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Abstract: This paper describes a study of the treatment of 2,4-dichlorophenol (2,4-DCP) with an
ethylenediamine-N,N′-disuccinic-acid (EDDS)-modified photo-Fenton system in ultrapure water
and different natural waters. The results showed that the EDDS-modified photo-Fenton system is
adequate for 2,4-DCP degradation. Compared with a medium containing a single organic pollutant,
the removal of pollutants in a more complex medium consisting of two organic compounds is slower
by around 25 to 50% as a function of the organic pollutant. Moreover, 2,4-DCP can be further
effectively degraded in the presence of organic materials and various inorganic ions. However, the
photodegradation of 2,4-DCP in different natural waters, including natural lake water, effluent from
domestic sewage treatment plants, and secondary effluent from pulp and paper mill wastewaters, is
inhibited. Chemical compounds present in natural waters have different influences on the degra-
dation of 2,4-DCP by adopting the EDDS-modified photo-Fenton system. In any case, the results
obtained in this work show that the EDDS-modified photo-Fenton system can effectively degrade
pollutants in a natural water body, which makes it a promising technology for treating pollutants in
natural water bodies.

Keywords: photo-Fenton; EDDS; 2,4-DCP; organic matter; inorganic ions; natural water bodies

1. Introduction

Advanced oxidation processes (AOPs) can effectively oxidize organic pollutants in
water using active free radicals [1], which have been adopted to degrade pollutants from
many types of wastewaters, such as tannery wastewaters and pharmaceutical wastew-
aters [2,3]. Fenton technology is one of the most simple and effective AOPs to degrade
pollutants [4]. However, the Fenton reaction consumes a large number of chemical reagents
and produces toxic by-products, resulting in secondary contamination [5]. In order to
overcome the shortcomings of Fenton processes, different attempts have been carried out.
First of all, irradiation has been introduced in the Fenton reaction, and the Fe(III)/H2O2
mixture (Fenton-like reagent) can absorb photons of wavelengths up to 550 nm [6,7]. The
efficiency of the photo-Fenton process has been proven by many previous studies, most
of which were carried out at an acidic pH value [8–10]. Additionally, the introduction of
chelating agents, especially organic carboxylic acid into the Fenton reaction, proved to be
an effective method for broadening the applicable pH values. Several different organic
carboxylic acids, such as citric acid, oxalic acid, NTA, and EDTA, were used to modify the
Fenton process and proved to be efficient [11–14]. Ethylenediamine-N,N′-disuccinic-acid
(EDDS), a biodegradable isomer of EDTA, was used as a chelating agent in homogeneous
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and heterogeneous Fenton and photo-Fenton systems in our previous studies [15–18].
Therefore, the EDDS-modified photo-Fenton reaction is proven to be a promising approach
to treat refractory pollutants.

However, most laboratory studies on pollutant removal using the EDDS-modified
photo-Fenton system are currently conducted using deionized water, which is far from the
complex chemical composition of natural water, in which the inorganic ions and dissolved
organic compounds in water can significantly influence pollutant removal. In previous
research, it was found that the water matrix could significantly influence the efficiency and
mechanism of AOPs processes, especially the Fenton process. The presence of common
inorganic ions had no substantial effect on herbicide removal when using the photo-Fenton
system, but the H2O2 (oxidant) consumption of this reaction was higher than that of the
same reaction where inorganic ions were absent [19]. In the process of the photodegradation
of 2,4-D by the photo-Fenton reaction, carbonate has little adverse effects, fluoride has a
positive effect, and phosphate has an inhibitory effect [20]. The effect of typical inorganic
water constituents (carbonates and chloride ions) and organic matter was also investigated
and found to be different in the UVA-UVB activation of hydrogen peroxide and persulfate
for advanced oxidation processes [21]. Therefore, it is necessary to study the influence
of the natural water matrix on pollutant degradation efficiency in the EDDS-modified
photo-Fenton system, including not only single inorganic ions or organic compounds but
also natural water where various chemical compounds are present.

Chlorophenols (CPs) in wastewater represent a type of pollutant that greatly harms hu-
man health and the environment because they are toxic, teratogenic, and carcinogenic [22,23].
Nowadays, CPs are widespread in the environment, even in the most remote natural en-
vironments, as well as in aquatic and terrestrial food chains [24]. Among them, 2,4-DCP
is present in most wastewaters generated by the textile and the pulp and papermaking
industries and has attracted considerable attention because it is highly toxic and difficult
to degrade. Furthermore, it is a kind of absorbable organic halide (AOX), which is the
main pollution product in the pulping and papermaking industry [25]. It is poisonous,
carcinogenic, and teratogenic. Direct discharge into water bodies can cause serious damage
to the water environment. As a result, 2,4-DCP is usually degraded by AOPs and used as a
target pollutant for developing new AOP methods.

In our previous study, we confirmed that the EDDS-modified photo-Fenton system
can effectively degrade 2,4-DCP in deionized water in the laboratory. The effect of pH,
H2O2 concentration, and Fe(III)-EDDS dosage was investigated, and the optimal condition
was determined [26]. On the other hand, it was found that 2,4-DCP could be effectively
degraded in the EDDS-modified photo-Fenton system at pH 3–7. Furthermore, •OH
radicals were found to be the main active species of degradation. In this study, our purpose
is to reveal the effect of chemical compounds (organic and inorganic compounds) on 2,4-
DCP degradation using the EDDS-modified photo-Fenton system and the effect of the
complex water matrix on the system. First, the effects of organic matter such as humic acids
(HAs) (representing common organic matter in natural water) and 2,4,6-trichlorophenol
(2,4,6-TCP) (representing the same kind of organic compounds always accompanying
wastewater) on the degradation of 2,4-DCP are discussed. Second, the effects of inorganic
ions on 2,4-DCP degradation are evaluated. Finally, three types of natural waters, including
natural lake water (NLW), effluent from domestic sewage treatment plants (DSTP), and
secondary effluent from pulp and paper mill wastewater (PPMW), are selected as the
natural water matrix for 2,4-DCP degradation in the EDDS-modified photo-Fenton reaction.
A metal halide lamp is used to mimic sunlight during these laboratory experiments. The
expected selectivity of the EDDS-modified photo-Fenton reaction for 2,4-DCP in natural
water is demonstrated by comparing the decrease in 2,4-DCP content in pure water with
that in different natural waters. The results of these experiments on the efficiency of the
EDDS-modified photo-Fenton system in removing pollutants from natural waters have
important practical implications for advancing water treatment technologies.
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2. Materials and Methods
2.1. Chemicals

EDDS (35% in water) was purchased from Shanghai Anpu Experimental Technology
Co., Ltd. (Shanghai, China). 2,4-DCP and 2,4,6-TCP were purchased from Shanghai
Macklin Biochemical (Shanghai, China). Ferric chloride hexahydrate, sodium chloride,
sodium sulfate, sodium carbonate, sodium nitrate, sodium phosphate dodecahydrate,
potassium chloride, magnesium chloride, calcium chloride, and H2O2 (30% in water) were
purchased from Guangdong Guanghua Sci-Tech Co., Ltd. (Guangzhou, China). Humic
acids (HAs) were purchased from Alfa (Shanghai, China). Methyl alcohol (HPLC grade)
and acetonitrile (HPLC grade) were purchased from MERCK (Shanghai, China). The
pH of the solutions was adjusted with sodium hydroxide (NaOH) and hydrochloric acid
(HCl). The ferric carboxylic acid complex solution was prepared by mixing iron and EDDS
aqueous solutions in a ratio of 1:1 (and left to stand for more than 1 h to ensure excellent
chelation efficiency).

2.2. Analytical Procedures

Total organic carbon (TOC) was measured using an Analytikjena TOC-VCSN analyzer
(Jena, Gremany). An ICS-5000 ion chromatography (IC) unit (Dionex Corporation, Sunny-
vale, CA, USA) was used to monitor the release of chloride ions; this unit was equipped
with a conductivity detector, an anion self-regenerating suppressor (ASRSTM 300 × 4 mm,
Dionex Corporation, Sunnyvale, CA, USA), and the AutoSuppressionTM Recycle Mode.
Ultrapure water and 250 mM NaOH were supplied as the eluent to IC at a flow rate of 1 mL
min−1. Degradation of 2,4-DCP, 2,4,6-TCP, and a mixture of 2,4-DCP and 2,4,6-TCP was
determined using ultra-high-pressure liquid chromatography (Waters ACQUITY UPLC®

H-Class, C-18 column, UV detector) (Waters, Milford, MA, USA). The UPLC operating
conditions for the target compounds are listed in Table 1.

Table 1. UPLC methods for target compounds.

Compound Mobile Phase Flow Rate
(mL min−1)

Column
Temperature (◦C)

Injection Volume
(µL)

Detection
Wavelength (nm)

2,4-DCP Water/methanol
(40:60. v/v) 0.35 35 5 280

2,4,6-TCP Water/methanol
(20:80. v/v) 0.35 35 5 210

Mixture of 2,4-DCP and
2,4,6-TCP

Water/methanol
(20:80. v/v) 0.35 35 5 Dual channel: 210

and 280

2.3. Experimental System

All experiments were performed in a cylindrical Plexiglas container, which was
covered with aluminum foil to protect against light and avoid side photochemical processes,
placed on a homemade photoreactor (Figure 1). The photoreactor was designed with a
cylindrical container, and the lamp with a glass-jacket was fixed through the central axes of
the cell. For the experiment, the target pollutant solution and the Fe(III)-EDDS complex
solution (0.1 mM) were added to a 1 L beaker. An adequate volume of the mixture
was sampled and transferred into a 1 L volumetric flask, to which hydrogen peroxide
solution (1.0 mM) was added. The 1 L flask containing the reaction solution was placed
under agitation in a reactor equipped with a metal halide lamp (continuous spectrum of
290–800 nm), and samples were taken from the reactor at different time intervals. In order
to simulate the natural pH, the initial pH value of all the single-effect experiments was set
close to 7.0. Since the reaction may have continued after sampling, methanol was added to
stop the reaction.
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Figure 1. The scheme of the photoreactor used in this study.

3. Results
3.1. Effects of Organic Matter
3.1.1. Effect of Organic Compounds

Changes in pollutant concentration could significantly influence the degradation
efficiency in the photo-Fenton system. Therefore, the influence of different initial con-
centrations of 2,4-DCP on the photochemical experiment was studied while keeping the
other reaction parameters unchanged. The pollutant was almost completely degraded
at concentrations of 5 to 20 mg L−1. For 2,4-DCP concentrations equal to or exceeding
20 mg L−1, the degradation rate and efficiency decreased as the 2,4-DCP concentration
increased (Figure 2). This phenomenon can be interpreted because the number of hydroxyl
radicals did not increase proportionally as the pollutant concentration increased [27]. 2,4-
DCP exhibited a significant degradation efficiency of around 53% even at the maximum
pollutant concentration of 100 mg L−1 considered in this study. The experimental results
show that the EDDS-modified photo-Fenton process had an obvious degradation effect on
2,4-DCP, even at high initial concentrations.
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The toxicity of CPs can be ascribed to the number of Cl atoms on the benzene ring:
the more Cl atoms in the chemical formula of CPs, the more toxic organic compounds
there are [28]. Moreover, the quantity of Cl atoms on the benzene ring may affect the rate
of degradation. Accordingly, we experimentally investigated the degradation of single
2,4,6-TCP and 2,4-DCP, as well as that of a mixture of these two pollutants.

In our photo-Fenton system and the single-substance experiments, the rate of 2,4-DCP
pollutant removal was superior by around 65% to those of 2,4,6-TCP (Figure 3).
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Figure 3. (a) EDDS-modified photo-Fenton degradation of 2,4-DCP and 2,4,6-TCP. (b) Variation
of ln C/C0 with time in 2,4-DCP and 2,4,6-TCP concentration using the EDDS-modified photo-
Fenton system. [2,4-DCP] = [2,4,6-TCP] = 20 mg L−1, [Fe(III)-EDDS] = 0.1 mM, [H2O2] = 1.0 mM,
pH = 7.0 ± 0.1.
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This difference in 2,4-DCP and 2,4,6-TCP degradation rates could be attributed to
the number of chlorine atoms on these CPs, possibly because the OH and Cl groups of
2,4-DCP are aligned along the ortho and para directions, and the •OH radicals have the
same preference for attack. By contrast, steric hindrance prevents the hydroxylation of
2,4,6-TCP [29]. It was reported that in the heterogeneous photo-Fenton system, the 4-CP
removal rate was superior to that of 2,4,6-TCP, indicating that the quantity of Cl atoms
significantly influenced the phenolic compounds’ degradation rate [30]. However, our
results showed the same effect but also that the EDDS-modified photo-Fenton process can
be used to effectively treat 2,4-DCP and 2,4,6-TCP pollutants in deionized water.

Given that wastewaters contain multiple organic matters, we performed other experi-
ments with a mixture of two soluble pollutant compounds (2,4-DCP and 2,4,6-TCP). The
individual concentrations of 2,4-DCP and 2,4,6-TCP were set to 10 mg L−1 (total pollutant
concentration is 20 mg L−1) while keeping the other experimental conditions unchanged
from those employed in the single-substance experiments.

The removal rate of residual pollutants after 20 min of irradiation was considerably
slower than that before 20 min of irradiation (Figures 3 and 4). This was primarily ascribed
to the low concentration of residual pollutants (around 20% in the single-pollutant experi-
ment and 40% in the mixture of the two pollutants of the initial concentration) after the
first 20 min of reaction, resulting in a higher competition reaction of •OH radicals with
Fe2+ and H2O2 able to scavenge •OH radicals as well [31–33].
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Figure 4. EDDS-modified photo-Fenton degradation of a mixture of 2,4-DCP and 2,4,6-TCP in the
two-pollutants experiment ((a) 2,4-DCP and 2,4,6-TCP degradation efficiency; (b) apparent rate
constant of degradation of mixed pollutants). [2,4-DCP] = 10 mg L−1, [2,4,6-TCP] = 10 mg L−1,
[Fe(III)-EDDS] = 0.1 mM, [H2O2] = 1.0 mM, and pH = 7.0 ± 0.1.

In the two-pollutants experiment, approximately 80% of the two are degraded after
120 min. Compared with the single-pollutant experiment, the removal rate of the two
pollutants was lower by around 54% for 2,4-DCP and 24% for 2,4,6-TCP. This result implies
that the degradation of pollutants in complex media is slower. Therefore, our results
demonstrate that the EDDS-modified photo-Fenton system is very effective for treating a
single organic pollutant or a mixture of two organic pollutants.

The apparent rate constant of degradation of mixed pollutants is lower than that
of a single pollutant (Figures 3b and 4b), which indicates that 2,4-DCP degradation will
be significantly affected in more complex natural media (a detailed analysis of 2,4-DCP
degradation in complex natural media is provided in Section 3.3). Compared with a
medium containing a single pollutant, a medium containing two organic pollutants will
decrease the removal rate and weaken the removal effect. Nevertheless, in this experiment,
the main goal (of pollutant removal) was achieved within a reasonable timespan.

3.1.2. Effect of Humic Acids (HAs)

HAs are ubiquitous in aquatic environments [34]. To a large extent, the degradation of
organic pollutants is affected by their interaction with dissolved organic matter (DOM, such
as HA) in aquatic environments [35]. When DOM absorbs ultraviolet or solar radiation,
it forms reactive oxygen intermediates and can also have a shielding effect and inhibits
the AOPs [36,37]. DOM can enhance or inhibit the photodegradation rate [38,39]. DOM in
water, such as HA, can trap •OH radicals and also produce •OH radicals under irradia-
tion [40]. HA is a potential electron donor and can reduce Fe3+ in the system. For example,
HA can significantly improve the degradation effect of pentachlorophenol by promoting
the redox cycles of Fe(III) and Fe(II) in the photo-Fenton system [41,42]. Therefore, it is
necessary to study the influence of HA on pollutant degradation in natural water. In our
study, when HA was present in the solutions, the degradation rate of the EDDS-modified
photo-Fenton system decreased marginally (around 10% less after 120 min of irradiation).
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Moreover, when the HA concentration was increased from 2 to 5 mg L−1, the 2,4-DCP
degradation rate was almost unchanged (Figure 5).
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The lower degradation rate could be ascribed to the fact that HA scavenged •OH
radicals. Moreover, HA and the Fe(III)-EDDS complex compete for light absorption be-
cause HA is known to absorb sunlight, which reduces the photoredox process of the
iron complex [35,43]. The photochemical properties of HA can be ascribed to complex
phenomena and are influenced by multiple factors, including its origin and structural
characteristics [35,44].

3.2. Effects of Inorganic Ions

The results above indicate that the EDDS-modified photo-Fenton process is a promis-
ing and novel technology that can completely degrade 2,4-DCP. However, industrial
wastewaters contain various inorganic ions. These inorganic anions and cations can play
complex roles in the EDDS-modified photo-Fenton process.

Cl− and SO4
2− ions could reduce the reaction efficiency by scavenging hydroxyl

radicals and competing with the ligand for the complexation of iron ions [45]. The reaction
of •OH radicals with SO4

2− ions occurs only at very high concentrations of SO4
2− ions [46].

Indeed, compared with the control experiment, the addition of SO4
2− (at concentrations

of 100 to 200 mM) can marginally improve the 2,4-DCP photodegradation rate of the
EDDS-modified photo-Fenton system (Figure 6a).
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[2,4-DCP] = 20 mg L−1, [Fe(III)-EDDS] = 0.1 mM, [H2O2] = 1.0 mM, and pH = 7.0 ± 0.1.

From our results (Figure 6a), we show that the 2,4-DCP degradation efficiency de-
creased slightly at the chloride concentration up to 7.10 g/L, and the process continued to
exhibit a significant degradation efficiency. The addition of chlorine ions to an aqueous
solution of iron ions will result in the formation of the Fe(Cl)2+ complex, which has a
weaker (photo)reactivity than the Fe(III)-EDDS complex (R1) [47]. The effect of the concen-
tration of chlorine ions is complicated in Fenton chemistry. When the Cl− concentration
is equal to 17.75 g/L, the 2,4-DCP degradation efficiency is higher than when a 7.10 g/L
Cl− concentration is added and lower than that in the deionized aqueous solution. This
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may be because of the increased concentration of chloride ions and the formation of Cl•

radicals by the Fe(Cl)2+ complex under irradiation (R2), which contribute toward 2,4-DCP
degradation. The activity of Cl• radicals is weaker than that of •OH radicals [48,49]. The
inhibitory effect of chloride should also be attributed to the reactivity of •OH radical with
Cl− leading to the formation of Cl• radical or ClOH• − and after Cl• radical reacts with
Cl− to form the radical Cl2• − [50,51]. These reactions are significant in the presence of
•OH radicals and Cl−.

Fe3+ + Cl− → Fe(Cl)2+ (1)

Fe(Cl)2+ + hv→ Fe2+ + Cl• (2)

We found that NO3
− ions had a small effect on the system. When the NO3

− ion
concentration was increased, the degradation rate slightly increased (Figure 6a). NO3

−

ions can produce other •OH radicals (R3 and R4) under irradiation. However, NO3
− ions

have a strong ultraviolet (UV)-shielding effect, which is more significant than the formation
of •OH radicals through NO3

− photolysis [52]. The fact that the presence of NO3
− ions

did not significantly influence the degradation of 2,4-DCP can possibly be ascribed to the
interaction of all the above mentioned factors.

NO−3 + hv→ NO−2 + O(3P) (3)

NO−3 + H+ + hv→ NO•2 + HO• (4)

On the contrary, the degradation of 2,4-DCP was severely affected by the presence
of carbonates (Figure 6a). When the carbonate concentration was 300 mg/L, the 2,4-DCP
degradation efficiency decreased by approximately 25%. It has been reported that carbon-
ates play an essential role in AOPs by acting as scavengers of hydroxyl radicals through
the reaction R5, increasing oxidant consumption [53]. Papautsakis et al. [54] reported
that carbonate can scavenge •OH radicals and inhibit the degradation of imidacloprid in
the Fe-EDDS photo-Fenton process. Moreover, carbonate has also been shown to have a
destructive effect on the stability of soluble iron [53].

CO2−
3 + HO• → CO•−3 + OH−

(k = 3.9× 108M−1s−1)
(5)

As the phosphate concentration increased, the 2,4-DCP degradation rate decreased,
indicating that the PO4

3− ion forms a complex with Fe3+ and reduces the efficiency of the
EDDS-modified photo-Fenton system. It is reported in the literature that Fe3+ precipitation
by PO4

3− limited the Fenton and photo-Fenton reactions in aqueous solutions with high
phosphate concentrations [55].

It is known that pH significantly influences the Fenton process. In the presence
of carbonates and phosphates, the solution pH has a buffering capacity, owing to the
hydrolysis of PO4

3− and CO3
2− ions. Under this condition, the solution pH is neutral at

the end of the experiment, while in deionized water, the corresponding solution pH is
approximately 4.8. This may be also an important reason for the effect of carbonate and
phosphate ions on the removal of pollutants.

When K+, Ca2+, and Mg2+ ions were present in the solution, the degradation efficiency
of the system decreased slightly (Figure 6b). Metal cations affect the degradation of the
system by competing with Fe(III) ions for ligands. It has been shown that the higher
the number of charges of metal ions, the greater their complexation ability [56]. The
complexation ability of Fe3+ ions is the strongest, followed by Ca2+ and Mg2+ ions, and K+

ions are the weakest. Therefore, even in the case of very high K+ concentration, the effect
on the system is very small.

The above results made clear that the EDDS-modified photo-Fenton process can
efficiently degrade organic pollutants in the presence of inorganic ions. Even at high
concentrations of inorganic ions, the EDDS-modified photo-Fenton system exhibited sig-
nificant degradation efficiency. Furthermore, inorganic ions affect degradation mainly by
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competing with trivalent iron for ligands and scavenging hydroxyl radicals. Therefore, an
investigation of 2,4-DCP degradation using the EDDS-modified photo-Fenton system in
the presence of the main constituents of water will help to improve our understanding of
their effects on pollutant degradation in real aquatic systems.

3.3. Effect of Natural Water Bodies

TOC and ionic chromatography analyses of the three natural water bodies show
significantly different matrix contents. In terms of ions, the amounts of Cl−, NO3

−, and
SO4

2− detected in the DSTP, PPMW, and NLW water samples varied significantly. NO3
−

was not detected in NLW (Table 2). The chromaticity of the three water bodies varied
considerably, which is of great importance for the photo-Fenton system. In conclusion, the
chemical compositions of the three water samples differed considerably, and the influences
of ion concentration and chromaticity were non-negligible.

Table 2. Physicochemical parameters and chemical compositions of natural water bodies.

Water Bodies Color pH TOC (mg L−1) TC (mg L−1) IC (mg L−1) Anion Concentration (mg L−1)

PPMW Dark yellow 7.84 49.8 88.0 38.2
Cl− 188.1

SO4
2− 67.7

NO3
− 20.1

DSTP Light yellow 7.05 6.6 17.0 10.4
Cl− 37.2

SO4
2− 21.9

NO3
− 16.4

NLW Yellow 8.47 6.4 9.4 3.0
Cl− 7.6

SO4
2− 21.8

NO3
− Not detected

Pollutant degradation in natural water is a more complex process than degradation in
the presence of single inorganic ions and organic matter. The EDDS-modified photo-Fenton
system was used to evaluate the photocatalytic removal of 2,4-DCP dissolved in natural
waters, including NLW, DSTP, and PPMW. The 2,4-DCP degradation rate in deionized
water was considerably faster than that in natural waters. The degradation efficiencies
after 120 min of irradiation were 52.5%, 64.4%, and 38.5% in DSTP, NLW, and PPWM,
respectively (Figure 7) and around 100% in deionized water after 60 min of irradiation.

The lower 2,4-DCP degradation rate in NLW, DSTP, or PPMW than that in deionized
water could be ascribed to the presence of inorganic ions and dissolved organic compounds.
As given in Table 2, we determined some of the chemical constituents. The concentrations
of chloride, sulfate, and nitrate ions in the studied natural waters were different. Among
the three aforementioned water systems, 2,4-DCP degradation was most severely inhibited
in PPMW, which may be ascribed to the relatively higher concentrations of inorganic ions
in this compartment than those in the other two other water systems. Secondly, PPMW
is dark yellow in color, which means it can cause a screen effect and thus decrease the
Fe(III)-EDDS photoredox process. Thirdly, the presence of higher TC concentration can
affect the degradation efficiency of 2,4-DCP. A more comprehensive understanding of the
influence of TOC and total inorganic ion concentration in water on pollutant removal is
therefore needed.
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The TOC concentration of NLW, DSTP, and PPMW increased successively, contrary to
the decreased 2,4-DCP degradation efficiencies (Figure 8a). The high concentration of TOC
in the natural water body was in competition with the target pollutant for the reactivity
of •OH radicals, which is an essential reason for the resulting low degradation efficiency.
Moreover, compared with that in deionized water, the decreased 2,4-DCP photodegradation
efficiency in natural water may be ascribed to the optical filter effect of organic matter in
natural water. Indeed, organic matter can be one of the critical absorbers of sunlight in
aquatic environments [35]. We speculate that TOC concentration is not the only factor
affecting 2,4-DCP degradation in the studied water bodies. The effect of total inorganic ion
concentration in water on 2,4-DCP removal was explored. Overall, the 2,4-DCP degradation
efficiency decreased as the total inorganic ion concentration increased (Figure 8b). The same
effect was observed in the study by Sakkas et al. [25]. As the salinity of water increased,
chlorothalonil combined with DOM through hydrophobic interaction or weak van der
Waals forces, thus affecting the photodegradation of the pollutants. Obviously, the factors
affecting the 2,4-DCP removal in natural water included inorganic ion concentration, TOC
concentration, and chromaticity.

The UV–visible absorption spectrum of different water matrices containing 2,4-DCP is
shown in Figure 9, and it was noted that most change in UV–visible absorption occurred
in the UV zone (lower than 290 nm), which was out of the wavelength range of the lamp
used in this study. As a result, it was preliminarily indicated that the influence had nothing
to do with UV–visible absorption.
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Figure 8. Effects of (a) TOC and (b) total inorganic ion concentration on 2,4-DCP degradation effi-
ciency in different water bodies. [2,4-DCP] = 20 mg L−1, [Fe(III)-EDDS] = 0.1 mM, [H2O2] = 1.0 mM,
and pH = 7.0 ± 0.1.
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The degradation of 2,4-DCP was affected differently by different natural water com-
positions. However, the more the water is loaded with organic/inorganic compounds, the
more significant the inhibition of 2,4-DCP degradation. Regardless, the EDDS-modified
photo-Fenton system still removed more than 50% of 2,4-DCP in NLW and DSTP and more
than 30% in PPMW. This finding indicates that the EDDS-modified photo-Fenton process
can be used to effectively treat pollutants in natural waters and potentially simulate solar
photocatalytic water treatment. Thus, 2,4-DCP degradation in natural water bodies justifies
a more in-depth study to understand and evaluate the parameters that are essential for the
efficiency of the process.

4. Conclusions

The results indicate that the EDDS-modified photo-Fenton system is suitable for 2,4-
DCP removal. It is a promising route for treating 2,4-DCP by simulating natural sunlight,
which is a low-cost alternative light source and significantly reduces the process cost.
The system could effectively degrade single 2,4-DCP and 2,4,6-TCP pollutants and the
mixture of 2,4-DCP and 2,4,6-TCP. Furthermore, it could effectively degrade pollutants
in the presence of common inorganic ions. The effect of anions on 2,4-DCP degradation
was found to be stronger than that of cations. Finally, the degradations of 2,4-DCP in
different water bodies, including NLW, DSTP, and PPMW, were remarkably different. The
2,4-DCP degradation rate in PPMW was severely inhibited, which may be related to the
high absorption of light, high TOC concentration, and high inorganic ion content in this
water compartment. The use of several different natural waters to treat 2,4-DCP with the
EDDS-modified photo-Fenton process shows the efficiency of this process for industrial
applications. Nevertheless, the application will be particularly more efficient when this
process is used in a ternary treatment when the water is not too loaded.
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