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Abstract: With the vigorous promotion of new energy sources and the development of vehicle-to-
grid (V2G) technology, the influence of the V2G mode should be considered in the joint optimal
allocation of Distributed Generation (DG) and electric vehicle charging stations (EVCSs). The timing
characteristics of the intermittent output of DG, conventional demand for load, and charging load
of the electric vehicle (EV) are considered, as is its participation in grid interaction to examine the
construction of typical scenarios and the EV cluster dispatching strategy. From the perspective of
comprehensively planning the coordination of the distribution network, a DG-EVCSs bi-level joint
planning model is established under the peak and valley price mechanism, with the sub-objectives
of obtaining a comprehensive profit and high quality of voltage, curbing system load fluctuations,
and satisfactorily charging the EV. An improved harmony particle swarm optimization algorithm
is proposed to solve the bi-level model. The proposed method was tested on the IEEE-33 and the
PG&E-69 (Pacific Gas and Electric Company) bus distribution systems, and the results show that the
optimized configuration model that considers the V2G mode can improve the overall performance of
the planning scheme, promote the use of clean energy, smoothen the load fluctuations of the system,
and improve the quality of voltage and charging satisfaction of EV users.

Keywords: distributed power supply; EV charging station; V2G mode; peak and valley electricity
prices; cluster dispatching

1. Introduction

With increasing concerns about environmental pollution and the use of fossil fuels for
energy, a growing number of applications are being proposed for distributed generation
(DG) and electric vehicles (EV) [1–4]. The interconnection between large-scale distributed
generation and electric vehicle charging stations (EVCSs) is expected to have an impact on
the security and reliability of the distribution network. Therefore, the optimal allocation of
DG and EVCSs has received extensive research attention in recent years.

The authors of [5] proposed a mixed-integer linear programming model to solve the
problems of planning electrical distribution systems and allocating EVCSs, and proposed
a robust optimal allocation scheme for the latter. An analytical expression was proposed
in [6] for the evaluation of DG site selection schemes and involved transforming the random
mixed-integer nonlinear programming problem into a deterministic integer problem to
solve the DG programming problem. The work in [7] proposed an optimal allocation
model of EVCSs, with the goal of minimizing the total annual cost of the charging system.
In view of the complexity of the optimization model, a two-step equivalence method was
proposed to transform the optimization model into a mixed-integer second-order cone
programming problem through equivalence and precision relaxation. The capacity of the
EVCSs was determined by considering the impact of traffic flow in [8], and the charging
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requirements of the infrastructure were integrated into the model to evaluate the economics
of candidate schemes.

The above research originated in the separate planning of DG and EVCSs, without
considering the coordination between them. The joint planning of DG and EVCSs is
conducive to promoting the complementarity between the time-series characteristics of
the output of DG and the charging load, to realize the on-site consumption of DG by EVs
and improve the permeability of DG. Based on this, the authors of [9] designed a regional
EVCSs system using wind power, photovoltaic, and energy storage systems. The minimum
operational cost was taken as the objective function, and support vector regression was
used to predict the on-grid price and the electricity market price. A two-stage stochastic
programming model of EVCSs and photovoltaics was established in [10], and a generalized
Benders decomposition algorithm was proposed to solve it. The work in [11] developed a
grasshopper optimization algorithm to optimize the allocation of DG and EVCSs to reduce
energy loss and improve the coefficient of voltage stability of the system.

With the development of vehicle-to-grid (V2G) technology, EVs will be connected to
the grid as a controllable load and a mobile energy storage device and will participate in
the dispatching of the power grid. The V2G mode will have an impact on power flow,
network loss, the voltage quality. However, the research in [9–11] did not consider the
influence of the V2G mode on distribution network planning, where this is important for
engineering applications [12,13].

In this paper, a bi-level optimal allocation model for DG-EVCSs is established, consid-
ering the interaction between electric vehicles and the distribution network. The k-means++
clustering algorithm is used to establish typical daily scenarios of the wind-photovoltaic
load. Based on the charging model for the electric vehicle, the bi-level optimal allocation
model of DG-EVCSs is established by considering the peak and valley prices. At the upper
planning level, an objective function is established based on comprehensive profit, voltage
quality, the fluctuation in system load, and EV charging satisfaction. At the lower EV cluster
scheduling level, the power flow is optimized in each typical scenario through the orderly
management of the charging and discharging of the EV. The improved harmony particle
swarm optimization (I-HSPSO) algorithm is proposed to solve the bi-level programming
model. Finally, simulations based on the IEEE-33 bus distribution network and the PG and
E-69bus distribution network are used to verify the effectiveness of the proposed model
and its solution.

2. Construction of Typical Wind-Photovoltaic Load Scenarios

Distributed wind generation (DWG), photovoltaic generation (PVG), and load feature
high uncertainty. The outputs of DWG and PVG are mainly affected by natural factors,
such as wind speed and solar irradiance. The sampling period of wind speed is 15 s, but
the period of photovoltaic and load data can only be 1 h, so all the data frequency is taken
as 1 h. The wind speed, solar irradiance, and conventional demand for load for 8760 h a
year in the planning area are presented in Figure 1.
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Figure 1. Curves of wind speed, light intensity, and demand for load.

It is clear from Figure 1 that the wind speed is high, and fluctuates significantly in
spring and winter, and the solar irradiance in summer is clearly stronger than that in
the other seasons. The conventional demand for load is higher in summer and winter.
Therefore, it is necessary to consider the sequential temporal fluctuation in typical wind-
photovoltaic load scenarios when planning the distribution network.

To avoid excessive calculations in the model, we use the k-means++ clustering algo-
rithm [14] to optimize the scenario based on historical data for the planning area. Represen-
tative typical scenarios are thus extracted, and the validity of the results of clustering was
verified based on the pseudo F-statistic (PFS) [15] to improve the computational efficiency
of the model, while ensuring the distribution characteristics of the original scenarios.

The outputs of photovoltaic and wind power are closely related to wind speed and
solar irradiance, respectively, and can be expressed as follows [16]:

PPV =

{
PP

h
hs

h ≤ hs

PP h > hs
, (1)

where PPV indicates the output power of PVG, PP indicates the rated output of photovoltaic
power, h and hs, respectively, indicate the actual solar irradiance and the rated solar
irradiance.

PDW =


0 0 ≤ v < vi or vo ≤ v
PD

v−vi
vs−vi

vi ≤ v < vs

PD vs ≤ v < vo

, (2)

where PDW indicates the output power of DWG, PD indicates the rated output of wind
power, v indicates the actual wind speed, vi indicates the cut-in wind speed, v0 indicates
the cut-off wind speed, and vs indicates the rated wind speed.

3. Charging and Discharging Model of EV in V2G Mode

There are four common types of EVs: buses, taxis, commercial cars, and private cars.
According to the forecasts of vehicle ownership in 2020, there were a between 784,600 to
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959,900 buses, 18,776 to 2,294,800 taxis, 8,022,000 to 9,805,200 business cars, and 74,687,400
to 91,284,600 private cars in China [17].Assuming that the ratio of the number of private
electric cars to the total number of private cars is 10%, and the ratio of the number of each of
other types of electric vehicles to the total number of respective vehicles in their categories
is 15%, we can estimate that the ratio of number of electric buses, electric taxis, electric
business cars, and electric private cars is 1: 2.4: 10.2: 63.5.

The charging mode of the EV is influenced by the initial state of charge (SOC), charging
mode, charging power, and charging time. In addition, the demands for charging different
types of EV are different. For example, the power consumption per 100 km of private
electric vehicles is 20~30 kW·h and the battery capacity is 32 kW·h. The rechargeable
period for private electric vehicles can be divided into a rest period at night and a work
period during the day, namely 18:00~7:00 h and 8:00~17:00 h, respectively, and the charging
power is 7 kW. The initial durations of charging for the two periods respectively satisfy the
normal distributions N (9, 0.52) and N (19, 1.52). The modes and parameters of charging of
the other types of electric vehicles are provided in [17].

In this paper, the Monte Carlo simulation was used to calculate the required duration
of charging of the EV, which is expressed as Tf:

Tf =
(SOCe − SOC0)

η · Pe
· Ee · 60, (3)

where SOCe indicates the percentage of batter capacity after charging, SOC0 indicates the
percentage before charging, η indicates the charging efficiency, Pe indicates the charging
power, and Ee indicates the battery capacity.

The EV charging limit time Tlim is determined according to the chargeable period of
each type of EV, and the actual EV charging time is Tcd = min (Tf, Tlim).

With large-scale EVs in parallel in the grid, grouping electric vehicles into clusters and
using cluster scheduling can help reduce the difficulty of system scheduling. For large-scale
EVs, the daily charging mode has a certain rule of distribution. We thus developed a cluster
scheduling strategy based on the EV charging model.

To participate in the V2G process, a number of complex factors need to be considered
for buses, taxis, and official vehicles including operational needs and corporate willingness,
while the participation of private cars depends on the willingness of their owners. Therefore,
we used private electric cars as the object of scheduling of V2G to participate in EV cluster
scheduling. The other three types of electric vehicles still used the plug-and-charge disorder
charging mode.

The grid-connected time of the EV Tstar, required charging time Te, and off-grid time
Tend are selected as the discriminant bases for EV cluster division, and the process consists
of three steps:

(1) According to the willingness of the users, EVs can be divided into two categories:
owners willing to participate in V2G and owners unwilling to participate in V2G.

(2) The required charging time of the EV Tf for the willing-to-participate group is cal-
culated. If Tf is less than the charging time limit Tlim, the given of EV is classed
in the same cluster as the unwilling-to-participate group owing to its lack of V2G
capabilities.

(3) We cluster EVs the owners of which were willing and able to participate in V2G
according to Tstar, Te, and Tend. For example, when an EV was connected to the grid
from 18:00~19:00 h, the charging time was three to four h, and the off-grid time was
7:00 h the next day. Such EVs were placed in the same cluster.

The total grid-connection time of the EV is set to Ttotal. To avoid the loss of battery
owning to frequent charging and discharging, the maximum daily discharge frequency of
EVs under the V2G mode was set to one. The discharge operation was not allowed until
the initial charging of the EVs was complete, and the discharge was terminated before
reaching the maximum allowable discharge level. Then, secondary charging was performed
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according to the scheduling instructions until charging was terminated. The charging and
discharging time distributions of the EV are shown in Figure 2. Tdelay indicates the first
delay in charging, Tdelay2 indicates the delay, Tdelay3 indicates the second delay, Te and Te2,
respectively, indicate the charging and discharging times, Te3 indicates the second charging
time, and Tend indicates the off-grid time of the EV.
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For different clusters of the EV, the EV cluster scheduling strategy can be formulated
by setting Tdelay, Tdelay2, Tdelay3, Te2, and Te3.

4. Bi-Level Optimization Model

The bi-level model is a hierarchical system optimization model, in which the upper
and low levels have their own mathematical models. We use programming as the upper
level and EV cluster scheduling as the lower level to build a multi-objective optimization
model of DG and EV charging stations.

4.1. Mathematical Model of the Upper Level

The decision variables of the upper level planning problem are the locations and
capacity of DG and EVCSs. A multi-objective optimization model is established with
the objective of obtaining the maximum overall profit, optimal voltage quality, minimum
fluctuations in system load, and the maximum charging satisfaction of the EV.

Comprehensive profit F1

maxF1 = CSS + CB − Cinv − COM − Closs + Cenv, (4)

where CSS indicates the profit of the distribution company, CB indicates the subsidy from
the government for renewable energy sources, Cinv indicates the investment on intermittent
DG and EVCSs, COM indicates the maintenance fee for DG and EVCSs, Closs indicates
the cost of network loss, and Cenv indicates the environmental profit due to the use of
clean energy.

CSS =
ks

∑
l=1

Tl

24

∑
t=1

(
co(t) · Pl,t,L − ci(t) · (Pl,t,L − Pl,t,DWG − Pl,t,PV + Pc

l,t,EV
− Pd

l,t,EV
)+

(ce(t) · Pc
l,t,EV
− cf(t) · Pd

l,t,EV
− cb · Pd

l,t,EV
)

)
, (5)

where co(t), ci(t), ce(t), and cf(t), respectively, indicate the sale price of electricity charged
by the distribution company, the price it pays, the unit charging cost of EVCSs, and the
discharge compensation coefficient at time t. ks indicates the number of typical scenarios,
Tl indicates the probability for lth typical scenario obtaining, Pl,t,L, Pl,t,DWG and Pl,t,PV,
respectively, indicate the load demand, output power of DWG, and output power of PV at
time t, Pcl,t,EV and Pdl,t,EV, respectively, indicate the charging and discharging powers of
the EV at time t, and cb indicates the compensation coefficient of battery loss.

CB =
ks

∑
l=1

Tl

24

∑
t=1

(cb,DWGPl,t,DWG+cb,PVPl,t,PV), (6)

where cb,DWG and cb,PV respectively indicate unit subsidies from the government for DWG
and PV.

Cinv =

(nDWG

∑
j=1

ct1Pj,DWG +

nPV

∑
j=1

ct2Pj,PV +

nEV

∑
j=1

(cg + ct3Pj,EV)

)
· r(1 + r)n1

(1 + r)n1 − 1
, (7)
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where nDWG, nPV, and nEV, respectively, indicate the number of candidate nodes for DWG,
PVG, and EVCSs, Pj,DWG, Pj,PV, and Pj,EV, respectively, indicate the capacity for DWG,
PVG, and EVCSs at node j, ct1, ct2, and ct3, respectively, indicate the costs of construction
of unit capacity of the DWG, PVG, and EVCSs, cg indicates the fixed investment cost of
EVCSs, r indicates the discount rate, and n1 indicates the service life of the equipment.

COM =
ks

∑
l=1

Tl

24

∑
t=1

(com1Pl,t,DWG + com2Pl,t,PV) +

nEV

∑
j=1

(com3Pj,EV), (8)

where com1 and com2 respectively indicate the unit maintenance fees for DWG and PVG,
and com3 indicates the amortized unit maintenance fee for EVCSs.

Closs =
ks

∑
l=1

Tl

24

∑
t=1

coPl,t,loss, (9)

where Pl,t,loss indicates the system loss at time t.

Cenv =
ks

∑
l=1

Tl

24

∑
t=1

(
(Pl,t,DWG + Pl,t,PV)

Nenv

∑
s=1

xs(as + bs)+
Pl,t,EV

eEV
cco2∆

)
, (10)

where Cenv indicates the social welfare of renewable energy sources and reduced emissions
due to EVs, Nenv indicates the types of pollutant gases, xs, as, and bs, respectively, indicate
the emission levels of the sth kind of pollution gas, eEV indicates the energy consumed by
an EV over 100 miles, cco2 indicates the CO2 trading tax fee in the international market,
and ∆ indicates the difference between EVs and conventional vehicles.

Voltage quality F2

maxF2 =
ks

∑
l=1

Tl
365 · 24

Z

∑
i=1

24

∑
t=1

(Ui(t)−Uimin)

(Uir −Uimin)
· (Uimax −Ui(t))|Pi(t)|

(Uimax −Uir)
Z
∑

j=1

∣∣Pj(t)
∣∣ , (11)

where Z indicates the number of system nodes, Uir indicates the voltage rating at node i,
Pi(t) indicates the injected active power at the i-th node at time t, Ui(t) indicates the voltage
of the i-th node at time t, and Uimax and Uimin, respectively, indicate the upper and lower
limits of voltage at the i-th node.

System load fluctuation F3

minF3 =
ks

∑
l=1

Tl
365

√√√√√ 24
∑

t=1
(Pl,t,e − Pl,ave)

2

24
, (12)

Pl,t,e = Pl,t,L + Pl,t,EV − Pl,t,DG, (13)

where Pl,t,e indicates the equivalent load of the system at time t under scenario l, and Pl,ave
indicates its average load under scenario l.

Charging satisfaction of EVF4

maxF4 =
ks

∑
l=1

Tl
365

(
α1 · cl,wcd + α2 ·

1
cl,cb

)
, (14)

where cl,wcd indicates the completion of charging of the EV cluster under scenario l, cl,cb
indicates the unit charging cost of the EV cluster under scenario l, and α1 and α2 respectively
indicate the weight of complete charging and unit charging cost satisfaction.
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The above four objective functions are normalized as follows:

f ∗i =

{
Fi/Fmax

i i = 1, 2, 4
Fmin

i /Fi i = 3
, (15)

where f ∗i indicates the normalized value of the sub-objective function Fi, and Fmax
i and

Fmin
i indicate the optimal values of the subobjective function in the optimization process.

The multiple objective functions were aggregated into comprehensive evaluation
indices maxf U by linear weighting:

max fU =
4

∑
i=1

wi · f ∗i , (16)

where wi indicates the weight of the sub-objective function f ∗i . In this paper, the weight
coefficient of the sub-objective function is determined based on the Analytic Hierarchy
Process (AHP) [18].

The constraints on the upper-level optimization model are:

PDGi ≤ Pmax
DGi

, (17)

∑ PDGi ≤ Pmax
DG , (18)

Pmin
EVi
≤ PEVi ≤ Pmax

EVi
, (19)

where PDGi indicates the installed capacity of DG at node i, Pmax
DGi indicates the installed

capacity limit of DG at node i, Pmax
DG indicates the limit of the total installed capacity of

DG in the system, PEVi indicates the installed capacity of the EVCSs at node i, and Pmax
EVi

and Pmin
EVi , respectively, indicate the upper and lower limits of the installed capacity of the

EVCSs at node i.

4.2. Mathematical Model of the Lower Level

Based on DG and the EVCSs planning scheme determined by the upper level, the
lower layer formulates the cluster scheduling strategy for the EVs, and manages their
charging and discharging in an orderly manner to achieves the optimal overall operation
of the system. The objective function of the lower level can be expressed as:

max fL = w1 · f ∗l,1 + w2 · f ∗l,2 + w3 · f ∗l,3 + w4 · f ∗l,4, (20)

Fl,1 = Cl,S + Cl,B − Cl,OM − Cl,loss + Cl,env, (21)

Fl,2 =
1

24

Z

∑
i=1

24

∑
t=1

(Ui(t)−Uimin)

(Uir −Uimin)
· (Uimax −Ui(t))|Pi(t)|

(Uimax −Uir)
Z
∑

j=1

∣∣Pj(t)
∣∣ , (22)

Fl,3 =

√√√√ 24

∑
t=1

(Pl,t,e − Pl,ave)
2/24, (23)

Fl,4 = α1 · cl,wcd + α2/cl,cb, (24)

where f ∗l,1, f ∗l,2, f ∗l,3, and f ∗l,4, respectively, indicate the normalized values of the comprehen-
sive profit index Fl,1, the voltage quality index Fl,2, the system load fluctuation index Fl,3,
and the EV charging satisfaction index Fl,4.

The constraints on the lower-level optimization model are:
Pi −Ui ∑

j∈i
Uj(Gij cos θij + Bij sin θij) = 0

Qi −Ui ∑
j∈i

Uj(Gij sin θij − Bij cos θij) = 0
, (25)
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Uimin ≤ Ui ≤ Uimax, (26)

Iij ≤ Imax
ij , (27)

SOCmin ≤ SOC ≤ SOCmax, (28)

SOCend ≤ SOCex, (29)

Tdelay + Te + Tdelay2 + Te2 + Tdelay3 + Te3 ≤ Ttotal, (30)

where Pi and Qi, respectively, indicate the injected active power and the injected reactive
power at the i-th node, Ui and Uj, respectively, indicate the voltage at the i-th node and
the j-th node, Gij, and Bij, respectively, indicate the conductance and susceptance between
the i-th and the j-th nodes, θij indicates the difference in voltage angle between the i-th
and the j-th nodes; Uimax and Uimin, respectively, indicate the upper and lower limits of
voltage at the i-th node, Iij indicates the actual current through the branch ij, Imaxij indicates
the maximum current through the branch ij, SOCmax and SOCmin, respectively, indicate
the upper and lower limits of battery capacity, SOCex indicates the expected value of SOC
at the end of charging, and SOCend indicates the actual value of SOC when the EV is off
the grid.

5. Optimal Solution of the Proposed Bi-Level Model
5.1. Improved Harmonic Particle Swarm Optimization

Particle swarm optimization (PSO) simulates the principle of foraging by a swarm of
birds and has the advantages of simple calculation and strong directionality [19]. However,
the global search ability of the PSO algorithm is poor, and it can easily fall into the local
optimum in the later stage. Therefore, this paper optimizes the PSO algorithm to improve
its convergence-related.

Chaos is a kind of irregular state of motion with strong nonlinearity. The initialization
of the particle swarm by introducing a chaos variable is beneficial for generating a more
uniform initial particle swarm. To improve the ergodic property of the initial particle in the
search space, chaotic initialization is carried out on the particle swarm:

xi,j = xmin
j + (xmax

j − xmin
j )χi,j, (31)

χi,j+1 = λ · χi,j(1− χi,j), (32)

where xi,j indicates the j-dimension value of particle i, xmax
j and xmin

j , respectively, indicate
the upper and lower limits, xi,j indicates the sequences of chaotic variables generated by
the logistic model, the chaotic parameters λ is set to four.

Of the PSO parameters, the optimization of the inertial coefficient ω is beneficial
for balancing the global and the local search capabilities of the PSO algorithm. The
optimization is expressed as follows:

ω =
ωmax −ωmin

2
· cos(π · t/TPSO) +

ωmax + ωmin

2
, (33)

where ωmax and ωmin, respectively, indicate the upper and lower limits of the inertial
coefficient, t indicates the number of iterations at the given time, and TPSO indicates the
maximum number of iterations.

The learning coefficients c1 and c2, respectively, reflect the self-cognition ability and
social cognition ability of the particle. The optimization of the learning coefficient can
strengthen the self-learning ability of the particle swarm in the initial stage to avoid falling
into the local optimum, and improves its ability to learn from the optimal solution for the
group to find the optimal solution:{

c1 = c1max + t(c1min − c1max)/TPSO
c2 = c2min + t(c2max − c2min)/TPSO

, (34)
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The harmony search (HS) principle is introduced in this paper. Although the directivity
of the HS algorithm is not strong, it has the characteristic of expanding the search range in
the later stage of execution. Therefore, a novel combination harmony principle of the HS
algorithm is introduced to the particle optimization process of the PSO algorithm, and the
optimal particle is found within the search space with a certain probability in each iteration
to improve the performance of the algorithm in terms of global search.

The flow of calculation of the improved harmony search particle swarm optimization
(I-HSPSO) is shown in Figure 3.
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5.2. Flowchart of Bi-Level Programming Model

The flow of the bi-level optimization model established in this paper is shown
in Figure 4.

The bi-level optimization model is solved based on the I-HSPSO algorithm, where the
upper level makes decisions on site selection and capacity determination of DG and the
EVCSs, and the lower level formulates the scheduling strategy for each EV cluster. At the
lower level, the charging and discharging of the EV are managed in an orderly manner to
optimize power flow in each typical scenario, and the optimal solution maxf L is fed back
to the upper level, where the optimal solution maxf U of the overall objective function is
calculated according to the scheme and maxf L to obtain the optimal scheme for DG and
the EVCSs.
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Figure 4. Flowchart of bi-level programming model.

6. Case Study
6.1. Parameters of the IEEE-33 Bus Test System

In this paper, the IEEE-33 bus test system was used for a simulation analysis of the
proposed DG-EVCSs planning, and is shown in Figure 5. The system parameters are
described in [20].
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Figure 5. IEEE 33-bus distribution network.

It was assumed that the number of EVs in the planning area was 900, and that they
were evenly distributed among sub-stations. According to the ratio of each type of EV,
the number of private electric vehicles was 740. It was assumed that the ratio of EV users
willing to participate in the V2G mode was 90%, efficiency of charging and discharging
efficiency was 90%, charging and discharging power was 7 kW, and the compensation
coefficient of battery loss was 0.854 CNY/kWh. The peak and valley prices were used
to calculate the prices of electricity for the distribution network and the EVCSs, and the
values are shown in Table 1.
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Table 1. Peak and valley price.

Electricity Cost
Price/(CNY/kWh)

Electricity Sale
Price/(CNY/kWh)

Charging Cost of
EV/(CNY/kWh)

Discharge Compensation
Coefficient/(CNY/kWh)

Peak time 0.6129 1.11 1.5 2.20
Normal time 0.4430 0.68 1.0 1.23
Valley time 0.2189 0.35 0.75 0.35

For the IEEE-33 bus test system, the DWG candidate nodes were nodes 13, 23, and 31,
the PV candidate nodes were nodes 7, 21, and 28, and the EVCSs candidate nodes were
nodes 4, 8, 14, 20, and 29. The weights of the completion of charging and unit charging
cost satisfaction α1 and α2 were 0.4 and 0.6, respectively. The weight coefficients of the
sub-objective function w1, w2, w3, and w4 are 0.375, 0.125, 0.125, and 0.375, respectively.
The rated power for DG was 100 kW, the cut-in wind speed, rated wind speed, and cut-off
wind speed of DWG were 13.5 m/s, 3 m/s, and 20 m/s, respectively, and the rated solar
irradiance of PV was 1 kW/m2. The government subsidy cb,DWG was 0.1 CNY/kWh
and cb,PV was 0.36 CNY/kWh. The capacity construction costs ct1, ct2, and ct3 were
5381 CNY/kWh, 4735 CNY/kWh, and 6000 CNY/kWh, respectively. The fixed investment
cost of the EVCSs is 3,000,000 CNY. The service life of the equipment n1 was 20 years,
and the discount rate was 8%. The unit maintenance fees were com1 = 0.0296 CNY/kWh
and com2 = 0.0096 CNY/kWh, and the amortized unit maintenance fee for the EVCSs was
100 CNY/kWh. The energy consumed by an EV over 100 miles was 21.5 kWh, the CO2
trading tax fee in the international market was 80 CNY/ton, and the difference between
the EVs and conventional vehicles over 100 miles ∆ was 7 kg. The cost parameters of
environmental pollution are shown in Table 2.

Table 2. Cost parameters of environmental pollution.

Contaminant xs/(kg/MWh) as/(CNY/kg) bs/(CNY/kg)

CO2 639.2 0.01 0.02
SO2 3.587 1.00 6.00
NOx 1.544 2.00 8.00

The four typical scenarios of wind speed, solar irradiance, and conventional demand
for load, obtained based on the maximum principle of the pseudo F-statistic (PFS), are
shown in Figure 6. Based on the uncertainty of wind power and light, four typical scenarios
constructed in this paper represent the fluctuations of wind speed and light throughout
the year.
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6.2. Analysis of Results

The following three schemes were used for the optimization for DG and the EVCSs.
Scheme 1: Multi-objective planning model of the DG-EVCSs in V2G mode.
Scheme 2: Multi-objective planning model of the DG-EVCSs in the plug-and-charge

charging mode.
Scheme 3: Planning model of the DG-EVCSs in V2G mode maximize comprehensive

profit.
The results of the optimization of the DG-EVCSs, based on the above three schemes,

are shown in Table 3. It lists the optimal planning schemes determined using the time
frame of year, including the four scenarios shown in Figure 6. The corresponding DG
consumption and charging load acceptance under the three schemes are shown in Table 3.

Table 3. Optimal results of allocation of different schemes.

Scheme Optimal Allocation Results Capacity/kW

Scheme 1
DG 13(10).23(8).31(10).7(7) 3500

EVCSs 20(309).4(254).8(288).14(211).29(296) 1358

Scheme 2
DG 13(10).23(6).31(7).28(7) 3000

EVCSs 20(290).4(150).8(387).14(248).29(173) 1248

Scheme 3
DG 13(8).23(3).31(9).7(1).21(9).28(7) 3700

EVCSs 20(327).4(293).8(348).14(202).29(291) 1461

In the DG planning scheme, 13(10) indicates that 10 distributed generators were
installed in node 13, and in the EVCSs planning scheme, 20(309) indicates that the capacity
of the charging station at node 20 was 309 kW.

The comprehensive evaluation indices of the three schemes are shown in Table 4.
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Table 4. Comprehensive evaluation indices of the three schemes.

Scheme Scheme 1 Scheme 2 Scheme 3

Comprehensive profit/10,000 CNY 1199.238 1204.678 1251.675
Voltage quality/pu 0.845 0.831 0.823

System load fluctuation/kW 504.026 530.489 662.976
Charging satisfaction of EV/% 0.911 0.840 0.866

Comprehensive evaluation indices/pu 0.933 0.897 0.899

According to the data in the table, the comprehensive evaluation of Scheme 1 was the
best, while that of Scheme 2 was similar to the evaluation of Scheme 3.

The specific indicators of the comprehensive benefits of the three schemes are shown
in Table 5, and those of EV charging satisfaction are shown in Table 6.

Table 5. Specific indicators of comprehensive benefits.

Scheme Scheme 1 Scheme 2 Scheme 3

Electricity sale benefits/10,000 CNY 1514.417 1514.417 1514.417
Charging station sales revenue/10,000 CNY 550.484 603.089 668.442

Electricity purchasing cost/10,000 CNY 587.752 648.469 658.807
Investment and construction cost/10,000 CNY 422.985 388.860 433.661

Maintenance cost/10,000 CNY 47.442 41.756 41.501
Government subsidy benefits/10,000 CNY 144.806 130.280 167.040

System network loss cost/10,000 CNY 38.979 40.556 42.882
Environmental benefits/10,000 CNY 86.689 76.533 78.627

Table 6. Specific indicators of EV charging satisfaction.

Scheme Scheme 1 Scheme 2 Scheme 3

Charging completion of EV/% 86.162 80.139 88.299
Unit charging cost of EV/(CNY/kWh) 1.060 1.155 1.171

Compared with Scheme 2, Scheme 1 took into account the V2G effect of the EVs,
which helped manage their charging and discharging in an orderly manner, optimize
power flow, and improve the consumption capacity of the distribution network to DG.
The clean energy consumption of the three schemes is shown in Table 7. Compared with
Scheme 2, the planning capacity of Scheme 1 increased by 500 kW, and the consumption
of DG increased by 1530 MWh. The increase in DG consumption increased the costs of
investment, construction, and maintenance of Scheme 1, but also increased income from
government subsidies income and reduces the cost of power from the distribution company
owing to the superior power grid.

Table 7. Clean energy consumption.

Scheme Scheme 1 Scheme 2 Scheme 3

Consumption of DG/MWh 12,067 10,537 10,656
Total acceptance of charging load/MWh 5612 5220 5751

When the capacities of the EVCSs of the two schemes were compared, the planned
capacity of Scheme 1 was found to be higher than that of Scheme 2. Compared with
the plug-and-charge charging mode, the V2G mode was more conducive to promoting
the acceptance of charging load. Therefore, the EV charging completion of Scheme 1
was 6.023% higher than that of Scheme 2, and its charging load acceptance increased by
392 MWh.
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In terms of environmental benefits, Table 7 shows that the scheme considering the
V2G mode was conducive to promoting the consumption of DG and the charging load and
improving the consumption of clean energy in the distribution network.

In terms of the cost of network loss, compared with Scheme 2, the cost of Scheme
1 was reduced by 3.89%, which indicates that appropriate management of charging and
discharging can optimize the power flow and reduce network loss.

In terms of EV charging satisfaction, Scheme 2 used the plug-and-charge charging
mode, and thus its unit charging cost was high. Scheme 1 responded to the peak and valley
prices by scheduling the charging and discharging loads of the EV; its unit charging cost
was thus 8.23% lower than that of Scheme 2. The reduction in unit charging cost and the
increase in EV charging completion resulted in a 7.1% increase in EV charging satisfaction
in Scheme 1.

Compared with Scheme 1, Scheme 3 considered only the comprehensive benefits, and
mainly increased them by expanding the acceptance of EV charging load while ignoring
voltage quality and load fluctuation. Because Scheme 3 did not take into account EV
charging satisfaction, the demand or it by EV users could not be guaranteed, and the
unit charging cost was relatively high. Although the comprehensive benefits increased by
524,370 CNY, the higher charging cost led to a decrease in the willingness of EV users to
participate in V2G.

In terms of the system load fluctuation index, the net load fluctuation surfaces of the
three schemes are shown in Figure 7.
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As shown in Figure 7, the surface of the net load fluctuation of Scheme 1 was the
smoothest, and its load fluctuation index was 4.99% lower than that of Scheme 2, which
indicates that load fluctuation was suppressed in the V2G mode. In Scheme 3, the excessive



Processes 2021, 9, 18 15 of 18

acceptance of charging load led to the most serious fluctuation in net load. The load
fluctuation index of Scheme 3 reached 662.976 kW, an increase of 31.54% compared with
Scheme 1. The voltage quality of Scheme 1 was the highest, whereas the disordered access
of charging loads in Scheme 3 not only aggravated the fluctuation of system load, but also
causes further deterioration in voltage quality.

6.3. Case Study Using PG and E-69 Bus Test System

To further verify the effectiveness of the optimization model proposed in this paper,
the PG and E-69 bus test system, shown in Figure 8, was used. The system parameters are
described in [21].
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For the PG and E-69 bus test system, the DWG candidate nodes were nodes 10, 33,
and 38, the PV candidate nodes were nodes 21, 50, and 66, and the EVCSs candidate nodes
were nodes 14, 32, 40, 45, and 61. The results of optimization of DG and the EVCSs of the
three schemes are shown in Table 8, and the corresponding objective functions are shown
in Table 9.

Table 8. Optimization results.

Scheme Optimal Allocation Results Capacity/kW

Scheme 1
DG 10(9).33(2).38(10).21(1).50(5).66(4) 3100

EVCSs 14(259).31(237).40(257).45(258).61(299) 1310

Scheme 2
DG 10(6).33(2).38(10).21(3).50(10) 3100

EVCSs 14(232).31(187).40(245).45(150).61(242) 1056

Scheme 3
DG 33(7).38(10).21(8).50(10).66(10) 4500

EVCSs 14(442).31(439).40(331).45(308).61(389) 1909

Table 9. Comprehensive evaluation index.

Scheme Scheme 1 Scheme 2 Scheme 3

Comprehensive profit/10,000 CNY 1147.366 1202.422 1320.579
Voltage quality/pu 0.990 0.989 0.987

System load fluctuation/kW 492.478 524.166 866.618
Charging satisfaction of EV/% 0.904 0.829 0.870

Comprehensive evaluation indices/pu 0.905 0.880 0.886

According to the data in the table, the comparative advantages and disadvantages of
the three schemes were similar to the results of optimization of the IEEE-33 bus test system,
and Scheme 1 was the optimal scheme. Based on the results of the PG and E-69 bus test
system, the validity of the model proposed in this paper was verified again. The difference
between different regions or countries is mainly reflected in the peak or valley electricity
prices, which does not affect the overall applicability of the model.
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6.4. Comparison of Algorithm Performance

In this paper, the proposed I-HSPSO algorithm and PSO algorithm were tested by
using the test functions f 1(x)~f 4(x), and the optimal value of the four test functions was zero.

f1(x) =
n

∑
i=1

x2
i , (35)

f2(x) =
n

∑
i=1
|xi|+

n

∏
i=1
|xi|, (36)

f3(x) = 0.5 +
sin2

√
x2

1 + x2
2 − 0.5[

1 + 0.001
(
x2

1 + x2
2
)]2 , (37)

f4(x) =
n

∑
i=1

[
x2

i − 10 · cos(2πxi) + 10
]
, (38)

MATLAB was used for programming, the particle swarm size of the algorithm was 50,
the number of iterations was 1000, and each algorithm was run independently 100 times.
The results of the two algorithms are shown in Table 10.

Table 10. Results of algorithm simulation.

Function Algorithm Best Value Worst Value Mean Value

f1
PSO 3.832 × 10−23 2.194 × 10−5 2.577 × 10−7

I−HSPSO 9.001 × 10−24 9.168 × 10−8 4.258 × 10−9

f2
PSO 0.1795 143.274 14.165

I−HSPSO 3.745 × 10−4 1.992 × 10−1 1.849 × 10−2

f3
PSO 9.368 × 10−13 0.009 0.004

I−HSPSO 0 0.009 6.802 × 10−4

f4
PSO 3.980 29.849 12.696

I−HSPSO 3.836 × 10−24 9.949 3.872

According to the results for the f 1(x) function, the I-HPSO algorithm was superior to
the PSO algorithm in terms of searching for single-peak convex functions. The function f 2(x)
had local extrema around the global optimal value. For such functions with local extremum,
compared with the PSO algorithm, the I-HSPSO had stronger global optimization ability.
Therefore, all indices in the results of its simulation improved significantly. The function
f 3(x) had numerous minima and oscillated strongly. The function f 4(x) was a nonlinear
multi-modal function with jumping peaks, which made it difficult to find the global
optimal solution. For such functions as f 3(x) and f 4(x), which struggled to find the global
extremum, the results show that I-HSPSO had a stronger searching ability. Thus, the
I-HSPSO algorithm proposed in this paper significantly improved algorithm performance.

7. Conclusions

In this paper, a multi-objective optimization model of the DG-EVCSs was established
by considering the V2G technology of EVs. Based on the I-HSPSO algorithm, a bi-level
programming model was solved. The conclusions of this study are as follows:

1. Considering the planning of DG and EVCSs in the V2G mode is conducive to improv-
ing the consumption of clean energy and optimizing power flow. In this way, network
loss and load fluctuations can be reduced, the quality of voltage can be improved,
and a scheme with better overall performance can be obtained.

2. In the distribution network with peak and valley prices, the V2G mode can reduce
the unit charging cost for EV users, improve EV charging satisfaction, and satisfy the
interests of both the distribution company and EV users.
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3. The objective here was the comprehensive optimization of four indices such as compre-
hensive profit, voltage quality, system load fluctuation, and EV charging satisfaction
so that the objective function of the planning model was complex, which is conducive
to considering multiple demands and improving the comprehensive performance of
the planning scheme.

4. The proposed I-HSPSO algorithm converged quickly, and had a strong global op-
timization ability, because of which it did not easily to fall into the local optimum.
Its performance thus improved.
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