution
analysis and has a solid theoretical foundation [29]. Since WPT can decompose the signal
into many low-frequency and high-frequency sub-bands, it can fully characterize non-
stationary fault information. Therefore, this paper chooses WPT to preprocess the vibration
signal. For the description of WPT theory, please refer to [30] for detailed understanding.

Using WPT, the signal can be decomposed into multiple wavelet packet (WP) nodes to
form a complete binary tree structure, as shown in Figure 1. Each wavelet packet node rep-
resents a frequency resolution. For a given orthogonal scale function φ(t) and wavelet func-
tion ψ(t), define u0(t) = φ(t), u1(t) = ψ(t), wavelet packet function un(t)(n = 0, 1, 2 . . .)
can be obtained by the following recursive operation.

u2n(t) =
√

2 ∑
k∈Z

hkun(2t− k)

u2n+1(t) =
√

2 ∑
k∈Z

gkun(2t− k)
(1)

where h(k) and g(k) are conjugate filters, which are low-pass filter and high-pass filter,
respectively. Use WPT to project the time–frequency component of the signal x(t) into
the orthogonal wavelet subspace Uj,n to form a WP complete binary tree. U0,0 is defined
as the vector space Rn corresponding to the WP parent node, and the vector space Uj,n
corresponding to each node will be decomposed into two mutually orthogonal subspaces,
as shown in the following equation.

Uj,k = Uj+1,2k ⊕Uj+1,2k+1 (2)
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The j represents the level of the WP tree, and k
(
k = 0, . . . , 2j − 1

)
represents the index

of the j-th node. The recursive decomposition is repeated until the maximum number of
decomposition layers J produces 2J mutually orthogonal subspaces.

The wavelet packet coefficients obtained by WPT decomposition correspond to a
specific subspace within the frequency resolution range of the same decomposition scale,
which contains the node signal information corresponding to different frequency bands.
The formula of the node coefficients at different decomposition scales of the WP tree
structure is as follows. 

Cj+1,2n(k) = ∑
l∈Z

hl−2kCj,n(l)

Cj+1,2n+1(k) = ∑
l∈Z

gl−2kCj,n(l)
(3)

where Cj,n denotes the wavelet packet coefficient corresponding to the n-th node in the
jth layer. j and n denote the decomposition scale of the WP tree and the node index at
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the corresponding scale. The wavelet packet coefficient can better characterize the fault
information corresponding to different frequency bands. Energy is an important indicator
to measure how much information a specific WPT node contains. It contains a large
amount of fault information that is easy to distinguish. The energy fluctuation in a specific
component corresponds to the specific fault. Next, we will construct an energy spectrum
matrix based on the wavelet packet coefficients to realize the initial feature expression of
the original vibration signal.

2.2. Construction of Wavelet Packet Energy Spectrum Matrix

Using WPT decomposition theory, we decompose the original vibration signal into
J layers and obtain 2J mutually orthogonal subspaces. In the process of constructing the
energy spectrum matrix, WPT is a key stage of data preprocessing, and the influence of
WPT decomposition layers on model performance and classification accuracy should be
studied. A small number of decomposition layers cannot well reflect the energy flow
pattern in the original vibration signal, the fault information contained is simpler and
the robustness is poor. The large number of decomposition layers will lead to complex
calculations and also contain some redundant energy information. After comprehensive
consideration, we use 8-layer WPT for decomposition.

In the experiment, we selected 1024 sampling points as a group of rotating machinery
failure experiment samples. Using WPT to decompose the original vibration signal in eight
layers, a total of 28 frequency band subspaces are obtained. Each frequency band subspace
corresponds to four wavelet packet coefficients; 1024/2J = 1024/28 = 4. J represents the
number of layers of wavelet packet decomposition. Since the wavelet packet coefficient can
better characterize the fault information of each frequency band subspace, the frequency
band energy value corresponding to each node can be calculated by the wavelet packet
coefficient, thereby measuring the fault information contained in a specific WPT node. The
energy value of the frequency band corresponding to the node (J, p) in each subspace can
be calculated by the wavelet packet coefficient, as shown in the following formula.

Ep
J =

N

∑
n=1

[
Cp

J (n)
]2

(4)

where Ep
J represents the energy value calculated by the p-th node in the J-th layer according

to the wavelet packet coefficients. Cp
J (n) represents the wavelet packet coefficient of the p-th

node in the J-th layer. Cp
J (n) can be calculated by Equation (3) above.

[
Cp

J (n)
]2

represents
the sub-energy value contained in each wavelet packet coefficient in each frequency band
subspace. The total energy value Ep

J of each frequency band subspace is the sum of squares
of all wavelet packet coefficients in the space. N represents the number of wavelet packet
coefficients corresponding to each subspace. In order to normalize the energy of each
frequency band, the percentage of energy of each component (normalized energy value) is
defined as follows.

ep
J =

Ep
J

Etotal
=

Ep
J

∑2J
n=1 En

J

(5)

Etotal represents the sum of the frequency band energy corresponding to all frequency
band subspaces of layer J. The energy values of the frequency bands corresponding to all
the nodes of the J-th layer can be obtained from Equation (5), and the following energy
vectors are constructed for the energy of the nodes from the low frequency to the high
frequency of the J-th layer.

T = [e1
j , e2

j , . . ., e2j

j ] (6)

In this paper, a total of 28 frequency band subspaces are obtained by WPT decomposi-
tion for each sample, so the energy vector dimension obtained is 256, which corresponds to
the energy value of each frequency band subspace after WPT decomposition. The input
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data are converted to 256 dimensions by the energy spectrum matrix from 1024 sampling
points, which realizes the initial dimension reduction in the input data.

Convert the energy feature vector into a new two-dimensional matrix space and
reconstruct the dynamic structure of the spectrum distribution. In this process, for the
convolutional neural network, the convolution kernel function can deeply monitor the
spectrum energy fluctuations and local relationships, which is conducive to extract invari-
ant but accurate details of robust features. The energy spectrum matrix is constructed
as follows.

T =


e1

J e2
J · · · ek

J
ek+1

J
...

ek+2
J
...

. . .
...

e2k
J
...

em
J em+1

J . . . e2j

J

 (7)

This two-dimensional energy spectrum distribution space demonstrates the energy
flow of the time–frequency subspace between different frequency bands. Each node can be
regarded as a container, and the failure mode change in the non-stationary time–frequency
distribution will form a unique energy flow in the container. For different failure modes
of rotating machinery, the internal non-stationary changes and failure information will be
revealed in the energy spectrum matrix, so the energy spectrum matrix can be used as the
characteristic expression form of the subsequent input model.

3. Adaptive Hierarchical Fault Diagnosis Model (A-HDCNN)

In this part, we propose a new two-stage hierarchical fault diagnosis model (A-
HDCNN, adaptive hierarchical deep convolutional network). In view of the characteristics
of the traditional two-dimensional convolutional model at this stage, the inherent learning
rate causes slow convergence and low diagnostic performance. From the model training
method, this paper further proposes an adaptive learning rate dynamic adjustment strat-
egy, which overcomes the traditional limitations of inherent learning rate. This strategy
improves model training speed and diagnostic accuracy and prevents vanishing gradient
problems associated with most deep learning methods. The task of the A-HDCNN model
proposed in this paper is not just accurate fault location classification, the hierarchical
structure of A-HDCNN can further judge the severity level. The A-HDCNN model meets
the needs of current fault diagnosis. The model is composed of two parts: the failure mode
determination layer and the failure severity evaluation layer. The following sections will
be described in detail.

3.1. Overview of Combination Mechanism of Energy Spectrum Matrix and A-HDCNN

Convolutional neural network (CNN) is a typical deep feedforward network [31]. On
the whole, CNN is mainly divided into two stages: feature extraction and classification. The
feature extraction stage is mainly composed of multiple convolutional layers and pooling
layers alternately connected. After the feature learning is completed, it enters the classifica-
tion stage. The feature map after feature learning is reconstructed and imported into a fully
connected network for classification. The output of the network is generally a Softmax
layer, which is used to calculate the probability output of the multi-classification problem.

The convolutional layer has the characteristics of weight sharing and local connection,
and features are extracted through the convolution kernel. The convolution operation is
defined as follows.

Xl
j = f

 ∑
i∈Mj

Xl−1
i ∗ wl

ij + bl
j

 (8)

where Mj is a set of input feature maps and Xl−1
i represents the i-th input feature map of

the (l − 1). layer. wl
ij represents the convolution kernel connecting the i-th input feature

map and the j-th feature map, which is composed of a weight matrix. bl
j corresponds to the
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offset term of the current convolution operation. ∗ represents convolution operation and
f (x) corresponds to the non-linear activation function of the current convolution layer.

It is difficult to achieve continuous recognition of failure modes and failure severity
at the same time. It is necessary to extract highly representative features and powerful
intelligent fault diagnosis models. The effective combination of the energy spectrum matrix
and the adaptive hierarchical convolutional neural network A-HDCNN meets this require-
ment. As WPT has the characteristics of multi-resolution, it overcomes the shortcomings
of poor resolution of wavelet decomposition in high frequency bands. This paper uses
WPT to perform multi-scale decomposition to extract multi-scale spatial energy features
to construct an energy spectrum vector. It is transformed into a two-dimensional energy
spectrum matrix and reconstructed dynamic structure of energy distribution. Compared
with the original vibration signal, the dimensionality of the input data is greatly reduced.
The energy spectrum matrix removes part of the redundant features and fully character-
izes the fault information of the original vibration signal. For the hierarchical diagnosis
network proposed in this paper, it is more necessary to obtain a simplified model with
fast adjustment speed and high robust performance. The highly representative features
of the energy spectrum matrix provide conditions for the adaptive extraction of robust
features from the A-HDCNN model. In this process, for the convolutional neural network,
the convolution kernel function can deeply monitor the spectral energy fluctuations and
local relationships. It is beneficial to extract robust features that are invariant but precise
in detail. Compared with other deep learning models, convolutional neural networks
have the characteristics of weight sharing and local connection. The complexity of the
model parameters is greatly reduced, which further lays the foundation for the subsequent
improvement of model diagnosis accuracy and convergence speed. Therefore, the effective
combination of the energy spectrum matrix and the A-HDCNN model further ensures the
performance advantages of rotating machinery fault diagnosis. Subsequent experimental
verification will further prove this conclusion.

3.2. Construction Process of Two-Level Hierarchical Network

In the next experiment, we used the case data set of Case Western Reserve University as
an example to explain the composition process of the A-HDCNN model. It includes health
status and three types of faults, namely, inner fault (IF), outer fault (OF), rolling fault (RF),
and each fault type has three severity levels. This paper has designed two corresponding
functional layers (L1 and L2), which are used for failure mode determination and failure
severity evaluation, respectively. The composition of the two-level hierarchical network
structure is shown in Figure 2.
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3.3. Failure Mode Determination Layer

The A-HDCNN hierarchical model provides an efficient method for automatically
extracting features from a series of signals and can accelerate the convergence of the model
and improve the diagnostic performance of the model. The first layer is the failure mode
determination layer. Assuming that the bearing failure mode has a C-type failure, we
define the class labels as 1, 2, . . . , C, and construct a data set {xi, yi}N with the number
of samples N based on the proposed energy spectrum matrix. xi represents the input
vibration signal vector, yi ∈ {1, 2, . . . , N} represents the corresponding sample label. Then
the training samples are put into the first layer network for failure mode determination.
The first layer of the A-HDCNN model is based on the classic LeNet5 convolution model.
The proposed sub-model structure of A-HDCNN is shown in Figure 3. Each plane is a
feature map with a set of weight units that must be determined.
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The first layer structure of A-HDCNN is used for failure mode determination. There
are seven main layers. The first layer pre-processes the original vibration signal and uses
WPT decomposition to construct the energy spectrum matrix as the model input. This is a
typical deep convolution model input form. The next three layers are convolutional and
pooling layers, and each layer contains a convolutional layer and a maximum pooling layer.
The number of convolution kernels in the first, second, and third convolutional layers is
8, 16, and 16, respectively, and the corresponding pooling matrix size is uniformly set to
2 × 2. In order to extract more streamlined features for classification, we set up two fully
connected layers. In the last layer of the convolution and pooling layer, we reconstruct the
last feature map obtained as vector input for the fully connected layer. The last layer is the
logistic regression layer and uses the Softmax method for classification. The weights of
each layer are randomly initialized and optimized for training. We use the Adma optimizer
for parameter optimization training. After the training is completed, the test samples are
input to the model for accuracy and performance evaluation. The detailed parameters of
the specific A-HDCNN sub-model structure are shown in Table 1.

Figure 4 shows the A-HDCNN sub-model training process based on this method.
The process is mainly composed of three parts: data preprocessing, network training and
network testing—summarized as follows.

1. The acceleration sensor is used to obtain the original vibration signal of the rotating
machinery and construct a sample set. For each set of samples {x, L}(L ∈ {1, 2, . . . , K}),
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x is the observation sequence of the original vibration signal, and L is the actual fault
label of x. K is the total number of fault categories.

2. Perform data preprocessing on each set of sample observation sequence {x, L} to
obtain the corresponding feature sample set {T, L}, where T is the feature map-
ping of the sample observation sequence x in the time–frequency space. First, use
WPT to decompose the observation sequence x. in N layers, and obtain the fre-
quency band subspac Vi(i ∈

{
1, 2, . . . , 2N}) from low frequency to high frequency.

For each subspace Vi, calculate the energy corresponding to each subspace accord-
ing to the wavelet packet coefficient, and construct an energy spectrum vector,
T = [E1, E2, . . . , E2N ]. Normalize T and convert it to a two-dimensional energy
spectrum matrix to obtain {T, L}.

3. Combine the feature sample sets {T, L} of different fault categories and split them
into training set, validation set and test set.

4. Construct hierarchical convolutional neural network models, which are N sub-models,
respectively, including one failure mode determination layer and (N − 1) failure
severity evaluation layer. Initialize model parameters, number of iterations and
training batches. The detailed description of specific model parameters is shown in
the Table 1.

5. Train each sub-model and use cross entropy as the loss function of the training model
parameters. For the feature set samples {T, L} corresponding to each training batch,
the cross-entropy function is used to calculate the model error loss, and the gradient
descent algorithm is used to update the parameters of each layer of the model until
the model converges to the minimum value, which indicates that the model training
is completed.

6. Repeat step 5 until all N sub-models in the hierarchical model are trained.
7. The test set was used to verify the diagnostic performance of the model. In order

to obtain stable results, 20 tests were performed, and the average accuracy rate
was obtained.

Table 1. A-HDCNN sub-model structure detailed parameter description.

Layer Parameter Name Parameter Size Stride Output Channels

Input layer / / / 16× 16
C1 Kernels 8× 8× 8 2 16× 16× 8
P1 Max pooling size 2× 2 2 8× 8× 8
C2 Kernels 4× 4× 16 2 8× 8× 16
P2 Max pooling size 2× 2 2 4× 4× 16
C3 Kernels 2× 2× 16 2 4× 4× 16
P3 Max pooling size 2× 2 2 2× 2× 16
FC Weight matrix 64× 10 / 10× 1

Output layer Weight matrix 10× 4 / 4× 1

3.4. Fault Severity Evaluation Layer

Taking the CWRU bearing data set as an example, after determining the failure
mode through the first layer model, the corresponding normal, inner, outer, and rolling
bearing health status are obtained. For the three failure modes, we continue to establish a
corresponding evaluation model in the second layer to evaluate its failure severity level.
Each evaluation model has the same structure as the first layer of A-HDCNN, because the
related samples have the same size of fault damage. As mentioned above, the weights of
each layer are randomly initialized and optimized for training. However, after training, the
test sample is input into the evaluation model, and the output is a probability vector. The
corresponding sample has been evaluated by the model to obtain a larger size probability
value, indicating that the sample is more likely to be of such severity. Due to the need
for size identification, there will be other situations with different severity in the actual
operating environment, so we propose a method to calculate the failure size of each
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sample instead of providing a simple label. Enter the test samples into the model, and the
probability that each sample belongs to each fault severity level is as follows.

P(xi) = {p1, p2, . . . pc} (9)
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The fault damage size of each sample is a mapping of its model predicted probability
value, which can be calculated as follows.

Si =
c

∑
j=1

Aj pj (10)
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where Aj is the failure severity level of the j-th category, c is the failure damage level
corresponding to a certain failure mode, and pj is the probability that the i-th failure sample
belongs to the j-th severity level, which enables the system to output the predicted result
of the fault severity.

3.5. Adaptive Learning Rate Dynamic Adjustment Strategy

After establishing the failure mode determination layer and the failure severity recog-
nition layer, the next step is to train the model and update the weight parameter to minimize
the target loss function. Since cross entropy can speed up the update of weights and the
convergence of the entire model, this paper uses the cross-entropy loss function, which is
defined as follows.

L(p(x), q(x)) = −
N

∑
i=1

pi(x)log(qi(x)) (11)

where N represents the total number of categories, pi(x) represents the true label of the
sample predicted as the i-th category, and qi(x) represents the actual probability output of
the sample predicted as the i-th category. We use back-propagation rules and supervised
training methods. First, use the cross-entropy loss function to calculate the error loss of the
Softmax layer output, and then calculate the gradient corresponding to the convolution
kernel parameter of each layer of the model through the back-propagation algorithm, and
update the model weight parameter to obtain a smaller output error. Suppose xm and ym
are the input samples and output vectors of the model, and dm is the output label of xm.
Therefore, the corresponding output error is defined as follows.

φ(θ) =
1
M ∑

m
L(ym, dm) (12)

L is the loss function, and θ is the weight or offset that needs to be updated for each
convolution kernel. The θ update strategy is as follows.

θi+1 = θi − η
∂φ(θi)

∂θi
(13)

η represents the learning rate during training. A proper learning rate ensures the
convergence speed and accurate performance of model training.

In the traditional model training method, the learning rate η is usually set to a fixed
value, and the optimal value is often obtained based on experience. A larger or smaller
value will have an adverse effect on model training. Generally speaking, a larger learning
rate will cause the model loss error to oscillate, and a smaller learning rate will result in
poor model convergence performance, so it is difficult to balance.

Due to the difference in model feature learning situation and loss error convergence
in different iterative training processes, and for the fixed learning rate, in the early, middle
and late stages of training, if a certain learning rate for the initial stage is better for the
model performance, other stages may have adverse effects. Therefore, in the research
process of this paper, a learning rate adaptive update strategy is proposed, which will
dynamically adjust the learning rate in real time in stages according to different iterative
processes in training. The learning rate adaptive update formula is as follows.

∆φi =
φ(θi)− φ(θi−1)

φ(θi−1)
. (14)

ηri+1 =

{
(1 + ∆φi) ∗ ηri ,i > 1∩|∆φi ≤ 0
(1− ∆φi) ∗ ηri ,i > 1∩|∆φi > 0

(15)

where ηri and ηri+1 are the learning rate of the i-th iteration and (i + 1) iteration of the
model training, respectively. φ(θi) and φ(θi−1) are the value of the loss function for the ith
iteration and the (i− 1) iteration. In the early stage of the iteration, in order to accelerate
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convergence, the learning speed is increased according to the relative change of the error
loss. The learning rate changes within a relatively fast range. At the later stage of the
iteration, the relative change of the error loss is small, so the learning rate gradually
slows down and tend to be stable. Assuming ∆φi > 0, it means that the model is in the
oscillation stage, and the learning rate will decrease with the degree of oscillation during
the adjustment process. Assuming ∆φi ≤ 0, the model error loss is in the normal decay
process, and the learning rate adaptively and dynamically changes according to degree
of the error decay. The learning rate update rule corresponding to the method proposed
in this paper shows this training process. According to the adaptive adjustment strategy
of dynamic learning rate, the update rules of weight and offset θ corresponding to each
convolution layer and fully connected layer of the specific model are as follows.

θi+1 = θi − ηri+1 ∗
∂φ(θi)

∂θi
(16)

4. Experimental Verification
4.1. Experimental Data Description

In order to verify the effectiveness of the proposed method, experiments were car-
ried out on the defective bearing data set of the CWRU Bearing Data Center. The main
components of the experimental device used for the experiment include a 2 hp motor, a
power meter, a torque sensor and an electronic control device, as shown in Figure 5. The
bearing model is SKF6205, the roller diameter is 7.5 mm, the cross-sectional diameter is
39 mm, the number of rollers is 9, and the contact angle is 0◦. This bearing is machined by
electrical discharge (EDM). There are three types of defects in EDM. The single-point faults
with dimensions of 0.007, 0.014 and 0.021 inches are installed on the outer ring (OR) and
inner ring (IR) of the test bearing, and on the rolling element (RE). The vibration data are
collected by an accelerometer with a sampling frequency of 12 kHz. In short, a healthy state
and three defect states (each with three severe injury levels) constitute the experimental
verification data set. For each failure type, 50 samples are randomly selected for training,
and another 50 samples are randomly selected for testing. Table 2 provides a detailed
description of the experimental data set. The typical waveforms of 10 health states are
shown in Figure 6. It can be seen that the time-domain waveform can initially indicate
the pulses related to the fault, but in some cases, there will be greater noise. Figure 7
shows the FFT spectrum corresponding to the 10 original healthy vibration signals. In
the FFT spectrum, the characteristic frequency also submerged in noise. In addition, both
the time-domain waveform and the FFT spectrum lack non-stationary information. Based
on the FFT spectrum, we select the amplitude of the random variable in the spectrogram
as a benchmark and make a probability distribution histogram for observation. Figure 8
shows the probability distributions corresponding to the original vibration signal spectra
under 10 health states. Compared with the FFT spectrum, the probability distributions of
different health states are somewhat different, but due to noise interference, the distinction
is not obvious.

Table 2. Experimental data and parameter description.

Items C0 C1 C2 C3

C1
1 C1

2 C1
3 C2

1 C2
2 C2

3 C3
1 C3

2 C3
3

Fault location None OR OR OR IR IR IR RE RE RE
Fault size (in) 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021

Training sample 50 50 50 50 50 50 50 50 50 50
Testing sample 50 50 50 50 50 50 50 50 50 50
Sample length 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024
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Figure 6. Raw signal of rolling bearing vibration under different failure modes.
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Figure 7. Fast Fourier transform (FFT) spectrum corresponding to the original vibration signals of 10
health states.
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Figure 8. Histogram of probability distribution of FFT spectrum based on 10 health states.

In order to verify the robust performance of the proposed model under different load
environments, four experimental data sets (A–D) are set in this paper for verification, as
shown in Table 3.

Table 3. Introduction of experimental data sets under different load environments.

Motor Speed (rpm) Motor Load (hp) Fault Size (mils)

1797 0 7,14,21
1772 1 7,14,21
1750 2 7,14,21
1730 3 7,14,21
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4.2. Analysis of Experimental Results of WPT Energy Spectrum Matrix Construction

The features contained in the WPT energy spectrum matrix proposed in this paper
can provide correct fault information for fault diagnosis. Using WPT to decompose the
original vibration signal in 8 layers, the branch signals corresponding to 28 frequency band
subspaces are obtained. To facilitate observation, we take the signals corresponding to the
first 8 nodes for observation. As shown in Figure 9, the bearing vibration signal WPT in the
healthy state under the 1hp load environment decomposes the first eight branch signals
corresponding to low frequency to high frequency. The energy value of the frequency band
is calculated for each branch signal, and the WPT energy spectrum vector calculated by the
vibration signals corresponding to the 10 fault types is shown in Figure 10. As the input of
the model, we reconstruct it and convert it to 16× 16. energy spectrum matrix. We found
that for different failure modes, the energy spectrum vectors show a strong difference.
Compared with the original vibration signal FFT spectrum, the expression is enhanced.
Therefore, the energy spectrum matrix as a raw vibration signal data preprocessing has
a strong applicability. At the same time, it is used as the input of the A-HDCNN model,
which reduces the input data dimension and model complexity, and improves the ability
to express features. It can be observed that different fault conditions exhibit different
frequency band energy characteristics and show strong differences. Therefore, the energy
spectrum matrix constructed by WPT decomposition can be used as a characteristic form
of subsequent failure mode diagnosis.
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Figure 9. WPT decomposition branch signal of normal bearing vibration signal.



Processes 2021, 9, 69 16 of 25

Processes 2021, 9, x FOR PEER REVIEW 16 of 26 
 

 

 
Figure 9. WPT decomposition branch signal of normal bearing vibration signal. 

 
Figure 10. WPT energy spectrum vector under different health states of bearings. 

4.3. A-HDCNN Model Diagnosis Results 
In order to verify the superiority of the proposed A-HDCNN model, at the same time, 

the performance difference between HDCNN and A-HDCNN model after learning rate 
adaptive dynamic adjustment law is compared. We use the bearing data set of CWRU for 

Br
an

ch
 1

Br
an

ch
 2

Br
an

ch
 3

Br
an

ch
 4

Br
an

ch
 5

Br
an

ch
 6

Br
an

ch
 7

Br
an

ch
 8

C0

0 50 100 150 200 250
0

50

100
C1

1

0 50 100 150 200 250
0

50

100

C1
2

0 50 100 150 200 250
0

50

100
C1

3

0 50 100 150 200 250
0

50

100

C2
1

0 50 100 150 200 250
0

50

100
C2

2

0 50 100 150 200 250
0

50

100

C2
3

0 50 100 150 200 250
0

50

100
C3

1

0 50 100 150 200 250
0

50

100

C3
2

0 50 100 150 200 250
0

50

100
C3

3

0 50 100 150 200 250
0

50

100

Figure 10. WPT energy spectrum vector under different health states of bearings.

4.3. A-HDCNN Model Diagnosis Results

In order to verify the superiority of the proposed A-HDCNN model, at the same time,
the performance difference between HDCNN and A-HDCNN model after learning rate
adaptive dynamic adjustment law is compared. We use the bearing data set of CWRU for
experiments. The energy spectrum matrix obtained by preprocessing the original vibration
signal is used for the input of the model. Through training, the weight parameters of the
model are adjusted, and the performance of the trained model is tested with test samples.
During the sample construction process, we collected data under different motor load
environments. Under each load, 100 sets of samples were collected for each of the 10 health
states, of which 50 sets were used for training and 50 sets were used for testing. A total of
1000 sets of samples were collected under the same load. All the samples in the healthy
state are used in the first layer failure mode determination layer, and a total of 1000 samples
are used for training (500 samples) and testing (500 samples). In the second layer of fault
severity evaluation layer, there are three types of fault severity for each fault mode. Use
150 samples for training and 150 samples for failure severity assessment. The initialization
parameter configuration for the specific training of each layer model is shown in Table 4.

Table 4. Model initialization parameter configuration.

Parameters
Layer 1 Layer 2

A−HDCNN1
1 A−HDCNN2

1 A−HDCNN2
2 A−HDCNN2

3

Learning rate Adaptive Adaptive Adaptive Adaptive
No. of epochs 150 150 150 150

Mini-batch size 10 10 10 10
Conv zero-filling SAME SAME SAME SAME
Pool zero filling SAME SAME SAME SAME

The learning rate is the coefficient of the gradient in the stochastic gradient descent
(SGD) process, and it is directly related to the performance of model parameter optimiza-
tion. Too high a learning rate will hinder optimization and cause loss errors to oscillate,
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while a too low learning rate will result in poor model convergence performance and fall
into a local optimum. In traditional model training methods, the learning rate η is usually
set to a fixed value, and a larger or smaller value will adversely affect the model training.
Many researchers choose the learning rate based on experience. For the A-HDCNN model
proposed in this paper, the adaptive learning rate dynamic adjustment strategy realizes
the dynamic matching of the dynamic adjustment of the learning rate and the number of
iterations during the training process. The corresponding learning rate is always guaran-
teed to be updated along the direction of the gradient and has an appropriate learning rate.
The initial learning rate of the model has almost no effect on the convergence of the final
A-HDCNN model. In order to conduct comparative experiments, for the HDCNN model,
it is still a fixed learning rate adjustment. We select fixed learning rates at equal intervals
for experiments to observe the convergence and accuracy changes of different learning
rate settings for different sub-models. The experiment found that the model is optimal
and has a high accuracy and convergence performance when the learning rates of the first
layer of failure mode determination layer HDCNN1

1 and the second layer of fault severity
evaluation layer HDCNN2

1 , HDCNN2
2 , HDCNN2

3 were set, respectively, at 0.0035, 0.0040,
0.0040, 0.0075. In order to reduce the influence of other experiments, the initial value of the
learning rate of the A-HDCNN model is set to be consistent with HDCNN.

Since each model corresponds to a large number of training samples, the samples
are randomly split and combined. A small batch of samples is used to pack and input to
the A-HDCNN model for training, and then the parameters are optimized according to
the average error loss of each batch. "Batch size" represents the number of samples in the
batch, which has a significant impact on the optimization performance and training rate
of the model. For the HDCNN1

1 model, the training data set and the test data set each
contain 500 samples, and the batch size should be a divisor of 500, such as 100, 50, 10,
5, 1, otherwise it will cause sample waste. For the HDCNN2

1 , HDCNN2
2 , HDCNN2

3 , the
training data set and the test data set each contain 150 samples. The batch size should be a
divisor of 150, such as 30, 10, 5, 1. If the batch is small, the number of samples combined in
each training is small, resulting in slow parameter optimization. If the batch size is large,
the model will fall into the local optimum. Therefore, compare the batch size and observe
the impact of different batches on the diagnosis accuracy and convergence performance. It
is found that for the failure mode determination layer and the failure severity evaluation
layer, the batch setting is set to 10, which has the best convergence and the highest accuracy.

The following figure shows the training and test results of the sub-models in the
failure mode determination layer and the failure severity evaluation layer after adding
the learning rate dynamic adjustment law under a 1hp load environment. Figure 11a
shows the failure mode determination layer model A− HDCNN1

1 dynamic adjustment
curve of learning rate. It can be seen that the learning rate is dynamically adjusted in
stages in real time according to different iterations in the training process. In the early
stage of the iteration, in order to accelerate convergence, the learning rate in the initial
stage is generally large due to the relatively large change in the loss function. Later in the
iteration, the relative change of the loss function is small, so the learning rate is generally
small. On the whole, due to the good feature expression ability of the energy spectrum
matrix, there is less tendency to oscillate throughout the training process. The learning
rate gradually decreases and converges with the number of iterations. The learning rate
update rule proposed in this paper reflects this training process. Take the failure mode
determination layer as an example, as shown in Figure 12a. Compared with the fixed
learning rate model, after the learning rate adaptive update rule is added, the accuracy
rate converges faster with the number of iterations, and convergence can be achieved
around 20 generations, while the fixed learning rate can only reach convergence around
60 generations. As shown in Figure 13a, taking the failure mode determination layer as an
example, the same conclusion can be drawn from the variation of error loss. In addition,
for the fault severity evaluation layer, as shown in Figure 13b–d, it shows the variation
curve of the error loss of the sub-model corresponding to the fault severity evaluation
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layer with the number of iterations. After adding the learning rate adaptive update rule,
the convergence performance is also better. Therefore, the model feature learning speed
is accelerated after the learning rate update rule is added, and the same layer of feature
expression ability and convergence performance within its sub-model are greatly improved.
This change process verifies the reliability of the proposed method. Figure 11b–d show that
the learning rate update of the fault severity assessment layer changes with the number of
iterations. Figure 12b–d show the comparison of the accuracy rate change rule with the
number of iterations compared with the fixed learning rate model. It can be concluded that
for the sub-model of the fault severity assessment layer, update rules can have a significant
performance improvement, accelerate the model convergence speed, improve the model
diagnosis accuracy, and reduce the model loss error. These results verify the performance
advantages of the A-HDCNN model in fault diagnosis.
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In order to obtain more accurate evaluation results and verify the stability of the model
at the same time, the samples collected at different levels of the model are randomly split
and shuffled, and the training set and test set are reconstructed. We conduct 20 random
selection verifications. As shown in Table 5, the average diagnostic accuracy of different
algorithms under different load environments during 20 runs is summarized. Through
observation, it is found that the A-HDCNN model has higher recognition accuracy at the
first layer. The diagnostic accuracy is 100%, and they can all be correctly classified. At the
same time, it indicates that the failure modes can be correctly flowed into the corresponding
severity evaluation layer. The second layer sub-model did not accept incorrect failure mode
samples. This good performance laid a good evaluation foundation for subsequent failure
severity evaluation, and also verified the superiority of the energy spectrum matrix in the
determination of failure mode. The features are easy to distinguish, and the learning ability
of the model is good.

Table 5. Comparison of model diagnosis accuracy between A-HDCNN and HDCNN under different
load environments.

Data Set Method Lay 1
Lay 2 Overall

ModelC1 C2 C3

A A-HDCNN 100 100 99.27 100 99.75
HDCNN 100 99.1 98.92 98.89 98.96

B A-HDCNN 100 100 99.56 99.67 99.73
HDCNN 99.97 100 98 99.52 99.12

C A-HDCNN 100 99.7 99.15 100 99.62
HDCNN 100 98.75 98.2 99.56 98.86

D A-HDCNN 100 100 100 99.96 99.98
HDCNN 100 98.67 99.45 98.2 98.74

B,C,D
A-HDCNN 99.6 99.75 99.5 99.1 99.08

HDCNN 98.75 99.5 98 98.5 97.52
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At the second level, we evaluate the severity of the failure. Table 5 shows the com-
parison of the accuracy of the failure severity assessment for each health condition under
different load environments. The classification results show that the evaluation of the
A-HDCNN model at the second layer has high accuracy, and the diagnostic accuracy is
as high as 99% or more, close to 100%. The diagnostic accuracy is stable under different
loads. In addition, it shows that the overall model has high diagnostic accuracy as shown
in Table 5.

In addition, in order to further measure the variable load capacity of the A-HDCNN
model and verify its adaptability under different load environments, we combined and
shuffled the B, C, and D data sets (1hp, 2hp, and 3hp load environments, respectively), and
constructed a training set and a test set. Train the model and test the experimental results, as
shown in Table 5. It can be found that the A-HDCNN model has high diagnostic accuracy
in both failure mode recognition and fault severity evaluation, close to 100%, which further
proves the robustness of the A-HDCNN model under variable load environment.

Error loss is an important indicator of model stability. In order to verify the influence
of adding learning rate adaptive adjustment strategy on model stability, we summarized
the average error loss of different algorithms under different load environments during
20 runs (iteration 150 times), as shown in Table 6. It can be concluded that whether it is the
failure mode determination layer or the failure severity evaluation layer, the A-HDCNN
model is more stable under various load environments, and the error loss can converge
to a minimum. Compared with the HDCNN model, the A-HDCNN model has a smaller
error loss. In addition, after verification of the B, C, and D mixed data sets, the A-HDCNN
model error can still converge well and the loss is small, which further verifies the stability
and robustness of the A-HDCNN model in a variable load environment.

Table 6. Comparison of model error loss between A-HDCNN and HDCNN under different load
environments.

Data Set Method Lay 1
Lay 2

C1 C2 C3

A A-HDCNN 0.013 0.004 0.015 0.019
HDCNN 0.036 0.027 0.029 0.30

B A-HDCNN 0.007 0.002 0.009 0.017
HDCNN 0.025 0.036 0.021 0.033

C A-HDCNN 0.01 0.007 0.018 0.009
HDCNN 0.026 0.03 0.025 0.022

D A-HDCNN 0.015 0.007 0.011 0.014
HDCNN 0.042 0.026 0.037 0.035

B,C,D
A-HDCNN 0.02 0.013 0.026 0.018

HDCNN 0.037 0.058 0.048 0.04

In order to further verify the reliability of the A-HDCNN model, and to verify the
performance advantages of the combination of the energy spectrum matrix and the A-
HDCNN model, we compare the performance of the typical algorithms commonly used
at this stage, namely, DNN and SVM. In addition, in order to reflect the effectiveness of
the proposed method, we replace the A-HDCNN model with DNN or SVM in the same
hierarchical structure. The two algorithm inputs are energy spectrum vectors to achieve
similar layer recognition. DNN uses the ReLU function as the activation function. In
SVM, we choose the radial basis function for classification. Table 7 shows the specific
diagnosis results. Through observation, it is found that, compared with the deep fully
connected neural networks DNN and SVM, the A-HDCNN model can achieve higher
accuracy in both failure mode determination and failure severity evaluation. The overall
model diagnostic accuracy is as high as 99.74%, which is better than DNN and SVM. At the
same time, for the evaluation of fault severity, the characteristics of samples with different
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severity under the same fault mode are difficult to distinguish and confuse, which makes
the diagnosis and learning of DNN and SVM difficult. In addition, for DNN and SVM
models, the problem of poor diagnostic accuracy of the first layer further makes the second
layer model receive samples of wrong failure modes, which further reduces the diagnostic
accuracy of the second layer model. At the same time, it is also proved that the A-HDCNN
model can adaptively extract the robust characteristics of the energy spectrum matrix with
constant and precise details, which further proves the combined advantages of the energy
spectrum matrix and the A-HDCNN model.

Table 7. A-HDCNN model diagnostic accuracy of each layer compared with existing methods.

Method Layer 1
Layer 2 Overall

ModelC1 C2 C3

A-HDCNN 100 100 99.56 99.67 99.74
WPE+DNN 98.89 92.75 95.43 98.73 95.1
WPE+SVM 97.67 94.2 95.82 96.23 93.25

The A-HDCNN model provides a systematic and complete method for bearing fault
diagnosis and overcomes the limitations of traditional training methods that use a fixed
learning rate on model diagnostic performance. The adaptive learning rate dynamic ad-
justment strategy ensures that the model can adaptively extract robust features. It is highly
adaptable under different load environments and has better diagnostic performance. In
order to verify the superior performance of the adaptive method proposed in this paper,
we use the overall diagnostic performance of the model as an indicator to compare the
overall performance of the A-HDCNN model with other superior adaptive methods pro-
posed by researchers in the field of fault diagnosis at this stage. For example, in order to
improve the efficiency of continuous learning elements of rolling bearing fault diagno-
sis, Tian et al. [32] incorporated a clonal learning strategy into the convolutional network
(DCNN-FD-Softmax), which can adaptively extract deep fault features. Xie et al. [33] pro-
posed an end-to-end fault diagnosis model based on an adaptive deep belief network
(Improved DBN+FFT). Qiao et al. [34] proposed an adaptive weighted multi-scale con-
volutional neural network (AWMSCNN) for bearing diagnosis under variable operating
conditions. At the same time, we use the energy spectrum matrix and deep convolutional
neural network method under the single-level model as a benchmark for reference. The
comparison results are shown in Table 8. The experimental results show that the proposed
method performs higher than other adaptive methods. The test accuracy is 99.74%, which
is mainly the result of the better feature expression of the energy spectrum matrix and
the adaptive feature learning ability of the A-HDCNN model. The experimental results
are satisfactory. The comparison results show that compared with other methods, the
A-HDCNN model proposed in this paper has achieved significant results and is better than
other adaptive methods. It can be seen that the A-HDCNN model proposed in this paper
has significant performance.

Table 8. Comparison of the overall performance of the A-HDCNN model with other adaptive
diagnosis methods.

Method Overall Model Test Accuracy (%)

A-HDCNN 99.74
DCNN-FD-Softmax (adaptive) 99.38
Improved DBN+FFT (adaptive) 98.98

AWMSCNN (adaptive) 97.97
WPE+CNN 83.45
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4.4. Feature Visual Verification with T-SNE

The neural network can automatically learn features from vibration signals. This article
explores the internal operation process of the proposed A-HDCNN model by visualizing
the activities in the neural network, and further verifies the adaptive feature learning ability
of the proposed A-HDCNN model. As the internal structure of the first-level model and the
second-level model is similar, they have the same internal mechanism. This paper analyzes
the fault pattern recognition layer and uses t-SNE to visualize the learning characteristics
of the model input layer, an intermediate convolution layer, and a fully connected layer.

Taking data set B as an example, the experimental results are shown in Figure 14. The
model input layer is the energy spectrum matrix obtained by preprocessing the original
vibration signal. Compared with the chaotic distribution of the original signal, the different
health states of the input layer of the model are easier to segment. It is found that the
samples of the same failure mode can basically be gathered together. The normal state
samples have good aggregation and the sample spacing is large, but there is some overlap
in the IR, OR, and RE failure mode. The distance between the classes is small, and the
feature recognition of the input layer and the intermediate convolutional layer is poor.
However, as the depth of the layer increases, the features learned by the convolutional layer
become more and more recognizable and the features become more and more divisible.
In the early layer, it cannot be divided, but in the fully connected layer, the characteristics
are very easy to be divided. As shown in Figure 14c, the four failure modes are effectively
distinguished, and their characteristics are almost no overlap of different failure types. The
distance between different categories is large. It is proved that the model can adaptively
learn effective features and perform accurate fault diagnosis.
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4.5. Robust Performance Analysis of A-HDCNN Model under Different SNR Environments

The stability and robustness of the A-HDCNN model are very important evaluation
indicators in practical engineering applications. CWRU bearing data are collected under
different health conditions and different working conditions, and its original vibration
signal already contains a certain degree of noise. In order to better simulate the strong noise
interference in the actual operation process, we added corresponding Gaussian noise under
different signal-to-noise ratios (SNRs) to the original vibration signal to further verify the
stability and robust performance of the proposed method. The specific definition of SNR is
as follows.

SNR = 10log10

(Psignal

Pnoise

)
(17)

where Psignal and Pnoise represent the intensity of original signal and noise, respectively, we
assume Psignal is 0 dBW. In this experiment, we will verify the effectiveness of the proposed
A-HDCNN model in different noise environments. In order to facilitate the comparative
test, we will carry out diagnostic analysis under 1hp load environment, and its SNR is
between −8 db and 12 db. At the same time, the HDCNN model, WPE+DNN, WPE+SVM
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were used as the benchmark for comparative analysis. The experimental results are shown
in Figure 15 and Table 9. Obviously, A-HDCNN is superior to the other three benchmark
methods, and it can obtain the best diagnostic performance in any noisy environment. In
addition, the model has a diagnostic performance of more than 94% at all noise levels,
except for the diagnostic accuracy of 87.36% at −8 dB. When the SNR continues to increase,
the A-HDCNN model and the HDCNN model, WPE+DNN, WPE+SVM benchmark models
have the same increasing trend, and their diagnostic accuracy increases with the increase in
the SNR. In addition, we can also infer that the diagnosis error is mainly due to the similarity
of the fault feature itself and the difference between the models when the noise is small.
That is to say, under different working environments, some different fault signal features
may overlap or be close to each other, thereby affecting the accuracy of diagnosis. However,
the accuracy of the A-HDCNN model is close to 100% when the noise environment is
small, which means that the model has better fault feature learning ability and expression
ability, and can have the ability to extract the most essential difference between various
fault features. On the other hand, although the performance of all methods decreases with
increasing noise, the A-HDCNN model still exhibits good noise immunity in a strong noise
environment. Therefore, compared with several other benchmark methods, the A-HDCNN
model has stronger anti-noise ability and fault feature learning ability under different noise
environments. The A-HDCNN model has strong robustness and stability to noise and is
more suitable for the diagnosis of rotating bearing faults in actual operation.
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Table 9. Comparison of model diagnostic accuracy under different signal-to-noise ratio (SNR)
environments.

Method
SNR(dB)

−8 −4 0 4 8 12

WPE+SVM 76.25 85.75 93.12 93.24 93.17 93.36
WPE+DNN 81.34 89.63 95.16 95.27 95.39 95.42

HDCNN 83.75 92.26 98.89 98.95 98.97 99.21
A-HDCNN 87.36 94.25 99.7 99.71 99.74 99.76

5. Conclusions

This paper proposes a new A-HDCNN network for fault diagnosis of rotating ma-
chinery bearings. The model is a two-layer hierarchical diagnostic network that can be
used for both fault pattern recognition and fault severity evaluation. This method has the
following characteristics.

Firstly, in view of the non-stationary characteristics of the original vibration signal of
the fault, a representative energy spectrum matrix is proposed for the input of the model,
while reducing the dimension of the input data. It overcomes the limitations of model
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parameter adjustment, model complexity increase, and slow convergence caused by direct
input of the original vibration signal into the model. Compared with the traditional feature
selection method, this kind of data preprocessing method greatly reduces the experience of
experts. It can be observed through the diagnosis results under different load environments
at a later stage. This method has good robust performance and high applicability under
different load environments.

In addition, the hierarchical structure of A-HDCNN makes the model parameters of
each layer relatively independent and individually adjusted, thereby further ensuring the
efficiency of diagnosis, which can assess the location of the fault and the severity of the
fault. In this way, weak links can be discovered, thereby preventing system degradation
and providing knowledge for reliability design and life prediction of rotating machinery.

Secondly, the traditional model training method often uses a fixed learning rate to
update the parameters. Larger or smaller values will adversely affect the model training,
so it is difficult to balance. Due to the differences in model feature learning conditions
and loss error convergence in different iterative training processes, this paper proposes an
adaptive update strategy for learning rate during the research process, so that the learning
rate is adaptively and dynamically adjusted at different stages of model training. It is
applied to the training process of the sub-model of the failure mode determination layer
and the severity evaluation layer. Compared with the traditional HDCNN model and
other hierarchical methods, it further verifies the feature learning ability, convergence and
reliability of the method.

Finally, in order to further verify the robustness and stability of the model and better
simulate the strong noise interference during actual operation, the corresponding Gaussian
noise under different SNRs is added to the original vibration signal. By comparing other
methods such as HDCNN, WPE+DNN, and WPE+SVM, it further proves the effectiveness
of the A-HDCNN model in different noise environments and is more suitable for fault
diagnosis of rotating bearings in actual operation.
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