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Abstract: In this research work, Polydimethylsiloxane (PDMS) has been used for the fabrication of
microchannels for biomedical application. Under the internet of things (IoT)-based controlled envi-
ronment, the authors have simulated and fabricated bio-endurable, biocompatible and bioengineered
PDMS-based microchannels for varicose veins implantation exclusively to avoid tissue damaging.
Five curved ascending curvilinear micro-channel (5CACMC) and five curved descending curvilinear
micro-channels (5CDCMC) are simulated by MATLAB (The Math-Works, Natick, MA, USA) and
ANSYS (ANSYS, The University of Lahore, Pakistan) with actual environments and confirmed
experimentally. The total length of each channel is 1.6 cm. The diameter of both channels is 400 µm.
In the ascending channel, the first to fifth curve cycles have the radii of 2.5 mm, 5 mm, 7.5 mm,
10 mm, and 2.5 mm respectively. In the descending channel, the first and second curve cycles have
the radii of 12.5 mm and 10 mm respectively. The third to fifth cycles have the radii of 7.5 mm,
5 mm, and 2.5 mm respectively. For 5CACMC, at Reynolds number of 185, the values of the flow
rates, velocities and pressure drops are 19.7 µLs−1, 0.105 mm/s and 1.18 Pa for Fuzzy simulation,
19.3 µLs−1, 0.1543 mm/s and 1.6 Pa for ANSYS simulation and 18.23 µLs−1, 0.1332 mm/s and 1.5 Pa
in the experiment. For 5CDCMC, at Reynolds number 143, the values of the flow rates, velocities
and pressure drops are 15.4 µLs−1, 0.1032 mm/s and 1.15 Pa for Fuzzy simulation, 15.0 µLs−1,
0.120 mm/s and 1.22 Pa for ANSYS simulation and 14.08 µLs−1, 0.105 mm/s and 1.18 Pa in the
experiment. Both channels have three inputs and one output. In order to observe Dean Flow, Dean
numbers are also calculated. Therefore, both PDMS channels can be implanted in place of varicose
veins to have natural blood flow.

Keywords: internet of things (IoT); curvilinear microchannel; polydimethylsiloxane (PDMS); steril-
ization; biocompatibility; fuzzy

1. Introduction

Internet of things (IoT) has been potentially used to develop miniaturized devices.
Various parameters have been controlled using IoT during the process level fabrication.
These miniaturized devices are used in different fields. IoT plays a significant role in
advancement of microfluidic devices. Diverse parameters of microfluidic devices like fluid
flow time, temperature, flow rate, flow velocity, pressure drop, density and viscosity can
be monitored and examined using IoT devices. These devices can be used potentially
for analysis and detection for specific applications [1–4]. The schematic of IoT controlled
microfluidic system is shown in Figure 1.
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Figure 1. Internet of things (IoT) Controlled Microfluidic System.

Nowadays, polymer-based implantable devices like bioengineered veins, plates of
bone, dental parts, muscles, discs of vertebral, valves of heart, and pacemakers are used in
biomedical engineering to reinstate the damaged organs [5,6]. Polymer-based biomaterials
can provide assistance for the healing process in the human body. The polymer materials
are utilized mostly due to adaptability, structure, properties, and treatment methods. These
biomaterials can be utilized in various compositions like solids, films, gels, and fibers
for treatment and analysis in several biomedical applications [7–12]. Every implant in
the human body must be done accurately for the proper functions of cells, tissues, and
fluids. The biomaterial used for surgical implants must be biocompatible [13–15]. The core
purpose of the present work is to engineer and evaluate the use of PDMS microchannels
as a potential replacement for varicose veins. These bioengineered veins must promote a
better blood flow and avoid tissue-damaging [16].

PDMS can be considered as the functional material for implantations in various
biomedical applications like joints, nasal bones, other bones, teeth, sutures, blood tubes,
spine and hearts [17,18]. All biomaterials used in implantations have fundamental proper-
ties for long term usage in the body [19]. Metals, composites, polymers, and ceramics can be
used separately and in combination for the development of these implantations. These im-
plantations should be developed and implanted very carefully, so that these may not result
into issues like cancer, immunogenicity, teratogenicity and toxicity. These materials must
have high mechanical properties and corrosion resistance. The common biomaterials are
polymeric biomaterials, synthetic polymers, naturally occurring polymers, polyvinylchlo-
ride, polyethylene, polypropylene, polymethylmetacrylate, polyurethane, polyethersul-
fone, polyetherimide, polyamide, polystyrene, polytetrafluoroethylene, polyethylentereph-
thalate, composite biomaterials and ceramic biomaterials [20–22]. Their usage has been
given in Table 1.
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Table 1. Biomaterials and their usage.

Biomaterial Usage

Synthetic polymers [23] Encompasses water-repelling materials

Naturally occurring polymers [24] Blood purification, dental-related problems

Polyvinylchloride [25] The bag containing blood and solutions

Polyethylene [26] Bone related implants

Polypropylene [27] Disposed syringes, artificial vascular grafts.

Polymethylmethacrylate [28] Making pumps used to pump blood and reservoirs

Polystyrene [29] Making filter devices (bladder regeneration) and flasks used
for tissue culture

Polytetrafluoroethylene [30] Making Catheter and artificial vascular grafts (diaphragm
regeneration)

Polyurethane [31] Making films used for packaging (pancreas regeneration)

Polyamide [32] Sutures and molds

Polyethylene terephthalate [33] Making Implantable sutures and heart valve

Polyethersulfone [34] Catheters and Lumen tubing

Polyetherimide [35] Skin staplers used in surgery

Composite biomaterials [36] Filling teeth, bone cement

Ceramic biomaterials [37] Muscular systems and skeletal systems are repaired and
replaced

Three-dimensional (3D) printing technology has been used to design a wearable
electronic system based on IoT to determine the health monitoring system [38]. Qualitative
research has been done to investigate the various designs of microchannels that have
been reported with the application of IoT. In this decade, IoT devices have been widely
used for 3D printing [39,40]. IoT has also been reported for the development of automatic
microfluidic system [41].

In our previous papers, the authors fabricated silver bio-engineered veins for varicose
vein implantation. The previous studies have some limitations like biocompatibility,
elasticity and friction [42,43]. Here, in this research, the authors have tried to overcome
the limitations of biocompatibility, flexibility and resistance. Therefore, the PDMS has
been used to fabricate the microchannels for varicose vein implantation. This polymer is
naturally flexible, biocompatible and exhibits less friction with the flow speed [16,44,45].
These polymer channels can be implanted to avoid tissue-damaging effect after the removal
of varicose veins. There is a wide use of microchannels in biomedical engineering and
other fields [46–51].

1.1. Sterilization and Toxicity of Polymeric Implants

The sterilization can be explained as a procedure by which organisms, germs, bac-
teria and other contaminated cells are eliminated from the implanted device. Aseptic
processing and terminal sterilization can be used for contamination removal [52,53]. The
most common and economical method is the terminal sterilization to reduce the threat
of infection. It is essential to sterilize these bio-medical transplants and surgical implant
before use to decrease the danger of contaminations and related impediments. The stan-
dard sterilization methods are applying radioactive rays, steam spray, heat or a mixture
of these techniques and γ-radiations [54]. Possible toxic impurities can be transferred in
these devices through handling, cleansing, storing, packing and transportation. Allergy,
haemolysis, toxicity, thrombosis, carcinogenicity, eye-tissue irritation, and pyrogenicity can
be caused due to contaminated polymeric devices [55]. PDMS-based devices are prone to
less contamination [56,57].
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1.2. Surgical Polymeric Implants (PDMS)

PDMS is used for the expansion and beauty of the cheeks, breast, nasal, and jaw-
bones [7]. It has been extensively acknowledged by specialists for the humanoid bone
extension due to its variable rigidity, molding, shaping capability and ease of use. It has not
been reported in literature that PDMS implantations has caused any infection in connective
tissues that leads PDMS is very safe to use for implants [6,13,15,58,59]. PDMS has been
used for facial implantations, stomach wall infection treatment, retinal implants, tendons
and ligaments surgeries, breast implantations and expansion, spine surgery, cardiac and
vascular muscles, knee treatment and replacement and rat implantations [60–70]. Some
PDMS implant investigations are listed in Table 2.

Table 2. Polydimethylsiloxane (PDMS) Implants.

Reference PDMS Implant Cause

Siproudhis et al. [60] Elastomer Faecal incontinence

Losi et al. [61] Abdominal Intestinal infections

Tunc et al. [62] Retinal Retina bleeding

Franca et al. [65] Breast Low weight

Suchy et al. [66] Spine Spine Cage repair

Lim et al. [67] Cartilage Low regeneration

Kuo et al. [63] Ligament Regenerative strategies

Zhang et al. [69] Vascular Cardiac arrest

The authors have proposed a PDMS-based bioengineered vein to implant as varicose
vein. Human blood has been used for extensive investigations in this research. The viscosity
of human blood is averagely taken as 0.0032 Kg/ms [71]. Viscosity and density of blood
can exhibit a strong effect on the blood flow rate in veins. Blood volume and its mass have
been used as the traditional method for blood density measurement. It is related to the
hematocrit of blood. Blood density is different in young, old, males, and females. Blood
density of young females is less than adult females while blood density of young males
is less than adults. The density of blood in females is less than males. This is because
the red cells of young males and females have a higher negative charge than the adults.
Therefore, the mobility of blood cells is higher in young people [52,53,55,56]. Females have
more blood flow than the male because of increased rate of pumping of their heart [72].
The human blood density differs from person to person due to blood count changes and
other factors. The venous blood and arterial blood differ in density. The venous blood
density seems to change even with the change in the posture of the body. In this study,
blood (plasma) density is considered 1025 kg/m3 and blood (cells) density is taken as
1125 kgm−3 [44,57]. Typically, the blood density for humans (female and male) is taken as
1060 kgm−3 [16,45]. Some possible PDMS-based implants in humans depending on the
requirement have been shown in Figure 2.

The authors have simulated two types of microchannels using MATLAB and ANSYS.
First one is five curved ascending curvilinear microchannels (5CACMC) and the second
one is five curved descending curvilinear microchannels (5CDCMC). After the simulation,
the fabrication of the channels has been performed. Then these channels have been tested
using actual human blood. This research work may provide new way of PDMS-based
varicose vein implantation.
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2. Fuzzy Logic Simulation for 5CACMC and 5CDCMC

Fuzzy simulation is extensively used in almost every field of research [73–77]. In
this simulation, two fuzzy systems for 5CACMC and 5CDCMC have been developed
with four inputs and three outputs. The inputs are Reynolds Number, applied pressure,
viscosity and density. The outputs are flow rate, velocity and pressure drop. All have
three membership functions. The ranges are 0 to 200 for Reynolds number, 1 to 1.5 Kilo Pa
for applied pressure, 0.003 to 0.004 Kgm−1s−1 for viscosity, 925 to 1125 Kgm−3 for blood
density, 15 to 25 µLs−1 for flow rate, 0.01 to 0.2 mms−1 velocity and 0.2 to 2 Pa for pressure
drop. For simulation, eighty-one rules were prepared with If-AND-THEN statements. The
rule viewers in MATLAB are shown below in Figure 3a,b for both 5CACMC and 5CDCMC.
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After the simulation, the three-dimensional graphs obtained for 5CACMC from Fuzzy
logic simulation with flow rate as output are shown below in Figure 4.
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The three-dimensional graphs obtained for 5CACMC from Fuzzy logic simulation
with velocity as output are shown below in Figure 5.Processes 2020, 8, x FOR PEER REVIEW 8 of 33 
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output. (a) Variation for applied pressure with density and velocity as output. (b) Variation for Reynolds number with
density and velocity as output. (c) Variation for viscosity with density and velocity as output. (d) Variation for applied
pressure with Reynolds number and velocity as output. (e) Variation for applied pressure with viscosity and velocity as
output. (f) Variation for Reynolds number with viscosity and velocity as output.

The three-dimensional graphs obtained for 5CACMC from Fuzzy logic simulation
with pressure drop as output are shown below in Figure 6.
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applied pressure with Reynolds number and pressure drop as output (e) Variation for applied pressure with viscosity and
pressure drop as output (f) Variation for Reynolds number with viscosity and pressure drop as output.

The three-dimensional graphs obtained for 5CDCMC from Fuzzy logic simulation
with flow rate as output are shown below in Figure 7.
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as output (a) Variation for applied pressure with density and flow rate as output (b) Variation for Reynolds number with
density and flow rate as output (c) Variation for viscosity with density and flow rate as output (d) Variation for applied
pressure with Reynolds number and flow rate as output (e) Variation for applied pressure with viscosity and flow rate as
output (f) Variation for Reynolds number with viscosity and flow rate as output.

The three-dimensional graphs obtained for 5CDCMC from Fuzzy logic simulation
with velocity as output are shown below in Figure 8.
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Figure 8. 3D graphical variations with inputs Reynolds number, applied pressure, viscosity, and density with flow rate
as output (a) Variation for applied pressure with density and velocity as output (b) Variation for Reynolds number with
density and velocity as output (c) Variation for viscosity with density and velocity as output (d) Variation for applied
pressure with Reynolds number and velocity as output (e) Variation for applied pressure with viscosity and velocity as
output (f) Variation for Reynolds number with viscosity and velocity as output.

The three-dimensional graphs obtained for 5CDCMC from Fuzzy logic simulation
with pressure drop as output are shown below in Figure 9.
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Figure 9. 3D graphical variations with inputs Reynolds Number, applied pressure, viscosity, and density with flow rate as
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applied pressure with Reynolds number and pressure drop as output (e) Variation for applied pressure with viscosity and
pressure drop as output (f) Variation for Reynolds number with viscosity and pressure drop as output.

The results assessment for simulation and using Mamdani model is shown in Table 3.

Table 3. Results assessment for both types of microchannels (Mamdani’s numerical value with Fuzzy simulation MATLAB).

Microchannel Reynolds
Number

Applied
Pressure

(Kpa)

Viscosity
(Kg/ms)

Density
(kgm−3)

Quantity
Flow
Rate

(µLs−1)

Velocity
(mm/s)

Pressure
Drop(Pa)

Mamdani’s value 19.72 0.106 1.19
5CACMC 185 1.13 0.0032 1060 Fuzzy simulation 19.7 0.105 1.18

Dissimilarity 0.02 0.001 0.01
%Error 0.09% 0.9% 0.89%

Mamdani’s value 15.41 0.1042 1.16
5CDCMC 143 1.13 0.0032 1060 Fuzzy simulation 15.4 0.1032 1.15

Dissimilarity 0.01 0.001 0.01
%Error 0.04% 0.9% 0.86%
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For 5CACMC, at Reynolds number 185, applied pressure 1.13 KPa, viscosity 0.0032 Kg/ms,
and blood density 1060 kgm−3, the simulated values of 19.7 µLs−1 for flow rate, 0.105 mm/s
for velocity and 1.18 Pa drop in pressure have been observed. For 5CDCMC, at Reynolds
number 143, applied pressure 1.13 KPa, viscosity 0.0032 Kg/m.s and blood density
1060 kgm−3, the simulated value of 15.4 µLs−1 for flow rate, 0.1032 mm/s for velocity and
1.15 Pa drop in pressure has been observed. Mamdani’s numerical value was calculated
for both channels by using mathematical relation [78]. The percentage errors in results
are ignorable. The results are in agreement at Reynolds numbers 185 (for 5CACMC) and
143 (for 5CDCMC). Reynolds number 185 is higher than 143 because of more flow rate in
5CACMC. After fuzzy simulation, ANSYS Fluent simulation has been performed for the
confirmation of obtained results.

3. ANSYS Simulation of 5CACMC and 5CDCMC

ANSYS has been extensively used in research, especially in the field of biomedical
engineering [42,43,79]. With the help of the design modeler tool of ANSYS Fluent, the
geometries of the channels (5CACMC and 5CDCMC) have been created. After creating the
geometries, mesh was performed with the mesh analysis successfully. In the setup tool,
K-epsilon model was selected for the simulation because, in these channels, the flow is
laminar with some turbulent shape at the curves of the channel. This model was also used
because of the low Reynolds Numbers. There were four blood samples (young, old male
and female with different blood densities, i.e., 950 Kg/m3, 1000 Kg/m3, 1060 Kg/m3 and
1125 Kg/m3. For simulation, the velocities were taken as 0.02 to 0.07 m per second and the
pressure values were taken from 1 to 1.5 kilo Pascal [80]. Therefore, different velocities of
the blood in veins were obtained in the result section of the ANSYS Fluent. The simulation
results are shown below in Figure 10.
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The graphical results of ANSYS Fluent are described below. For 5CACMC, the graph
between Reynolds number and pressure drop is shown in Figure 12a and the graph between
the Reynolds number and the flow rate is shown in Figure 12b. These graphs have four
different lines in different colors. The red, blue, yellow and green lines are shown with
blood density 950, 1000, 1060, and 1125 kgm−3, respectively. Data in Figure 12a shows that
with the increase in Reynolds number, there is an increase in pressure drop. The maximum
simulated pressure drop is 1.6 Pa. The pressure drop was calculated by the following
equation.

∆p
L

=
128
π

µQ
D4

c
(1)

Here, ∆p is the pressure drop, µ is the viscosity, Q = 〈v〉π
4 D2

c is the flow rate, Dc is
the diameter of the channel. Reynolds numbers were calculated by the equation.

Re =
ρvD

µ
(2)

The graphical results are shown below for ANSYS simulation in Figure 12.
Figure 12b shows that there is an increase in flow rate with the Reynolds number. At

the first point, flow rate is increased up to 3.75%, at the 2nd point, flow rate is increased
up to 5.58%, at the 3rd point, flow rate is increased up to 7.38%, at the 4th point, flow rate
is increased up to 9.23%, at the 5th point, flow rate is increased up to 11.12%, at the 6th
point, flow rate is increased up to 12.83%, at the 7th point, flow rate is increased up to
14.83%, at the 8th point, flow rate is increased up to 16.59% and finally at the last point,
flow rate is increased up to a maximum of 18.68%. The flow rate has increased gradually.
The maximum simulated flow rate is 19.3 µLs−1, with an average human blood density of
1060 kgm−3.

For 5CDCMC, the graph between Reynolds number and pressure drop is shown in
Figure 13a, and the graph between the Reynolds number and the flow rate is shown in
Figure 13b. These graphs have four different lines in different colors. Data in Figure 13a
shows that with the increase in Reynolds number, there is an increase in pressure drop.
The maximum simulated pressure drop is 1.22 Pa.
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Figure 13. ANSYS Fluent Simulation graphs for 5CDCMC (a) Reynolds number and pressure drop
(b) Reynolds number and flow rate.

Figure 13b shows that there is an increase in flow rate with the Reynolds number.
At the first point flow rate is increased up to 3.7%, at the 2nd point flow rate is increased
up to 5.83%, at the 3rd point flow rate is increased up to 7.16%, at the 4th point flow rate
is increased up to 9.15%, at the 5th point flow rate is increased up to 11.27%, at the 6th
point flow rate is increased up to 12.74%, at the 7th point flow rate is increased up to
14.86%, at the 8th point flow rate is increased up to 16.7% and finally at the last point
flow rate is increased up to a maximum of 18.58%. The flow rate has increased gradually.
The maximum simulated flow rate is 15 µLs−1, with an average human blood density of
1060 kgm−3.
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The ANSYS simulation results (at the same input conditions that were used in Fuzzy
MATLAB simulation) are shown in Table 4.

Table 4. ANSYS Results.

Channel
Applied
Pressure

(KPa)

Blood
Viscosity
(Kg/ms)

Average Blood
Density
(kgm−3)

Reynolds
Number

Flow
Rate

(µLs−1)

Max. Channel
Pressure (Pa)

Velocity
(mm/s)

Pressure
Drop (Pa)

5CACMC
1.13 0.0032 1060

185 19.3 2.183 0.1543 1.6

5CDCMC 143 15.0 3.738 × 102 0.120 1.22

After these simulations, the authors have fabricated and tested the channels experi-
mentally to optimize the final results.

4. Fabrication

The production of the five curved ascending and descending curvilinear micro-channel
is completed with the method of photolithography. IoT devices were used to control
the environment. PDMS has been sued for microchannels fabrication. The benefits of
PDMS are replica molding, flexible, instinctively durable, exceptional properties of the
polymer, translucent, suitable for microscopy, and high gas permeable. Firstly, the mask
was designed on by using software and then these patterns were transfer on mask using
silicon wafer with area 6 × 6 mm2. Then silicone mold were fabricated. A Silicon wafer
was washed through the solution of piranha (H2SO4+H2O2). The coating was done with
SiO2. It was baked nearly 210 ◦C for approximately 1 min and 40 s for the dehydration of
wafer. In the method of photolithography, the coating was done with photoresist PFI27C9
on the silicon wafer, which is spin-coated in the range of 800 to 3500 rpm by using IoT
controlled environment. Then the second phase was initiated, namely the exposure of
PFI27C9 to ultraviolet light for a half minute. The mask was placed on a glass slide and
finally accurately associated with PFI27C9 for the chemical reaction. Now the substrate
was again baked at 100 ◦C for one minute. It was cooled then at room temperature.
After the exposure, the required pattern of the channel of the mask on the substrate was
obtained. Etching of silicon dioxide was completed by using deep reactive ion etching
(DRIE) procedure in half an hour with oxide etcher machine. Etching of substrate was
completed in 60 min. After etching, the silicon mold was kept inside the stripping device
for 60 min. After all these phases, the PDMS elastomer was arranged. This mixture is then
decanted with a prepared mold. For more toughening of PDMS, the substrate is baked at
75◦C for up to 60 min. Sterilization of PDMS material is an important step after fabrication
process. It was sterilized by autoclaving. Fabricated material was exposed to high pressure
(110 kPa) steam at 120◦C for 15 min. All microorganisms were eliminated by this procedure.
Lastly, the toughened PDMS is removed from the silicon wafer, and inputs and outputs are
pierced. The glass slides and the PDMS are bonded with each other by baking in the oven
for an hour. After final and complete fabrication, microchannels are shown in Figure 9.
The total length of each channel is 1.6 cm. The diameter of both channels is 400 µm. In the
ascending channel, the first curve cycle has the radius 2.5 mm, the 2nd cycle has 5 mm,
the 3rd cycle has 7.5 mm, the 4th cycle has 10 mm, and the 5th cycle has 12.5 mm. It has
three inputs and one output. In the descending channel, the first curve cycle has the radius
12.5 mm, the 2nd cycle has 10 mm, the 3rd cycle has 7.5 mm, the 4th cycle has 5 mm, and
the 5th cycle has 2.5 mm. Both channels have three inputs and one output as shown in
Figure 14.
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5. Experimental Verification of Simulation Results

To verify the simulated findings the experimentation for both channels was performed.
For the experiment, three commercial mp6 micro-pumps with electronic circuits (mp6-EVA)
were used. Heparin was mixed in the blood to avoid the clotting. With the help of a USB
port, signals were given to all of the pumps. In the IoT controlled environment, three
mp6 pumps were used for 5CACMC, because it has three inputs and one output. For
5CDCMC, only one pump was utilized, because it has only one input and three outputs.
Three pumps generated sufficient pressure for the continuous blood flow through both
channels of diameter 400 µm. The actual experimental setup is shown in Figure 15a,b.
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The study shows these 5CACMC and 5CDCMC bioengineered vein are suitable for
implant. However, it can be investigated further for other parameters and related issues.

6. Results and Discussion

The result comparison of MATLAB, ANSYS and experiment for both channels is given
in this section. With the rise of the Reynolds number, there is an increase in pressure drop.
In this graph Figure 16a, there are two rapid upsurges; one is initially and the other in
the middle. The channel has consistent curves with increasing radii. In these curvilinear
channels, the fluidic parameters are greater in ascending than in descending channels [81].
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In 5CACMC, the maximum experimental flow rate is 18.23 µLs−1. The velocity in this
experiment is calculated as 0.1332 mm/s. The experimental pressure drop in 5CACMC is
maximum 1.5 Pa. In 5CDCMC, the maximum experimental flow rate is 14.08 µLs−1. The
velocity in this experiment is calculated as 0.105 mm/s, with a pressure drop of 1.18 Pa.
All input conditions are the same as in the two simulations for both channels. Pressure
drop takes place by increasing resistance inside the veins and acts on blood when it runs
through the veins. The main factors of friction to blood flow are blood velocity through
the veins, blood viscosity and density. If there is a small blood velocity, then the pressure
drop is minimal and vice versa. The values of pressure drop in experiment are 1.5, 1.3,
1.1, 1, 0.9, 0.7, 0.5, 0.3 and 0.2 for 5CACMC and 1.18, 0.9, 0.87, 0.76, 0.65, 0.52, 0.38, 0.23
and 0.19 for 5CDCMC. ANSYS fluent simulation shows about the inside pressure of both
channels. The values of pressure difference for 5CACMC at blood density 1060 kgm−3

were obtained as 2.183, 1.964, 1.746, 1.528, 1.310, 1.091, 0.873, 0.6548, 0.4365 and 0.2183 and
for 5CDCMC 373.8, 336.4, 299.1, 261.7, 224.3, 186.9, 149.5, 112.1, 74.76 and 37.38. ANSYS
presents higher pressure for the descending channel because of heavy flow. Dean numbers
were determined by using the following formulation [82].

De = Re

√
d
2r

(3)

The observed Dean numbers for 5CACMC and 5CDCMC are shown in Tables 5 and 6.

Table 5. Dean numbers for 5CACMC.

De at 950 Kg/m3 De at 1000 Kg/m3 De at 1060 Kg/m3 De at 1125 Kg/m3

181.34 184.65 185.13 186.19

162.57 163.24 164.39 165.24

144.85 145.16 146.95 147.16

126.23 126.47 127.12 128.37

108.91 109.25 110.19 111.35

89.76 90.56 91.51 92.62

71.54 72.45 73.12 74.75

53.78 54.17 55.34 56.37

35.22 36.95 37.16 38.25

Table 6. Dean numbers for 5CDCMC.

De at 950 Kg/m3 De at 1000 Kg/m3 De at 1060 Kg/m3 De at 1125 Kg/m3

138.11 139.19 140 142.96

123.82 124.26 125.12 126.12

110.48 112.35 113.76 114.97

94.72 96.83 98.72 100.82

83.21 83.11 86.44 90.38

65.12 67.29 69.24 71.93

53.45 53.27 57.39 60.12

37.93 38.11 39.01 39.39

26.25 27.98 28. 31.88

These Dean numbers are ranging between 35.22 to186.19 for 5CACMC and 26.25 to
142.96 for 5CDCMC. Dean flow cannot be observed due to small Dean numbers [83]. If
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there is Dean flow, then flow must be circular at some turning points [84]. IoT environment
provides a purely error-free atmosphere, in which Reynolds Number, time, temperature,
pressure and all real-time parameters can be controlled. IoT provided a significant role
for biomedical devices and systems [85–87]. The comparison of results is shown below in
Table 7. 5CACMC has a higher flow rate, velocity and pressure drop than 5CDCMC. The
first reason is the curvilinear nature of the channels. The channels have consistent curves
with increasing radii. The second reason is the pressure difference, which is varied inside
the channels. Only the ANSYS Fluent can describe the pressure difference inside these
channels. The results are in closed agreement with the previously available research [81].

Table 7. Overall Result Comparison.

Channel Category Fuzzy
Simulation

Fluent
Simulation

Experimental
Values

5CACMC

Flow Rate (µLs−1) 19.7 19.3 18.28

Velocity (mm/s) 0.105 0.1543 0.1332

Pressure Drop (Pa) 1.18 1.6 1.6

5CDCMC

Flow Rate (µLs−1) 15.4 15.0 14.08

Velocity (mm/s) 0.1032 0.120 0.105

Pressure Drop (Pa) 1.15 1.22 1.22

7. Conclusions

The scope of the research is simulations, fabrication and investigations of the biocom-
patible bioengineered veins for implant in place of varicose veins. The conclusions drawn
from this study are given below:

1. Simulation was conducted with the real and natural conditions by MATLAB and
ANSYS.

2. After simulated results, the fabrication of 5CACMC and 5CDCMC with PDMS mate-
rial has been completed.

3. An experimental confirmation has been done for both channels. These bioengineered
veins could be inflated and become swollen with blood flow just like healthy veins
because of the high flexibility of thin PDMS veins.

4. These channels must be separated from the substrate for the surgical option.
5. The fabricated PDMS microchannels could be a good alternative to varicose veins for

good blood flow.
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