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Abstract: As the application of nanotechnology increases continuously, the need for controlled
size nanoparticles also increases. Therefore, in this work, we discussed the growth mechanism of
carbon nanoparticles generated in Ar+CH4 multi-hollow discharge plasmas. Using the plasmas,
we succeeded in continuous generation of hydrogenated amorphous carbon nanoparticles with
controlled size (25–220 nm) by the gas flow. Among the nanoparticle growth processes in plasmas,
we confirmed the deposition of carbon-related radicals was the dominant process for the method.
The size of nanoparticles was proportional to the gas residence time in holes of the discharge electrode.
The radical deposition developed the nucleated nanoparticles during their transport in discharges,
and the time of flight in discharges controlled the size of nanoparticles.

Keywords: plasma chemical vapor deposition; carbon nanoparticle; coagulation; optical emis-
sion spectroscopy

1. Introduction

Carbon nanoparticles (CNPs) have attracted tremendous attention for their various ap-
plications, such as electrical conductivity improvement of polymer, lubrication applications,
cancer cell treatments, bioimaging diagnostics [1–3]. Therefore, it is essential to develop a
simple method to control the size and structure of CNPs [4–7]. The solution process is a
conventional method of producing CNPs, but this method has limitations like impurity,
unexpected agglomeration, and low throughput due to the multistage process [8–11].

The plasma process plays a promising role because it is a dry process using low
pressure resulting from reducing impurity and avoid agglomeration or coagulation due
to the charge of CNPs. However, the traditional plasma process has a problem regarding
throughput due to pulsed discharges for size control [12–14]. Traditional plasma process
has the discharge off period to wait for pumping out the particles from the gas phase,
resulting in lower throughput.

To date, we have successfully synthesized Si NPs and CNPs by using multi-hollow
discharge plasma chemical vapor deposition (MHDPCVD), which can be produced con-
tinuously by employing fast gas flow [15–23]. In this method, the gas flow direction is
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uniform in the plasma region, and NPs are nucleated and grown in plasma. The nucleated
NPs were transported toward the outside of the plasmas by viscous gas force. That results
in stopped growth outside of the plasma, which helped in the continuous production of
size-controlled NPs.

NPs synthesis by the MHDPCVD method undergoes parametric tests such as de-
pendence on gas pressure, gas flow rate, and gas composition, which are the external
parameters [15–24]. Using the MHDPCVD, crystalline Si nanoparticles of 2 nm in size with
0.5 nm in size dispersion were produced for nanocrystalline amorphous silicon films for
the third generation solar cells [15–21]. We employed two MHDPCVD sources to produce
size-controlled Si nanoparticles and to cover nitrogen on the particles. The surface-modified
nanoparticles showed multi-exciton generation, which is necessary to increase solar cells’
efficiency [18]. We recently used MHDPCVD to produce carbon nanoparticles [23–25]
and confirmed that pressure played an important role in size control [23]. These studies
revealed the essential parameters for the size control, while the growth mechanism was
unclear. Hence, in this study, we measured the CNPs size dependence on the gas flow rate
(FR) and discussed the growth mechanism of nanoparticles produced by the MHDPCVD
method.

2. Materials and Methods

Figure 1 illustrates a schematic diagram of the MHDPCVD reactor [23,24]. Powered and
grounded electrodes have 8 holes of 5 mm diameter. The powered electrode of 5 mm in
thickness was a sandwich between two grounded electrodes of 1 mm in thickness. The gap
between the powered and grounded electrode was 2 mm, and the total length of a hole
was 11 mm. Ar and CH4 gases were introduced from the chamber’s left side, passed
through the holes, and later evacuated by the pump system. The FR ratio of Ar and
CH4 was 6:1. The total FR was controlled in a range of 10–120 sccm. During this process,
gas pressure was kept at 266 Pa. The substrate holder was set at 100 mm apart from the
electrode in the downstream region, and it was grounded. The powered electrode was
connected to a 60 MHz radio frequency (rf) power supply through an impedance match-
ing box. The discharge power and discharge period were 40 W and 90 min, respectively,
and corresponding discharge and self-bias voltages were 230 and 80 V, respectively.
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Figure 1. Multi-hollow discharge plasma.

The CNPs generated in the discharges were collected by using mesh grids for a
transmission electron microscope (TEM) and Si substrates for a Raman spectroscopy.
The size and structure of CNPs were measured with TEM (JEOL, JEM-2010) and Raman
spectroscope (Jasco, NRS3000; λ = 532 nm), respectively. Optical emission from plasmas
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discharges (all eight holes) was monitored by spectroscope (Ocean Optics, USB2000+)
equipped with a collimating lens.

3. Results and Discussion

Figure 2a–d show the TEM images of CNPs as an FR parameter. With increasing FR,
the mean size of CNPs decreased from approximately 220 nm at FR = 10 sccm to 25 nm
at FR = 120 sccm. For FR = 10 sccm (Figure 2a) and FR = 20 sccm (Figure 2b), the CNPs
deposit sparsely, while they deposit densely for FR = 50 sccm (Figure 2c) and FR = 120 sccm
(Figure 2d). Additionally, the number of deposited CNPs increased with increasing FR.
This shows the flux of CNPs increases with the increase in FR. Above 50 sccm, the de-
posited CNPs were stacked, then the absolute number of the deposited CNPs were unclear.
Thus, we have evaluated the probability distribution of the CNPs for each FR.
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Figure 2. TEM images of carbon nanoparticles produced for (a) FR = 10 sccm, (b) FR = 20 sccm,
(c) FR = 50 sccm, and (d) FR = 120 sccm. Insets in (a) and (b) show their high magnification
TEM images.

Figure 3 shows the size distribution of the deposited CNPs obtained from TEM images
where dp is the CNP size (diameter). The deposited nanoparticles were stacked for FR
above 50 sccm. Thus, we estimated the probability of CNPs deposited on the mesh grid.
Two group sizes were produced for FR = 10 sccm; (1) smaller group size has a size range
between 20 and 90 nm, and (2) larger group size has a range between 170 and 250 nm.
For FR = 20 sccm, two peaks at 60 and 150 nm were detected, but these peaks overlap and
form one size group with a wide range between 30–200 nm. At the same time, one group
size was obtained for FR above 50 sccm. Therefore, as the FR increases from 50 to 120 sccm,
the peak size gradually shifts toward a smaller size from 45 to 20 nm, respectively. The size
dispersion became narrower for higher FR from 50 and 120 sccm.
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Figure 3. The size distribution of CNPs as a parameter of FR where n is the number of measured CNPs.

From the size distribution in Figure 3, we plotted a dependence of dp on FR, as shown
in Figure 4. At FR below 20 sccm, the larger-sized nanoparticles seem to be separated from
the smaller size group and grow in a monodisperse way. Similar growth behavior was
observed for Si nanoparticles in silane plasmas in the earlier study [26]. Considering the
larger size of CNPs at FR = 10 sccm, the dp decreases monotonically with increasing FR.
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To obtain the structure of the CNPs, we have measured the XRD and Raman spectra of
CNPs deposited at FR = 50 sccm. Figures 5 and 6 show the XRD and Raman spectra, respectively.
A broad peak in the XRD spectrum appears around 2θ = 20◦ and corresponds to the hydro-
genated amorphous carbon (a-C:H) [27]. Figure 6 shows a Raman spectrum of nanoparticles
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deposited on the Si substrates at 50 sccm FR. Raman spectra clearly show the separated
D (1350 cm−1), and G (1580 cm−1) bands. The area intensity ratio of D/G band was
around 1.8; this indicates the structure of the CNPs were polymer like a-C:H [25,28–30].
Similar spectra were also observed at other FRs.
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For the nanoparticle growth in the conventional CCP, the discharge duration is an
essential factor. The size of nanoparticles increasing with an increase in CCP discharge
duration [31]. The discharge duration was related to the period, which is the sum of the
nucleation time and subsequent nucleated nanoparticles’ growth time. Continuous dis-
charges sustained in holes and a low-density plasma penetrated the holes due to high
working pressure of 266 Pa. The generated CNPs were transported inside the holes by
the gas flow. The growth time of CNPs in the plasmas correlates with the gas residence
time in holes. The gas residence time τres of holes corresponds to discharge duration in
the conventional CCP. In this study, gas residence time was calculated from FR. For the
CNP, growth involves two growth processes like the coagulation of CNPs during transport
toward substrates and radical deposition on CNPs.

For the coagulation, CNPs are grown by the collision between two CNPs, as the
volume of CNPs after the collision is the sum of two CNPs volume (before the collision).
The size dp1 and number density np1 of CNPs after the collision are expressed by dp1 = 2

1
3 dp0

and np1 = np0 − 1, respectively, where dp0 and np0 are the size and density of CNPs before
the collision. To figure out the effects of the coagulation of CNPs, we examined the CNPs
deposition at three positions in the transport region. Figure 7 shows the dependence of
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the size and surface density of deposited CNPs on the position L far from the electrode.
For L = 100, 120, and 140 mm, the size is irrelevant to the position. The area density
monotonically decreases with increasing L.
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Figure 7. Dependence of the size and surface density of deposited CNPs on the position L far from
the electrode for FR = 100 sccm. Error bar shows the standard deviation.

Previously, it was reported that the flux of CNPs proportionally increases with increas-
ing the solid angle in the multi-hollow discharge plasma CVD method [24]. The solid angle
is the main factor of decreased area density, see Figure 7. The results of the size and the area
density indicate that the coagulation of CNPs was negligible. For the radical deposition,
the growth rate Gr of CNP expressed as equation 1

Gr =
ddp

dt
= 2DRr, (1)

where dp is the size (diameter) of CNPs and DRr is the deposition rate of radicals on CNPs.
If we assume the sticking probability of radicals on CNPs is unity and carbon atoms are
responsible for the mass of CNPs, the Gr is given by

Gr =
ddp

dt
=

2
ρ

mCnrvthr, (2)

where ρ is the mass density of CNPs, mC the mass of a carbon atom (2.00 × 10−26 kg),
nr the number density of the radicals in plasmas, and vthr the thermal velocity of the
radicals. The size and density of CNPs affect the radical density. The loss of radicals to
the chamber wall is dominant if their size and density are low, while the loss to CNPs is
prevalent if their size and density are high. The loss mode is determined by the coupling
parameter Γ of CNPs in plasmas [32], given by the following equation.

Γ =
1
6

d2
pn

5
3
p D3

w, (3)

where Dw is the characteristic length of the reactor. For the Γ >> 1, the coupling among
CNPs through radicals is strong, results in the deceased radical density with the time after
the nucleation of CNPs. If the coupling is weak, the wall loss of radicals is dominant,
resulting in no radical density change with the time. Further, to detect the Γ value, the np
was deduced from the result in Figure 7.

Figure 7 shows the number of deposited CNPs per µm2 during the deposition time
of 60 min. The flux of the CNPs can be calculated if the sticking probability of CNPs
is unity. Considering the solid angle, the flux at the end of the holes deduced to be
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1.30 × 1011 cm−2s−1. Raman results show that the structure of CNPs was polymer-like
carbon, and the mass density of the CNPs was assumed 1.6 g/cm3. If the temperature
of CNPs equal to that of the electrode (433 K), the np was 1.20 × 109 cm−3, and dp was
25 nm, as shown in Figure 6. Dw (Dw = 2.5 mm) assumed as the radius of hole, then Γ
was 6.78 at the end of the discharge region. In the discharge region, the size of CNPs
was smaller than 25 nm, and Γ value should be less than one. It suggests that the loss of
radicals through the wall was predominant, which results in a constant rate of radical loss.
To discuss the generation of the radicals, we have measured emission spectra in plasma.
We measured two Ar I emission intensities at 425.9 nm I425.9 and 750.4 nm I750.4 with upper-
level excitation energy of 14.7 eV (3p1) and 13.5 eV (2p1), respectively. These emission
processes have little effect on quenching and radiation trapping. The upper excitation
level has small cross sections for electron-impact excitation from metastable states [33,34].
The FR dependence of an emission intensity ratio I425.9/I750.4, shown in Figure 8.
The ratio indicates the information of the high energy tail of the electron energy distribution,
which relates to the radical generation.
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Although the ratio is irrelevant to FR, as shown in Figure 8, the discharge voltage for
each FR condition is almost the same, suggesting the electron density was irrelevant to
the FR. These results indicate that the generation rate of radicals is unrelated to the FR.

In the steady state, the nr is proportional to the density of CH4 because the electron
density and the loss rate of the radicals can be assumed to be constant based on the
above discussion. Integrating Equation (2), the following formula gives the CNP size.

dp =
2
ρ

kmCnCH4vthrt, (4)

where k is the ratio of generation rate and loss rate of radicals in the steady state, nCH4
the density of CH4, and t the interaction time of CNPs and radicals. The k value is related
to the depletion rate of the CH4 molecules. In the current study, CNPs were nucleated
in the discharge generated in the holes of the electrode. They grew in the discharge,
transport with the gas flow, and growth was stopped outside the holes. We assumed that
the growth of CNPs starts when the CH4 molecules enter into the holes where plasmas
were generated. Thus, dp was assumed to be equal to zero at t = 0, and the growth of CNPs
stops at t = τres. Figure 8 shows the dependence of dp on τres, based on FR dependence,
together with the results reported earlier [23]. Considering the larger size of CNPs for
FR = 10 sccm, the size of CNPs linearly increases with increasing the τres. In this study,
nCH4 and vthr was 6.36 × 1021 m−3 and 8.24 × 102 m/s, respectively. The calculated value
using Equation (4) as a parameter of k and the experimental results were well fitted for
k = 0.035 (Figure 9). For the conventional CCP, the depletion rate of CH4 was about 3% for
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1.33 Pa pure CH4 gas and 0.15 W/cm2 in discharge power density [35]. The depletion rate
monotonically increases with CH4 pressure.
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For the MHDPCVD, the discharge power density was 6.4 W/cm2, much higher than
the conventional plasma CVD (above-mentioned), and the partial pressure of CH4 was
38 Pa. The radical loss to CNPs was small but cannot be ignored as it affects the Γ value.
Thus, the fitted value of k is reasonable. Based on our results, the CNP in MHDPCVD was
grown by the deposition of carbon-related radicals.

4. Conclusions

Through this work, we succeeded in synthesizing the size controlled CNPs using
the Ar +CH4 MHDPCVD method continuously. The control range of the mean size was
from 25 to 220 nm. We observed that size was proportional to the gas residence time
in the discharges maintained in the electrode’s holes. We theoretically confirmed that
CNPs were grown by the deposition of radicals during the discharges’ transport of CNPs,
and CNPs move through gas flow in the discharges. The duration of the CNP transport in
the discharge corresponds to the gas residence time. Therefore, the CNP size control using
the MHDPVCD is a type of time of flight size control.
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