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Abstract: Continuous manufacturing opens up new operation windows with improved product 

quality in contrast to documented lot deviations in batch or fed-batch operations. A more sophisti-

cated process control strategy is needed to adjust operation parameters and keep product quality 

constant during long-term operations. In the present study, the applicability of a combination of 

spectroscopic methods was evaluated to enable Advanced Process Control (APC) in continuous 

manufacturing by Process Analytical Technology (PAT). In upstream processing (USP) and aqueous 

two-phase extraction (ATPE), Raman-, Fourier-transformed infrared (FTIR), fluorescence- and ul-

traviolet/visible- (UV/Vis) spectroscopy have been successfully applied for titer and purity predic-

tion. Raman spectroscopy was the most versatile and robust method in USP, ATPE, and precipita-

tion and is therefore recommended as primary PAT. In later process stages, the combination of 

UV/Vis and fluorescence spectroscopy was able to overcome difficulties in titer and purity predic-

tion induced by overlapping side component spectra. Based on the developed spectroscopic predic-

tions, dynamic control of unit operations was demonstrated in sophisticated simulation studies. A 

PAT development workflow for holistic process development was proposed. 

Keywords: quality by design (QbD); process analytical technology (PAT); digital twin; chemometrics; 

multivariate data analysis; continuous manufacturing; real time release testing (RTRT); Chinese 

hamster ovary (CHO); monoclonal antibody (mAb); raman spectroscopy; attenuated total reflection 

fourier-transformed infrared spectroscopy (ATR-FTIR); fluorescence; diode array detector 

 

1. Introduction 

Innovation in biologics manufacturing urges toward continuous operations to cope 

with new entities in smaller volumes, such as antibody fragments, virus-like particles 

(VLPs), exosomes, and mRNA (messenger ribonucleic acid) [1,2]. However, to demon-

strate innovation, at first, monoclonal antibody manufacturing in Chinese Hamster Ovary 

(CHO) cells is the standard platform process [3]. Nonetheless, monoclonal antibody man-

ufacturing in Chinese Hamster Ovary (CHO) cells is still the most widely used process 

for demonstrating new innovations, as it is well established in industry and academia. In 

early process development, several important decisions have to be made, e.g., use of dis-

posable or stainless-steel equipment, and any decision has to be filed upon the processing 

operation, which includes the control strategy within the regulatory demanded quality 

by-design (QbD) concept. In contrast to documented lot deviations in batch or fed-batch 

operation, continuous manufacturing opens up new operation windows with improved 
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constant product quality in combination with advanced process control (APC) [4]. How-

ever, to achieve APC, more sophisticated sensors are key technologies in a robust control 

strategy, since they can provide additional information on the process state. Moreover, 

night and weekend shift operation teams have to be supported by reliable process con-

trols. Fully autonomous processing is in high demand. 

The unit operations for a fully continuous process have been proposed and their fea-

sibility is well documented [5,6]. Recent improvements focus on digital twins [3] and pro-

cess control [7,8]. Implementation of an advanced control strategy requires sensors, in-

line or at-line analytics, which have to be chosen in early process development, e.g., for 

the chromatography units, which are the key-technology for product purity [7–9]. 

First, in-line studies started naturally with the first unit operation, cultivation, either 

operated as a fed-batch or perfusion, with a broad application portfolio [1,10–13]. Never-

theless, the whole downstream has to follow. 

Due to its equipment complexity, continuous chromatography has a long tradition 

in advanced process control concepts [14–16] for autonomous operation. Break-through 

operations in capturing like periodic counter-current chromatography (PCC) and multi-

column solvent gradient purification (MSCGP) processing [17,18] could easily be con-

trolled by inline UV detection [19,20], since the switch criteria are defined by target com-

ponent breakthrough. More complex offline analytics and model-based calculations are 

therefore not necessary, but possible, of course [6]. In addition to UV sum signal detection, 

diode-array detector (DAD) concepts of peak deconvolution have successfully been ap-

plied to the separation of monoclonal antibodies (mAbs) [8,21]. This approach could spec-

ify side components at least in main groups to fine-tune the switch criteria if intended. 

In general, PAT is not limited to in-line analytics, but is a consistent technology ap-

proach that is integrated into the QbD philosophy demanded by regulatory authorities. It 

includes process control in order to gain real time release testing (RTRT) as a benefit in 

quality assurance (QA) efforts reduction as improved product quality. RTRT has to corre-

late to critical product quality attributes, such as bio-efficacy by titer, purity, and bioactiv-

ity. State of the art QA are offline analytical methods, such as Protein A and size exclusion 

chromatography (SEC), enzyme-linked immunosorbent assay (ELISA), infrared spectros-

copy, as well as glycosylation analytics via HPLC or HPLC-mass spectrometry [22–24]. 

The feasibility of RTRT by online PAT tools needs to be proven. 

For process development, a sophisticated PAT concept has to be developed parallel 

to upstream processing (USP) and downstream processing (DSP) modeling, later on sup-

porting model validation [3,25–29], piloting, and production, as shown in Figure 1. Paral-

lel to model validation, piloting, and production the developed PAT method and the par-

tial least squares regression (PLSR) system have to be further refined. In addition to ap-

propriate PAT, digital twins for the whole process are a central key-technology for achiev-

ing RTRT. It has been proven that, for all unit operations, such distinct validated process 

models are available as digital twins [1,5,8,26,27,29–32]. 

1.1. State of the Art in Spectroscopic PAT 

In Table 1 an overview of different spectroscopic methods is given. Raman spectros-

copy is a promising candidate to enable measurements in impure samples, e.g., by using 

an in-situ probe in upstream processing [12,33,34]. In Raman spectroscopy, due to inelas-

tic impacts of photons with the analytes, the photons are scattered [34]. The scattering 

pattern is molecule-specific and, therefore, the identification and quantification of differ-

ent components is possible. Raman spectroscopy was successfully employed in USP for 

the quantification of substrates (e.g., glucose), metabolites (e.g., lactate), and mAb [12,35]. 

In contrast to alternative processes, such as aqueous two-phase extraction (ATPE) and 

precipitation, in which barely any spectroscopic methods have been published for explicit 

use as PAT, various concepts have already been demonstrated for established processes 

such as chromatography, ultrafiltration/diafiltration (UF/DF) and lyophilization [36,37]. 
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Figure 1. Process development strategy. The development of a new biologics manufacturing process starts with screening 

for optimal cultivation conditions in upstream processing (USP). Samples from optimization experiments are used for 

establishing Process Analytical Technology (PAT), partial least squares regression (PLSR), and physicochemical process-

models in USP. In parallel first downstream processing (DSP)-optimization experiments are performed. Models have then 

to be validated according to published validation workflows that ensure accuracy and precision of modeling results. 

Fourier-transformed-infrared-spectroscopy (FTIR) measures the absorption of pho-

tons, typically between 4000–400 cm−1. Biomolecules contain many amine, carbonyl or hy-

droxy groups, which absorb photons in this low-energy range by inducing stretching, 

scissoring and bending of molecule bonds [38]. In contrast to Raman spectroscopy, in IR 

spectroscopy the absorption from water is considerably strong and may interfere with 

concentration measurement of biomolecules in aqueous solution [39]. Nonetheless, IR 

measurement was successfully applied in USP for the prediction of mAb concentration 

[40]. While applicable in early process stages, FTIR is also a viable technique for quality 

evaluation [22,41]. FTIR was successfully applied in protein detection in ATPE [42], mon-

itoring of mAb purification in chromatography [43] and inline concentration measure-

ment in ultrafiltration [37]. Raman and NIR can be used as PAT technology in lyophiliza-

tion processes [44–50]. Raman spectra can indicate different critical product and process 

characteristics, e.g., water to ice conversion, product crystallization, annealing steps, 

solid-state characteristics of intermediate and end products and kinetics of polymorphic 

transitions [49,50]. NIR can also indicate critical product and process characteristics [50] 

such as the secondary structure of lyophilized proteins and the residual moisture [49]. 

NIR and Raman provide the ability to determine the endpoint of primary drying. Water 

and ice produce weak Raman signals but have high absorption in NIR spectra. Both meas-

urements determine the endpoint by detecting a loss of water signal, but NIR is the more 

sensitive technique and is additionally capable of detecting the endpoint of secondary 

drying [44,50]. DAD measures the absorption of photons in UV/VIS, typically in the range 

between 190–520 nm. In contrast to FTIR, in this high-energy range, delocalized π-electron 

systems are the main absorbers [51]. DAD is widely used in chromatography but potential 

applications in earlier process stages exist [7]. Fluorescence measures the time-delayed 

emission of photons after excitation by a specific wavelength. The emission range is lower 

than the excitation wavelength, since the photons lose energy after absorption due to non-

radiative transitions [52]. Fluorescence was previously employed in monitoring upstream 

processes [10]. Integrity of IgG can also be monitored by fluorescence, e.g., in combination 

with circular dichroism measurement [53]. The limits of detection values given in Table 1 
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are for orientation purposes only, since they vary with different measurement/integration 

times and product. However, the presence of too many side components can reduce the 

detection accuracy [54]. Detection accuracy enhancements through combination of multi-

ple spectroscopic techniques have been proposed [55]. 

The above presented PAT approaches in combination with a digital twin can be used 

to achieve advanced process control and in-line process optimization [30,56–60]. PAT can 

compensate model inaccuracies by providing additional measurement data and the digi-

tal twin is used for inline process optimization and online process monitoring. 

Table 1. Overview of measurement parameters for Raman, Fourier-transformed infrared (FTIR) diode-array detector 

(DAD) and fluorescence from literature and manufacturers. 

Detector 
Measurement 

Range 
In Situ Probes 

Flow 

Cell 

Lower Limit of De-

tection 

Acquisition 

Time 

Averaged 

Scans 

Raman 4000–400 cm−1 Available 380 µL >50 mg/L [61] 10 s [12] 75 [12] 

FTIR 4000–400 cm−1 Available - >700 mg/L [43] 4 s [62] 16–64 [40,62] 

DAD 190–520 nm Unavailable 8 µL >10 mg/L [63] 0.1 s [7] - 

Fluorescence 280–900 nm Unavailable 16 µL >40 fg/L [64] 3 s [53] 10 [65] 

1.2. QbD-Based PAT Control Strategy 

In general, PAT is not limited to in-line analytics, but is a consistent technology ap-

proach, which is integrated into the QbD philosophy, demanded by regulatory authorities 

and is becoming the standard in biopharmaceutical process development. In the QbD ap-

proach, a design space of operating parameters is defined, to ensure specified quality at-

tributes (QAs). This leads to multi-parameter optimizations and a significant experi-

mental effort. The modern approach for process development and quality assessment is 

shown in Figure 2. 

Define Quality 
Target Product 
Profile (QTPP)

Determine 
Critical Quality 

Attributes 
(CQAs)

Design SpaceRisk Assessment Control Strategy
Continual 

Improvement

PAT

Modelling

DoE

 

Advanced 
Process 
Control 

Real Time 
Release testing

 

Figure 2. Quality by-design (QbD)-based process development workflow. Firstly, the quality tar-

get product profile is defined and critical quality attributes are determined. Next, a risk assess-

ment serves as starting point for design of experiments (DoE) and/or modeling, which outcome 

then defines the design space. During process operation, PAT provides real time measurement of 

critical process parameters that are then compared to the limits of the design space. To ensure that 

the process continuously operates within the boundaries of the design space, process models can 

utilize real time PAT measurements to calculate necessary process adjustments. 

One of the most utilized APC concepts are model predictive controllers (MPC) [66]. 

These MPCs manipulate input variables to match the desired set points, while maintain-

ing process critical constraints. This is performed by utilizing optimization routines on 

process models, which predict the future process behavior for the next time frame [67,68]. 
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Common drawbacks of these models are that the model results tend to drift away from 

the real plant data over time, because of aging, fouling, or blocking phenomena, or sum-

mation of prediction errors in cyclic processes [69]. This is usually fixed by updating the 

internal model states, e.g., concentrations, with real plant data [70]. This real time plant 

data have to be determined via potentially time intensive and invasive offline analytics, if 

no PAT tools are implemented, resulting in a gap between current process data and ana-

lytics [71,72]. This gap not only risks a mismatch between current process state and model, 

but also a general mismatch between current process and process analytics that prevents 

data-driven process decisions, especially in continuous processes. 

Starting with this overview, we will demonstrate that PAT is capable of filling the 

gap. The proposed control strategy is demonstrated exemplarily in simulation studies. 

Previous studies have focused on the implementation and distinct and quantitative vali-

dation of physico-chemical process models to describe the unit operations shown in Figure 3, 

and enable advanced process control. The successful operation of the proposed continu-

ous process has been previously shown [1]. The missing link to achieve APC is a holistic 

PAT strategy [5]. The proposed control strategy is demonstrated exemplarily in simula-

tion studies. 

The presented study is an introducing overview to a series of publications showing 

the holistic methodology for the development of a spectroscopy-based PAT for APC. The 

focus here is therefore on the overall development with the important steps of spectra 

acquisition, spectra processing, and evaluation of the achievable prediction accuracy, es-

pecially in comparison to established offline analytics, and finally the conceptualization 

as well as the proof-of-concept of a PAT-based APC through simulation studies. 

The aim is therefore not to present only the APC as a final result, but to present the 

necessary steps and decision criteria. 

This demonstration of feasibility, which is necessary as a missing link, has been pro-

vided for the first time in the completeness of the development, the unit operations, and 

the possible spectroscopy technology presented here. 

USP DSP Formulation
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Figure 3. Proposed process flow sheet including spectroscopic PAT sensors. A PAT measurement array is placed at the 

outlet of each unit operation to provide real time data on monoclonal antibody (mAb), high molecular weight (HMW) 

impurities, and light molecular weight (LMW) impurity concentrations that are then used as input for the process model, 

which calculates the necessary process adjustments to ensure operation within a pre-defined design space. 

2. Materials and Methods 

Chinese hamster ovary cells (CHO DG44) producing an industrially relevant mono-

clonal antibody (mAb) from the IgG1 subclass were cultivated as described elsewhere [5]. 

Phase forming components used are harvested cell culture fluid (HCCF), polyeth-

ylene glycol with an average molecular weight of 400 Da (Merck KGaA, Darmstadt, Ger-

many) and phosphate. The salt buffer solution consists of 262.09 g disodium phosphate 

dihydrate (Merck, Darmstadt, Germany), 198.39 g potassium dihydrogen phosphate 

(Merck, Darmstadt, Germany) and 539.52 g deionized water. 
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Precipitation procedure was conducted similar to batch operation described by 

Lohmann et al. [29]. After dissolution, the pH was adjusted to 3.7 and held for 60 min for 

virus inactivation [73]. Precipitation and dissolution were investigated separately with 

respect to the different spectroscopic analysis methods (Raman, FTIR, DAD, fluorescence) 

and PAT sensors (pH, turbidity, conductivity). In precipitation and dissolution, the same 

online detection train is used as described in ATPE with the exception of the fluorescence 

detector, which is not used in precipitation due to precipitates, which are harming for the 

flow cells of the fluorescence detector. 

Figure 4 shows the experimental set-up, on the example of ATPE. The analytical pro-

cedure (green) and the offline analytics (grey) were the same for all unit operations. 

 

Figure 4. Experimental set-up (blue) and analytical procedure (green). Harvested cell culture fluid 

(HCCF) is from start (t0) to end of cultivation (t10) processed by aqueous two-phase extraction 

(ATPE). The antibody containing light phase is pumped in the detector array for spectral analysis 

and investigated in PLSR as predictors. Offline analytics (grey) are investigated as responses. 

The dissolved antibody obtained after precipitation was used in the chromatography 

studies. Purification was accomplished using a YMC S75 strong cation-exchange column 

(YMC-BioPro S75, 26 × 7.0 mm ID, YMC Co., Ltd., Kyoto, Japan). The starting solution 

was loaded on the column for 5 column volumes (CV). For flow-through-FTIR and Ra-

man, 30 CV were loaded on the column. 

Samples for spectral analysis of UF/DF were prepared by mixing appropriate 

amounts of a 165 g/L polyclonal antibody solution (Gammanorm, Octapharma AG, 

Lachen, Switzerland) with the expected buffer composition of the respective filtration 

stage. Table 2 shows the prepared solutions with the respective mAb, NaH2PO4, and NaCl 

concentrations. 

Table 2. Prepared mAb samples with expected salt concentrations for theoretical ultrafiltration/di-

afiltration (UF/DF) stages. 

Substance  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 

mAb (g/L) 0 2 9 13 18 20 

NaH2PO4 (mM) 50 50 34 23 12 6 

NaCl (mM) 1000 1000 625 375 125 0.1 

PLSR models were built for three different analytes: target component (TC), concen-

tration of high molecular weight (HMW) impurities, and light weight molecular weight 

(LMW) impurities. 
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2.1. Analytics 

2.1.1. Online 

Data acquisition in Raman spectroscopy (785 nm laser, 1.5 mW, Ocean Insight, Ost-

fildern, Germany, with an InPhotonics Raman probe) was set to automatically average a 

total of three spectra, each of which had 1 s of integration time. For each sample, at least 

three spectra were measured and averaged prior to PLSR. Data acquisition in FTIR spec-

troscopy (Alpha II, Bruker, Billerica, MA, USA) was set to automatically average a total of 

24 spectra, each of which had 1 s of integration time. Data acquisition in UV-Vis spectros-

copy, using a DAD (Smartline DAD 2600, Knauer Wissenschaftliche Geräte GmbH, Berlin, 

Germany), was set to continuously record at a sampling rate of 0.2 s−1, each of which had 

32 ms of integration time. Data acquisition in fluorescence spectroscopy (Jasco FP-2020 

Fluorescence detector) was set with a gain factor of 1. For each sample, at least three spec-

tra were measured and averaged prior to PLSR. Data acquisition in fluorescence spectros-

copy was measured using a gain of 10.  

2.1.2. Offline 

Samples for off-and at-line analyses were drawn at least once per day. The viable cell 

concentration was determined using a Cedex XS (Roche Innovatis AG, Bielefeld, Ger-

many), with the trypan blue exclusion method using a diluted trypan blue stock solution 

(0.4%, Sigma-Aldrich, St. Louis, MO, USA). Cells were separated by centrifugation at 4000 

rcf and the cell free supernatant was either used directly for analysis or stored at −20 °C 

before it was analyzed. Glucose and lactate concentrations were determined by enzy-

matic-amperometric measurement using a LaboTRACE compact (TRACE Analytics 

GmbH, Braunschweig, Germany). The monoclonal antibody concentration was quanti-

fied by Protein A chromatography (PA ID Sensor Cartridge, Applied Biosystems, Bedford, 

MA, USA). Dulbecco’s PBS buffer (Sigma-Aldrich, St. Louis, MO, USA) was used as load-

ing buffer at pH 7.4 and as elution buffer at pH 2.6. Size exclusion chromatography (SEC) 

was done with a YarraTM 3 µm SEC 3000 column (Phenomenex Ltd., Aschaffenburg, Ger-

many) utilizing 0.1 M Na2SO4, 0.1 M Na2HPO4, and 0.1 M NaH2PO4 (Merck KGaA, Darm-

stadt, Germany) as a buffer system. The absorbance for both methods was monitored at 

280 nm. Retention of biological activity is shown via a target specific ELISA (ELISA Assay, 

Eagle Bioscience, NH, USA). Two-dimensional (2D)-SDS PAGE was conducted for visu-

alization of side components and their elimination progress during downstream pro-

cessing. For isoelectric focusing, IPG strips (ReadyStripTM IPG Strips, linear, pH 3–10, 

BIO-RAD, Hercules, CA, USA) was well as a power supply from Hoefer (Hoefer Inc., Hol-

liston, MA, USA) were used. Subsequent, SDS-Page was carried out utilizing gels (Crite-

rion TGX Precast Gel, 4–15% Bis-Tris, Bio-Rad), buffers, and electrophoresis chamber from 

Bio-Rad. Coomassie Brilliant Blue G-250 (VWR International, Radnor, PA, USA) was used 

as dye. Fluorescence spectra were measured at-line using a Jasco FP-2020 fluorescence 

detector. Inline measurement using this detector was not possible, since a spectra meas-

urement takes about 30 s. Gain was set to 1 or 10, depending on the concentration. Using 

a gain of 10, a concentration of up to 0.3 g/L was practically measurable. Attenuation was 

set to 256. Fluorescence measurements were done using the 16 µL flow-cell provided with 

the detector. For each unit operation, emission spectra were measured using an excitation 

wavelength of 280 nm. Spectra were obtained from 280 to 900 nm. Bradford assays were 

performed using a Bradford assay kit (Thermo Fisher Scientific, Dreieich, Germany), ac-

cording to the manufacturer’s instructions. Tests were performed in UV-transparent cu-

vettes and the absorbance at 280 nm was measured using a UV/Vis SmartSpec Plus Spec-

trophotometer (Bio-Rad Laboratories GmbH, Feldkirchen, Germany). DNA concentration 

determination was performed using the Quant-iT™ PicoGreen™ dsDNA Assay Kit ac-

cording to the manufacturer’s instructions (Thermo Fisher Scientific GmbH). Samples 

were measured in flow-through using the Jasco FP-2020 Fluorescence detector with a gain 

factor of 10. 



Processes 2021, 9, 172 8 of 33 
 

 

2.2. Analysis of Spectral Data 

Spectra were processed and analyzed using Unscrambler® X (Camo Analytics AS, 

Oslo, Norway). The raw spectra were analyzed by means of descriptive statistics in order 

to decide on a suited preprocessing strategy. A main tool was the plot of the spectra 

against the mean spectrum, also known as scatter effects plot, which shows the nature of 

distorting effects present in the spectra. Depending on the kind of effect, the preprocessing 

was causally adapted to extract a maximal information content. Figure 5 shows exemplary 

scatter effects plots of (a) additive effects, (b) scatter effects, (c) additive and scatter effects, 

and (d) complex effects. Additive effects were eliminated by applying a baseline correc-

tion and/or a derivation. If not stated otherwise, first derivatives were taken. Multiplica-

tive scatter effects were removed by applying the method of standard normal variate or 

multiplicative scatter correction (MSC). Combinations of additive and multiplicative ef-

fects were removed by a combination of baseline correction and scatter correction. Effects 

of the complex type were not observed, though they could be removed by using extended 

multiplicative scatter correction (EMSC). Preprocessed spectra were then used to correlate 

the changes in component concentration to the changes in spectral intensity at specific 

spectral regions by PLSR. A detailed description of the fundamentals of PLSR been pub-

lished by Esbensen et al. [74]. A maximum of four principal components was allowed in 

the regression in order to not overfit the data. The quality of the model was evaluated by 

means of spectral line loadings plot, score plot, and the plot of explained variance against 

number of principal components.  

 

Figure 5. Exemplary scatter effects plots of (a) additive effects, (b) scatter effects, (c) additive and scatter effects, and (d) 

complex effects. Colors indicate spectra from different samples. 

2.3. Process Simulation Studies to Propse an Advanced Process Control Strategy 

Since undesired changes of flow rates, titer or deviations of critical quality attribute 

occur during downstream processing and since the PAT initiative has created a possible 

tool to detect these changes in real time, the main question is how any unit operation 

within the whole process can react to these deviations—and how to control them best. 

Based on the available digital twins for the whole process, this study deals with finding 

out which fluctuations can be compensated best at which point in the process. Further, it 

is discussed whether units are able to provide constant output parameters in mAb con-

centration (target component, TC), purity and flow rate for the following unit. Therefore, 

three theoretical scenarios with varying input variables were examined: concentration de-

viations, volume flow fluctuations and purity changes. Mean parameters are mAb titer at 

2 g/L and a perfusion flow rate of 1 mL/min. Purity differs in each unit operation and is 

adjusted separately. The simulation was conducted with process models for each unit 

(USP, ATPE, Precipitation, Chromatography) [1,3,25–29] executed in Aspen Custom Mod-

eler™ (ACM). 
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3. Results 

3.1. Raman Spectroscopy 

All spectra were preprocessed before a PLSR was performed. Raman- and FTIR spec-

tra were trimmed to the relevant (fingerprint) region for mAbs and relevant side compo-

nents, which was 1800–400 cm−1, and 1800–900 cm−1, respectively. DAD and fluorescence 

spectra were used in their full width, i.e., from 190–520 and 280–900 nm, respectively. 

Spectra were analyzed by means of descriptive statistics as described above. In USP, the 

scatter effects plots revealed primarily additive effects, independent of the detector. Ac-

cording to the proposed workflow, additive effects were removed by calculating first or-

der derivatives using the Savitzky-Golay derivative method with a polynomial order of 

two and seven smoothing points per side (i.e., 15 points total). Total Raman-spectral in-

tensity, which is primarily caused by fluorescence, decreases during the first three days, 

after which it constantly increases. This can be attributed to a decreasing concentration of 

substrates during the batch phase, while the overall protein concentration only slowly 

starts to increase. After 72 h the daily feed is started, and the protein concentration starts 

to rise proportionally (i.e., exponentially) to the total cell concentration, thereby increasing 

the overall fluorescence (cf. Figure 6). Preprocessed spectra show increases in the amide 

I, II and III band intensities that are in line with the protein concentration increase. More-

over, pronounced intensities at ~500, 850 and 950 cm−1 were observed, which correspond 

to C-C-O bending (540 cm−1), C-COO stretching (855 cm−1) and CH3 rocking (930 cm−1), 

respectively [12]. 

  

(a) (b) 

Figure 6. (a) Viable cell concentration, viability and turbidity over process time. (b) mAb concen-

tration and HMW/LMW pseudo-concentrations over process time. 

PLSR was used to correlate changes in Raman spectral intensity with regards to the 

target component mAb concentration and typically defined HMW (high molecular weight 

host cell protein fraction) and LMW ((low molecular weight host cell protein fraction) 

pseudo-concentrations as these are the relevant quantities in the following DSP. Hence, 

these concentrations should be constantly measured and forwarded to the following unit 

operation in a continuous process that is controlled by APC. The regression of the pre-

dicted vs. the actual concentration yields a good correlation of R2 = 0.999, 0.994, and 0.998 

for mAb, HMW and LMW concentrations, respectively, using one principal component. 

The highest deviations occur at low concentrations, e.g., for mAb at concentrations smaller 

than 0.3 g/L, while higher concentrations can be predicted more accurately. RMSE values 

were 0.028, 0.029 and 0.139 g/L, for mAb, HMW and LMW concentrations, respectively. 

This corresponds to a deviation of 1.4%, 2.7%, and 0.6% in regard to the final for mAb, 

HMW and LMW concentrations, respectively. 

Raw Raman spectra in ATPE show strong additive effects, which increase with cul-

tivation time. Especially in the fingerprint region between 1800–400 cm−1, there is a strong 
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baseline increase. This can be mainly attributed to the concentration increase of proteins. 

As can be seen after transformation by deviation and normalization, larger differences in 

the spectra can be identified at amide I (1650 cm−1), amide II (1550 cm−1) and amide III 

(1300 cm−1) bands. Overall, PLSR shows that in a range of 0–2 g/L mAb a titer prediction 

accuracy of R2 = 0.97 is achieved, when compared to offline protein A determination. The 

RMSE of prediction was 0.075 g/L, which is 4% of the final mAb concentration. The error 

is similar to offline Protein A chromatography. HMW prediction results in a smaller re-

gression coefficient of R2 = 0.87, when compared to SEC based offline determination, with 

a RMSE of 0.013 g/L, or 8% of the final HMW pseudo-concentration. As ATPE produces 

light phase that throughout the process is characterized by high HMW purity (92%), the 

HMW concentration is also small compared to the mAb. It is therefore to be expected that 

the combination of low concentration and intrinsic fluorescence makes the identification 

of HMW related changes in the Raman spectra more difficult. LMW prediction on the 

other hand results in a regression coefficient of R2 = 0.96 (also regressed against SEC de-

termination), with a RMSE of 0.131 g/L or 1% of the final LMW pseudo-concentration. 

After ATPE the LMW purity in the light phase throughout the process is small (11.6%), so 

the LMW concentration is high and although LMW consist of wide range of different spe-

cies, such as proteins, peptides, vitamins etc., their summarized contribution to the overall 

Raman spectra is different enough to the mAb contribution to enable a PLSR. 

In precipitation, the Raman intensity decreases for a higher PEG content. With in-

creasing PEG content more side components co-precipitate and increase in this manner 

particle density. A similar trend can be observed in Raman raw data for dissolution. Ra-

man intensity decreases with increasing concentration of redissolved mAb. Further pre-

processing was applied after evaluation of scatter effects. Spectra were trimmed to 1800–

400 cm−1 and the first derivative was taken using the Savitzky-Golay method with three 

smoothing points per side. 

In the case of Raman, preprocessing was equal for precipitation and dissolution. The 

LMW pseudo-concentration could be well correlated to changes in spectra with an R2 of 

0.97 and RMSE of 0.03 g/L. In dissolution, the concentration of mAb could be predicted 

with an R2 of 0.93 and a RMSE of 0.08 g/L. These deviations are equivalent to 0.3% for 

LMWs in precipitation and 3.9% for the final mAb concentration in dissolution. It can be 

concluded that Raman is a suitable detector for precipitation and dissolution. 

In chromatography the first derivative of spectral data are calculated. PLSR valida-

tion for Raman spectroscopy in chromatography was not possible, as shown in Figure 7. 

The reason for this is that the large flow-cell in combination with the low flow rate results 

in a long retention time of the product causing back-mixing. This is illustrated in Figure 8. 

Here, the results of a tracer experiment with (red) and without (black) are depicted. The 

widened peak after the flow cell is a product of back-mixing occurring in the flow cell. 

The RMSE value for Raman is 4.7, corresponding to ~80% of the highest value in the Ra-

man samples. 

In UF/DF additive effects were observed in raw Raman-spectra. Accordingly, first 

derivatives were calculated from the raw spectra and a PLSR was performed, yielding a 

correlation of R2 = 0.951, with a RMSE of 1.08 g/L. At the final concentration of 20 g/L the 

deviation is 5.4%, which is similar to offline analytical methods such as protein A chro-

matography. 
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Figure 7. Raman spectra: raw (a,d,g,j,m), after preprocessing (b,e,h,k,n) and PLSR results (c,f,i,l,o). Spectra are color-coded 

from high concentration (blue) to low concentration (red). 
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Figure 8. Tracer chromatogram with and without Raman flow-cell. 

3.2. Fourier-Transform Infrared Spectroscopy 

FTIR and Raman spectroscopy are often referred to as being complementary tech-

niques. While Raman detects the molecules fingerprint signature of inelastic bonds by 

scattering photons when excited by a laser, FTIR detects the molecules fingerprint signa-

ture of bonds that absorb infrared radiation. Both detection principles however cause the 

bonds within the molecule to convert some of that energy into vibration, and are therefore 

summarized as vibrational spectroscopy methods. FTIR spectra were measured against 

air as background. Hence, all spectra have a common offset from water. Compared to 

Raman spectroscopy, the absorption of water in IR-measurements is strong, and thus 

overlays the relevant signals from the target components (i.e., mAb and side components). 

FTIR spectra were trimmed to the relevant (fingerprint) region for mAbs and relevant side 

components, which was 1800–900 cm−1. In order to remove the offset and make relevant 

information accessible, the first derivative is calculated. Thereby, the background water 

signal is removed and two strong peaks can be identified at around 1650 cm−1 correspond-

ing to the amide I band. In contrast to Raman spectroscopy, amide II and amide III bands 

are less pronounced. PLSR of the mAb, HMW, and LMW concentrations was performed, 

but yielded generally lower regression coefficients than those in Raman spectroscopy 

which can partly be attributed to less pronounced amide II and III signals. Moreover, com-

pared to Raman spectroscopy, the overall number and intensity of signals that can clearly 

distinguished is markedly lower which hampers the prediction. The coefficients of deter-

mination for mAb, HMW and LMW are 0.983, 0.986 and 0.989, with RMSEs of 0.102, 0.045, 

and 0.353 g/L, respectively. These deviations are equivalent to 5.1%, 4.2%, and 1.6% of the 

final mAb, HMW, and LMW concentrations, respectively. 

In ATPE, raw FTIR data of light phase after ATPE reveal less obvious deviations 

when compared to Raman raw data. It is, however, important to note that the differences 

that are clearly visible in raw Raman data are only caused by the strong baseline increase 

due to underlying fluorescence. Indeed, the deviations in-between the FTIR spectra are 

less pronounced compared to Raman spectra. PLSR coefficients for mAb, HMW, and 

LMW are generally lower compared to the other methods. A possible explanation for this 

is that while amide I band can be identified in the FTIR spectra, amide II, and amide III 

bands are far less pronounced. Hence, the spectral information provides less distinguish-

able contributions by mAb, and all other species in the multicomponent mixture. Since 

PLSR-model building relies on these different contributions to the fingerprint of the mul-

ticomponent matrix, regression becomes less efficient. The regression coefficients in ATPE 

were 0.94, 0.94, 0.98, with RMSEs of 0.167, 0.013, and 0.5 g/L, which is 9, 8, and 3.5% of the 

final mAb, HMW, and LMW concentrations, respectively. 

After precipitation, larger deviations occur between wavenumbers 1800 and 1400 

cm−1 for dissolution. No further preprocessing is necessary in case of FTIR data in disso-

lution. PLSR of FTIR-spectra of precipitation resulted in an R2 of 0.94 and RMSE of 0.43 

g/L, referring to LMWs. In dissolution, the mAb concentration could be predicted with an 

R2 of 0.91 and a RMSE of 0.03 g/L. These deviations are equivalent to 4.2% for LMWs in 

precipitation and 2.8% for the final mAb concentration in dissolution.  
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For chromatography, spectra were shortened to the fingerprint region. The PLSR 

modeling for IgG resulted in an R2 of 0.92 including validation samples. RMSE of the tar-

get component was 0.24 g/L or 4% of the highest sample measured. Figure 9(l) shows the 

regression results. In comparison to DAD and fluorescence the salt gradient shows a high 

influence on FTIR spectra, even in the shortened product-specific region. This is especially 

apparent between the wavenumbers 1700–1600 cm−1 and 1000–800 cm−1. The drift between 

1000–800 cm−1 results mainly from the higher salt concentration, as there is a shift from higher 

product concentrations (blue) to lower product concentrations (red), see Figure 9(k). Between 

1700–1600 cm−1 the increase is mainly due to higher IgG concentration, as the high salt 

concentrations do not contribute to a rise in intensity. Best fit was achieved using three 

principal components in the PLSR model. 

In UF/DF first derivatives of the raw FTIR spectra were calculated, as additive effects 

were the dominant type of effect. PLSR of the processed spectra yielded a regression co-

efficient of 0.95 with an RMSE of 1.09 g/L, which is equivalent to 5.5% of the final mAb 

concentration. 
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Figure 9. FTIR spectra: raw (a,d,g,j,m), after preprocessing (b,e,h,k,n) and PLSR results (c,f,i,l,o). Spectra are color-coded 

from high concentration (blue) to low concentration (red). 
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3.3. Diode-array Detector 

UV-Vis analytics rely on the principle of Lambert–Beer, as the spectrum measured by a 

DAD shows the absorption of monochromatic light by the analyte matrix. So, if there is only 

a single species present, or several species with non-overlapping absorption spectra, species 

concentrations can efficiently be correlated to the measured absorption at their specific absorp-

tion maximum. However, in multicomponent mixtures, such as the light phase in ATPE after 

processing HCCF, there is a significant overlap of all the different species-specific absorption 

characteristics. Applying the same chemometric methods that are common for Raman and 

FTIR analysis aims to extract the composition-specific UV-Vis spectral information. DAD 

spectra were measured in the range of 190–520 nm. Since the method is based on absorption 

of UV-Vis light, increasing overall concentration leads to increasing absorption. These addi-

tive effects are removed by taking the first derivative of the spectra as described above. The 

derived spectra show that the strongest change in absorption is around 350 nm. The regression 

coefficients of the prediction were 0.994, 0.983, and 0.994, and RMSEs of 0.059 g/L, 0.050 g/L, 

and 0.263 g/L, or 3%, 4.7%, and 1.2% of the final concentration, for mAb, HMW, and LMW, 

respectively. It must be noted however that this region is not unambiguously assignable to 

protein or DNA, as these biomolecules have an absorption maximum at 280 nm and 260 nm, 

respectively. It cannot be ruled out that the change in absorption may correlate to the color of 

the medium, which changes due to the addition of the two feed-media, which are red and 

green respectively. Moreover, polyaromatic substances like vitamins may absorb in this re-

gion. Further validation experiments are needed to validate the DAD predictions. 

In ATPE, DAD obtained spectra reveal that with progressing cultivation time the biggest 

changes to the UV-Vis spectrum are around 280 nm wavelength. In the range of 320–520 nm 

there are additional smaller pronounced deviations to the spectrum. By using these processed 

spectra as predictors for the PLSR-model, regression coefficients of 0.99 (mAb), 0.80 (HMW), 

and 0.95 (LMW) are obtained. The less efficient regression for HMW species is similar to the 

results in FTIR explainable by their small concentration and, therefore, smaller contribution to 

the extractable information in the UV-Vis spectrum. RMSE values were 0.027 g/L, 0.011 g/L 

and 0.22 g/L, or 1.4%, 6.7%, and 1.5% of the final mAb, HMW, and LMW concentrations, re-

spectively. 

In precipitation, spectral data for the DAD are not shortened and the full spectrum is 

shown ranging from 190 nm to 520 nm. The DAD is capable of detecting proteins reliably, but 

the distinction between different proteins is difficult. A similar trend can be observed in DAD 

raw data for dissolution. This is to be expected as the absorbance of a DAD increases according 

to the law of Lambert-Beer. DAD-PLSR regression for precipitation is very good (R2 of 0.97 

and RMSE of 0.26) referring to LMWs. In dissolution, convincing results are achieved (R2 of 

0.93 and RMSE of 0.02), but for the target component. These deviations are equivalent to 2.3% 

for LMWs in precipitation and 2.8% for the final mAb concentration in dissolution. It can be 

concluded that DAD is a suitable detector during precipitation for LMWs and in dissolution 

for the target component. 

In chromatography, DAD spectra were shortened to 200–300 nm. As this is the only part 

of the spectrum were significant absorption can be observed, see Figure 10(j). Any prepro-

cessing significantly worsened PLSR regression, eliminating effects the PLSR model can ex-

plain with the given concentrations. For the shortened DAD spectra, an R2 of 0.94 for the IgG 

monomer was achieved in chromatography. RMSE for the DAD-PLSR was 0.021 or 7.6% of 

the highest sample measured. The regression results are illustrated in Figure 10. In the regres-

sion plot (l) a high variance for the zero-points is appeared. This results from the similar spec-

tra (k). Between 200 and 225 nm the side components show a strong absorbance like the IgG 

monomer, the specificity of DAD-PLSR results from the stronger absorbance around 275 nm. 

While the PLSR model can eliminate these overlapping effects to some degree, it is not possible 

to eliminate this overlapping completely. The best fit was achieved using six factors in the 

PLSR model. 

In UF/DF for the DAD, primarily additive effects were observed in the raw spectra. Thus, 

first derivatives of the raw spectra were calculated and PLSR was performed. An excellent 



Processes 2021, 9, 172 16 of 33 
 

 

regression coefficient of >0.999 with a RMSE of 0.005 g/L was found for the prediction of the 

mAb concentration, which is 0.03% of the final mAb concentration. 
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Figure 10. DAD spectra: raw (a,d,g,j,m), after preprocessing (b,e,h,k,n) and PLSR results (c,f,i,l,o). Spectra are color-coded 

from high concentration (blue) to low concentration (red). 
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3.4. Fluorescence Emission Spectra 

Like UV-Vis measurements, fluorescence spectra are based on the absorption of pho-

tons. Therefore, also in fluorescence measurements strong additive effects were observed 

in USP, which were removed by calculating first derivatives of emission spectra. In the 

present experimental setup, the samples were excited at 280 nm, which is the absorption 

maximum of tryptophan. The emission spectrum was recorded from 280 to 900 nm. First 

derivatives revealed that strong changes in fluorescence intensity are observed at 340–360 

nm, which is the emission maximum for tryptophan, i.e., protein. Regression coefficients 

for mAb, HMW, and LMW were 0.955, 0.892, 0.955, with RMSEs of 0.166 g/L, 0.126 g/L 

and 0.717 g/L, or 8.3%, 11.8%, and 3.3% of the final concentration, respectively. 

In ATPE, the spectra show the expected emission maximum of proteins at 350 nm. A 

second major peak can be seen 550 nm. Preprocessing included first derivative and SNV 

normalization. Regression coefficients of 0.85 (mAb), 0.74 (HMW), and 0.85 (LMW) are 

obtained by PLSR. The corresponding RMSE values were 0.128 g/L, 0.018 g/L, and 0.542 

g/L, which is 6.8%, 10.9%, and 3.8% of the final mAb, HMW, and LMW concentrations, 

respectively. 

In precipitation, the entire spectrum was used for analysis. Analyzing the raw data 

an absorption maximum between 570 and 675 nm can be identified, which describes the 

concentration increase during dissolution satisfactory. PLSR analysis resulted in an R2 of 

0.90 with a RMSE of 0.02. These deviations are equivalent to 3.8% for the final mAb con-

centration in dissolution. The regression is depicted in Figure 11.  

In chromatography, fluorescence spectra were shortened to 580–700 nm. Fluores-

cence data were not preprocessed, which would eliminate some of the information con-

tained in the spectra, worsening PLSR. For fluorescence the R2 was 0.93. The RMSE was 

0.024 or 7.9% of the highest sample. The regression results are depicted in Figure 11. In 

comparison to DAD, see Figure 10. The fluorescence model predicts low concentration 

samples more accurately. This can be explained interpreting the spectra, see (b). The sam-

ples containing high concentrations of IgG emit most light at around 660 nm, while for 

low IgG concentration samples and high side concentration samples the fluorescence 

maximum is shifted to 680 nm and 600 nm respectively.  

In UF/DF, first derivatives were calculated from the raw emission spectra, which 

were then regressed using PLSR. A good regression coefficient of 0.986, with a RMSE of 

0.705 g/L, was found. This corresponds to a deviation of 3.5% with respect to the final 

mAb concentration. 
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Figure 11. Fluorescence spectra: raw (a,d,g,j,m), after preprocessing (b,e,h,k,n) and PLSR results (c,f,i,l,o). Spectra are 

color-coded from high concentration (blue) to low concentration (red). 

3.5. Combination of Spectroscopic Data 

For the analysis of cell culture samples, Raman and FTIR spectroscopy showed the 

most promising results. Therefore, the combined analysis of Raman and fluorescence 

spectra in one PLSR was evaluated. The combination of Raman and FTIR data yielded 

similar regression coefficients as the two single methods of 0.991 for mAb, 0.995 for HMW 

and 0.996 for LMW, with RMSEs of 0.073, 0.028, and 0.207 g/L, 3.7%, 2.6%, and 1% of the 

final concentration, respectively. Although this might not seem advantageous at first, it 

must be considered that both methods yield different information, thereby providing po-

tentially a more robust prediction. 

Addition of DAD spectra further enhanced the overall regression as the regression 

coefficients increased to 0.996 (mAb), 0.993 (HMW), and 0.997 (LMW), with RMSEs of 

0.048, 0.032, and 0.170 g/L, 2.4%, 3%, and 0.8% of the final concentration, respectively. This 

indicates, that further orthogonal measurement methods may further improve the overall 

predictive power of spectroscopic PAT-tools. 

In ATPE, the same preprocessing procedure was applied. However, prior to PLSR 

combined spectra were normalized to their respective maximum to even the amplitudes. 

The combination of Raman and FTIR yielded regression coefficients of 0.97 (mAb), 0.85 

(HMW), and 0.97 (LMW). By further expanding the range of orthogonal predictor data by 

adding DAD obtained spectra, regression coefficients of 0.99 (mAb), 0.87 (HMW), and 0.96 

(LMW) are obtained. This simple approach of combining spectral data reveals that just 

combining the spectra as predictor set in PLSR does not yield a higher prediction accuracy. 

Rather it seems that the algorithm still favors the most suitable data, which, in case of 
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ATPE, was Raman. Hence, the obtained regression coefficients are similar to the initial 

results by Raman alone. More sophisticated approaches in combining different data set, 

are needed to investigate possible benefits in accuracy. However, having orthogonal de-

tector data at hand, can enhance the reliability of the overall control strategy. 

For the precipitation unit, DAD and Raman have each given the best performance in 

dissolution with an R2 of 0.93 (mAb). Raman correlated to purity with an R2 of 0.85. Pre-

diction of purity was not possible with DAD alone. Therefore, the combination of the two 

sensors in one PLSR is investigated. Both detectors in combination achieved an R2 of 0.90 

for prediction of the target component and resulted in an R2 of 0.72 for purity. Although 

the regression coefficient for the combination of detectors is lower than for the single de-

tectors, the orthogonal nature of both detectors increases the robustness.  

In chromatography, a combination of DAD and fluorescence data showed significant 

improvement in prediction quality. For IgG concentration an R2 of 0.93 was achieved. In 

addition, the low prediction error for spectroscopic data with no IgG content, which was 

observed in fluorescence data but not in DAD data, was reproduced. For LMW 1, an R2 of 

0.91; for LMW 2, an R2 of 0.93 was achieved. R2 for the IgG dimer is 0.67 and could not be 

improved. The reason for this might be the low concentration of 0.022 g/L at maximum, 

and, therefore, the system-immanent error resulting from offline analytics methodology. 

RMSE for the combined PLSR model was 0.027 for IgG, 0.0047 for dimer, 0.016 for LMW 

1, and 0.014 for LMW 2 which corresponds to 9.7%, 20%, 13.9% and 10% respectively. 

3.6. Additional Process Data 

PAT may not only cover spectroscopic measurements but also include all other avail-

able online data sources for providing means of achieving APC. In cell culture these in-

clude measurement of pH and pO2, but also conductivity [5], pCO2, off-gas analysis and 

turbidity. Changes in pH, pO2, pCO2, off-gas composition can be used to predict the met-

abolic state of the cells by means of oxygen consumption and carbon dioxide production. 

CHO cells typically exhibit overflow metabolism that is characterized by high rates of 

lactate excretion. Hence, most carbon from glucose is not initially converted to CO2. 

Switch to an oxidative metabolic phenotype might be detected by altered patterns of oxy-

gen consumption and CO2 excretion, which would also decrease the pH. While turbidity 

yields information about the total cell concentration, conductivity changes can be corre-

lated to decreasing viability, whereby the combination of both methods can be used to 

predict viable cell concentration [5]. 

In ATPE, the pH (6.4 ± 0.1), conductivity (12 ± 2 mS/cm) and density (1104 ± 4 kg/m3) 

strongly depend on the properties of the phase forming components, in this case PEG400 

and phosphate salt. Since the properties of polymer and salt buffers do not change during 

the process, no correlation between species concentrations and other sensor data were 

found. Turbidity (37.5 ± 12.5 FAU) is constantly low. However, it is important to keep in 

mind that these data still hold value and should be continuously monitored, as they are 

suitable to check if the process operates within specifications as part of a control strategy. 

In precipitation, the pH value remains constant throughout precipitation which indi-

cates that no process information can be correlated to this sensor signal. The conductivity 

(12 mS/cm) is depend on the light phase which contains residual phosphate salt as de-

scribed in the ATPE section. Since the added PEG solution is not conductive after PEG 

addition the conductivity decreases. The resulting conductivity change can be correlated 

to the composition of the dispersion and can be used as control PAT. Turbidity has, like 

conductivity, a strong deflection during addition of PEG because precipitate formation 

occurs instantaneously. Turbidity is not specific to one protein, but can be used as control 

sensor to monitor precipitation progress. During dissolution, the pH value (pH = 5.9 ± 

0.1), conductivity (1.5 ± 0.1 mS/cm) and turbidity (0 FAU) remained constant during re-

dissolution of precipitates. 
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During chromatography, pH and conductivity were measured. pH maintains con-

stant during chromatography, with a minor change of ±0.02 during side and target com-

ponent elution at 23 to 30 min. The course of conductivity during chromatography is 

mainly dominated by the changing salt concentration. While the elution time of the com-

ponents can be detected using pH, a significant change in the determination coefficient of 

the PLSR model was not observed. However, especially pH and conductivity changes are 

especially known to be valid and of substantial aid for process operation performance and 

maintenance prediction systems [75]. 

In UF/DF, the salt concentration can be correlated to conductivity. pH can be corre-

lated to progress of buffer exchange. Turbidity is not applicable anymore such late in the 

process. 

3.7. Analytics 

3.7.1. ELISA 

The most critical quality attribute is the biological activity of the therapeutic protein, 

as this determines whether it retains its efficacy. For this reason, a specific direct enzyme-

linked immunosorbent assay (ELISA) was performed to examine the preservation of bio-

logical activity after each unit operation. In Figure 17 the activity of detected mAb is 

shown. It can be seen that biological activity is successfully maintained after ATPE, pre-

cipitation and chromatography.  

3.7.2. Bradford 

The Bradford test is a colorimetric method for determination of total protein concen-

tration. The test is based on the binding of Coomassie Brilliant Blue G-250 to acidic amino 

acid residues. Upon binding of the dye to the amino acids under acidic conditions, a shift 

of the dye’s absorption maximum occurs, which causes a color change from red/brown to 

blue. This color shift is proportional to the total protein concentration, though care must 

be taken as different protein compositions can cause differences in dye binding intensity 

and accordingly color change. Therefore, the choice of a proper, representative, protein 

for generating a calibration curve is very important. Figure 17 shows the results for total 

protein concentration determination.  

3.7.3. SDS-PAGE 

The 2D Gel electrophoresis is used as a visualizing method for detection of proteins. 

In the first dimension, the proteins are focused according to their isoelectric point in a pH 

gradient (pH 3–10). Following, they are separated according to their size through gel elec-

trophoresis. Heavy chain (HC) and light chain (LC) of the mAb can be clearly identified. 

Reduction of protein concentration throughout the process can be observed. The highest 

side component concentrations are found in cultivation broth (top right). Gels are de-

picted in Figure 12.  
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Figure 12. Two-dimensional (2D) SDS-PAGE gels of (a) light phase after ATPE, (b) cultivation broth, (c) dissolved mAb 

after precipiation, (d) mAb fraction after chromatography. LC: light chain of mAb. HC: heavy chain of mAb. 

3.7.4. DNA Concentration Determination 

The concentration of double stranded (ds)DNA can be determined using 

intercalating dyes such as SYBR Green. The DNA-dye complex is excited at 480 nm and 

the emission is measured at 520 nm. The fluorescence intensity is proportional to the 

amount of dsDNA and the concentration can be determined by comparison to a 

fluorescence signal of a sample with known DNA concentration. Figure 17 shows the re-

sults for dsDNA concentration determination. It can be seen that ATPE achieves a 90% 

reduction in DNA concentration and the remaining DNA is removed in precipitation. 

3.8. Process Simulation Studies to Propose Advanced Process Control Concepts 

In literature concentration fluctuations or a continuous mAb concentration decrease 

due to decreasing cell specific productivity over process time have been described [6]. 

Simulation studies are used to test whether PAT can enable a process control strategy that 

allows for compensation of titer fluctuations in the subsequent DSP. The scenario for the 

following simulations is that the mAb concentration and purity (i.e., HMW and LMW 

concentrations) are continuously measured in the outstream of each unit operation using 

the detector array presented above. The real time measurement data are continuously for-

warded to the following unit operation in the mAb manufacturing process. This infor-

mation is fed into a process model that calculates the necessary process adjustment to 

reach either a constant mAb concentration or constant volume flow.  

Since the focus of the study presented here is not just simply the process models, but 

the application and demonstration, in combination with the already discussed spectros-

copy-based PAT, we refer here again to the publications on the respective unit operations. 

Simulation of viable cell concentration and product concentration in perfusion mode 

is shown in Figure 13. The viable cell and product concentration increases over the first 72 

h. Then the perfusion is started and the product concentration decreases momentarily 

since more product is washed out than is produced. Shortly after the concentration in-

creases again proportionally to the viable cell concentration until the steady state is 

reached after approximately 350 h. Product concentration in the steady state reaches 1.8 

g/L. As a basis for the following unit operations, a final steady state concentration of 2 g/L 

is assumed.  
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Figure 13. Simulation results of viable cell and product concentration in perfusion. 

Figure 14 shows how concentration fluctuations in USP are processed to a constant 

concentration in the product containing light phase. Polymer and salt solutions are mixed 

based on the phase equilibrium within the same tie-line. Based on the lever-arm rule, ei-

ther less or more light phase is produced, thereby concentration is kept constant. Operat-

ing on the same tie-line is necessary to ensure constant yield and product phase proper-

ties. 

 
 

 

 

(a) (b) (c) 

Figure 14. Simulation results for concentration fluctuations (a) and concentration compensation by system adjustment 

(b,c). 

In Figure 15, the concentration change in precipitation over process time is depicted. 

Precipitation is a concentration independent process [73], which can be also verified with 

these results. The ratio of PEG solution and light phase do not change with varying mAb 

concentration because the PEG content is calculated based on the volume coming from 

extraction and not respectively to the concentration. In this way concentration variations 

do not affect precipitation. For higher titers precipitation takes slightly longer (few sec-

onds) as show in Figure 15, but the result is the same, and lead to complete precipitation. 

Complete precipitation is a function of mixing of light phase and PEG solution. 

In contrast, dissolution is concentration dependent and able to react to decreased or 

increased feed concentration by adjusting the dissolution ratio. In this manner the precip-

itation unit can provide a constant concentration for chromatography, which is shown in 

Figure 15(b). For different feed concentrations, the dilution ratio was adjusted resulting in 

a constant output concentration of 2.6 g/L (±0.05). Changes in flow rate can be compen-

sated with a higher stream of PEG solution to keep precipitations condition constant and 

ensure complete precipitation. Due to the fact that dead-end filtration eliminates the com-

plete volume of supernatant around precipitates, flow rate fluctuation does not affect dis-

solution. Hence, concentration and flow rate changes cannot be compensated at once since 

a constant mAb concentration is accompanied by a fluctuation in flow rate. Compensation 

of purity was not possible in precipitation. 
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Figure 15. Simulation results for concentration fluctuations (a) for precipitation and (b) dissolu-

tion. 

In Figure 16, simulation results from integrated counter current chromatography 

(iCCC) modeling are illustrated. In (a), the chromatogram of ion exchange chromatog-

raphy (IEX) is given. Between 400 and 1000 s, the majority of LMW 1 and LMW 2 are 

eluted. This is due to the loading of the strong-binding fraction of hydrophobic interaction 

chromatography (HIC) and the weak-binding fraction of IEX. IgG is eluted from 2250 to 

2500 s. Cutting points are marked with dashed lines and are set at 0.05 g/L which was 

detectable in chromatography using the PAT system described above.  

  

(a) (b) 

Figure 16. Simulation results of integrated counter current chromatography (iCCC); (a) is ion exchange chromatography 

(IEX) after five cycles, (b) is hydrophobic interaction chromatography (HIC) after five cycles. 

This simulation shows that an in-line process control using a PAT system of DAD 

and/or fluorescence leads to a very high process yield, since cutting points in the chroma-

togram can be automatically detected, controlling the fractionation.  

4. Discussion 

4.1. Applicability of Spectroscopic Methods in Continuous Biomanufacturing 

The evaluation of the different detector and sensor data in USP and ATPE reveals 

that Raman was not only the most reliable technique for mAb, but also for HMW and 

LMW prediction. It is also the most easily implementable spectroscopic technique as in-

line probes and flow cells are widely available. Data acquisition is also sufficiently fast 

(few seconds) for USP and ATPE. FTIR data are also suitable for building a PLSR, however 

less reliable when compared to Raman. Due to the overall lesser observed variability in 

the spectra, it also appears to be less sensitive to changes in species concentration. DAD 

yielded very good correlation results, however, there are no in-line probes readily availa-

ble and the detection of absorption is by principle less species-specific than Raman finger-

prints and therefore more likely to give false-positively predictions. Fluorescence yielded 
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the worst correlation results and is therefore less likely to be implemented as a primary 

detector technique in USP and ATPE. Overall, for in-line mAb, HMW and LMW analytics, 

Raman is the recommend spectroscopic technique. 

Simulation results showed that based on the continuous measurement of mAb, 

HMW and LMW concentrations by the PAT sensors, the unit operations in DSP could be 

controlled using process models that calculate necessary system adjustments in order to 

keep either concentration or volume flow constant.  

For the precipitation unit, evaluation of Raman, FITR, DAD, and fluorescence yielded 

different results for precipitation and dissolution. During precipitation, experimental data 

show that the prediction of the target component and HMWs is poor. The results for 

HMWs are not surprising, since most of this impurity is already removed in ATPE. For 

LMWs very good results can be obtained with Raman (R2 of 0.95), FTIR (R2 of 0.94), and 

DAD (R2 of 0.97). Fluorescence could not be tested due to the precipitates which are harm-

ful for the flow-through cell of the detector. Unfortunately, no satisfactory results for the 

prediction of purity was found with any of the detectors during precipitation. For disso-

lution, all four detectors could reliably predict the concentration of the target component. 

Nevertheless, only poor correlations were found for HMWs and LMWs since most impu-

rities are already separated before dissolution is performed. Only Raman was capable to 

predict the purity of HMWs (R2 of 0.13), LMWs (R2 of 0.22), and the target component (R2 

of 0.85), whereby, only the precision of the TC was convenient. Therefore, similar to USP 

and ATPE, Raman is the best suited sensor for the precipitation unit. 

According to this study, Raman is recommended as a detector for precipitation since 

it has shown persuasive results in detecting the target and side components (LMWs) in 

precipitation and dissolution. Additionally, purity of the target component in the disso-

lution could be correlated with Raman. As an orthogonal measurement strategy, a DAD 

is recommended due to fast acquisition time and precision. Furthermore, a conductivity 

probe is recommended as PAT control strategy for detection of optimal conditions during 

precipitation. 

In chromatography, advanced process control using in-line measurements is the 

most promising way to establish continuous downstream manufacturing in the purifica-

tion of biopharmaceuticals. In highly purified solutions of mAb, a way to detect impurities 

even at very low concentration is a combination of DAD and fluorescence. In this study, 

a concentration down to 0.05 g/L could be measured using this combination. Using the 

combination of DAD and fluorescence, an R2 of 0.93 for the target component was 

achieved. Regression coefficients for HCP impurities were comparable, with 0.91 and 0.93 

respectively. Regression coefficient for the dimer was 0.67, which probably resulted from 

the low concentrations observed in chromatography, with around 0.005 to 0.025 g/L, 

which is very close to the detection limit of the employed SEC chromatography. In DAD 

measurements, without simultaneously evaluating fluorescence a high variation in zero 

concentration measurements for the product was observed. This would be a problem for 

inline product detection, with resulting background noise interfering with peak detection. 

Using a combination of DAD and fluorescence, this problem is eliminated. FTIR could be 

used in the present experimental setup, however, it has the downside of a lower sensitiv-

ity. Therefore, detecting incoming peaks is more difficult. Later detection, at higher con-

centrations would result in a lower process yield in preparative process. This, lower sen-

sitivity observed in chromatography likely results in the overlapping absorbance ranges 

of the changing buffer solution and the target component, which is discussed above. Ra-

man was not feasible using the employed flow-cell, which due to its dead volume of 1 mL. 

In other works Raman has been employed successfully for the breakthrough detection of 

IgG [36]. Other reasons might be the differing integration time or the salt gradient over-

laying the elution.  
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4.2. Proposed Control Strategy including PAT 

The proposed process is a continuous, chromatography-reduced process, as this pro-

cess offers the most economical production of monoclonal antibodies, as shown in another 

work [5]. Robust process control is possible using either an advanced process control 

based on a digital twin, as shown in this work. To enable process control, an inline con-

centration measurement has to be implemented. As shown in this study, PLSR-based 

spectroscopic methods enable a real-time, accessible process control in all used unit oper-

ations. The proposed process is illustrated in Figure 18 to Figure 20. In Figure 17, an over-

view of the course of purity, yield, titer, and DNA concentration in this study is given. 

Product titer is mainly increased by chromatography and adjusted by UF/DF. Purity is 

steadily increasing over the course of the process. In ATPE capture, most of the high mo-

lecular weight side components are eliminated. These mainly consist of multi-charged 

DNA molecules, which stay in the salt-dominated heavy phase [76]. Purification occurs 

in precipitation as most light molecular weight host cell proteins stay in the supernatant, 

and are eliminated through filtration of precipitates [29]. After chromatographic polishing 

(IEX and HIC), over 99% purity is achieved. HMW, as well as LMW side components, are 

below the detection limit of the applied analytic technologies. 

 

Figure 17. Course of purity, yield, and titer during the process. 

As shown in the simulation studies ATPE can sustain a constant mAb concentration, 

even when titer in USP fluctuates +/– 50%. This is achieved by calculating the necessary 

polymer and salt concentration based on the phase equilibrium. As discussed before, Ra-

man is the recommend spectroscopic technique to analyze mAb concentration in USP and 

ATPE, and is therefore the primary detector at the inlet and product phase outlet stream, 

as shown in Figure 18. 
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Figure 18. Proposed control strategy for USP and ATPE. A Raman probe is used as (PAT) at the filtrate outlet of USP and 

forwards mAb and side component concentrations to the ATPE, which adjusts the polymer and salt concentrations to 

produce light phase with a constant mAb concentration which is then forwarded to the precipitation unit. 

Figure 19 shows the process control strategy for the precipitation unit. Precipitation 

is depicted in a red and dissolution in a green box. The unit consists of four hollow fiber 

modules that are timed and to enable continuous processing. Phase one is the filtration of 

precipitates, followed by a washing step in phase two. Redissolution takes place in phase 

three and finally the module is regenerated by a rinsing process in phase four. After re-

generation, the process restarts with the filtration of precipitates. Each module passes 

through all four phases with a time delay, which is controlled by pressure sensors to en-

sure the operation range for the hollow fiber membranes. In the dissolution recycling loop, 

inline measurements and proteomics are installed to detect concentration and purity of 

the target component.  

 

Figure 19. Process control strategy for precipitation. A PAT measurement array at the outlet of the ATPE forwards mAb 

and side component concentrations to the precipitation unit, which adjusts filtration and dissolution times to obtain a 

constant mAb concentration in the dissolution solution. 
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This measurement technique is used as switching criterion between valves in phase 

one to abort dissolution as soon as the target component has sufficiently redissolved into 

the buffer. Finally, the product is filtered through the membrane and transferred to the 

chromatography step, as well as values of product titer and purity, which are used as 

model input parameters for chromatography. 

Figure 19 shows the flow sheet of the precipitation unit including online measure-

ment trains as well as pressure sensors and mass flow controllers. The unit consists of four 

membrane modules that are controlled by the digital twin and the integrated inline PAT. 

Each module passes through different phases with a time delay. In this way continuous 

processing is enabled. Phase one is the filtration of precipitates, followed by redissolution 

of the target component. Then, the module is regenerated by a rinsing process. After re-

generation, the process restarts with the filtration of precipitates. The mass flow controller 

monitors the incoming flow rate of light phase after ATPE, which is used to calculate the 

needed precipitant flow rate. Pressure sensors measure the transmembrane pressure dur-

ing filtration and ensure that the operation range is maintained. Furthermore, a critical 

pressure is used to switch valve positions and redirect the dispersion to the next filter. The 

first loaded module passes on to the next phase, the dissolution. Input concentration from 

ATPE and the predefined final mAb concentration are used to determine the buffer vol-

ume for redissolution of the target component. The inline measurement train in the circuit 

controls the speed of the dissolution buffer pump as well as the valves to the product tank. 

As soon as the dissolution of the antibody has reached a stationary value, the dissolution 

is terminated and the product solution is passed on to the next unit operation. 

In Figure 20, a control strategy for iCCC is proposed. Data needed to set the loading 

time of IEX is either transferred by the previous unit operation or measured in-line in front 

of the feed tank (blue). Data used for release testing is obtained by measurement arrays 

located after the columns (green). From the obtained data, two different control strategies 

for the iCCC unit arise. Firstly, the process can be controlled using the real-time measured 

concentration as a switch criteria for the fractionation valves. Since the elution order of 

the components in known, and this order is not subject to change in the process, the prod-

uct fraction can be cut easily when both light molecular weight side components were 

eluted. Cutting the product peak at the lowest concentration detectable (i.e., 0.05 g/L) re-

sulted in a yield of over 99% consistently. Secondly, the iCCC process can be simulated 

with the help of a digital-twin. Here, further optimizations of space-time yield or purity 

are possible since the separation can be further optimized. Using the data obtained by the 

PAT arrays (green), resin aging can be detected or even integrated continuously into the 

digital twin model, by adjusting model parameters.  

After chromatography, the mAb concentration is determined by the combination of 

DAD and fluorescence. This information determines the necessary concentration factor. 

Transmembrane pressure is adjusted to achieve the desired concentration. Conductivity 

measurements are used to determine if the UF/DF operates within the specification limits. 

Finally, transmembrane pressure for final buffer adjustment towards formulation is ad-

justed to achieve the desired concentration. Conductivity measurements are used to de-

termine if the UF/DF operates within the specification limits. Lyophilization as the final 

formulation step before fill and finish has already been described [30]. 
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Figure 20. Proposed control strategy for iCCC. PAT measurement information from the precipitation outlet (top left, blue) 

is used to control the loading time of the IEX. Fractionation in the IEX can also be monitored and controlled by the de-

scribed PAT detectors (green). 

5. Conclusions 

In the present study, for a whole mAb manufacturing process, the applicability of a 

combination of spectroscopic methods has been evaluated to enable APC in continuous 

manufacturing by PAT. 

In USP and the following direct ATPE, Raman-, FTIR-, fluorescence-, and UV/Vis 

spectroscopy have been successfully applied for titer as well as purity prediction. Raman 

was the most versatile and robust method and is recommended as primary PAT. In pre-

cipitation, similar results were obtained for titer determination. Prediction of purity was 

challenging for FTIR, fluorescence and UV/Vis, but achievable by Raman spectroscopy. In 

chromatography, the combination of UV/Vis and fluorescence spectroscopy was able to 

overcome difficulties in titer and purity prediction induced by overlapping side compo-

nent spectra, often already reported in literature as well. In final UF/DF, before lyophiliza-

tion, UV/Vis spectroscopy is applicable for titer concentration determination, however, 

for high concentration processes, it is important to ensure the DAD employed is able to 

operate at elevated concentrations. Raman spectroscopy is especially useful in early stages 

of the process, whereas more traditional detector technology concepts, such as DAD, can 

be used in late process stages. The combination of spectroscopic data improves the pre-

dictivity as shown for chromatography. 

Continuous operation generates much smaller hold-up volumes than batch pro-

cessing. This causes much shorter start-up und shut-down times with smoother systems 

responses. In addition, system response is much shorter and smoother, i.e., nearly con-

stant, around the continuous operation point. Hence, detector signal acquisition times and 

corresponding sampling scan rates for continuous processing are much lower than for 

comparable batch operation. Changes due to natural system variances are less steep, i.e., 

continuously near constant system responses. In contrast, only typical gradient elution 

chromatography operation with fraction cut points at steep chromatogram concentration 

slopes challenge the accuracy in time resolution. These changes in concentration occur 

within a few seconds, whereas the feasible number of measuring points is limited by the 
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sampling rate, which leads to a resolution of 10–50 points per peak. This results in an 

image of the concentration profile that is not sufficiently accurate for fractionation. Only 

typical breakthrough curves of flow-through operation mode in capture steps differ, and 

are, as well, sufficiently describable with higher acquisition times and averaged scans. 

Based on the developed spectroscopic predictions, dynamic process control of the 

unit operations was demonstrated for the total process in sophisticated simulation studies 

based on validated digital twins available for all unit operations. As such, a PAT develop-

ment workflow for any holistic process development is proposed.  

To our knowledge, this comprehensive demonstration of the combination of the ap-

plicability of different spectroscopic methods, in the context of a holistic process develop-

ment, including the complete total process simulation of an APC concept based on digital 

twins, has been shown for the first time, opening up innovative autonomous operation 

concepts for the future. The next steps will be the transfer towards different biologic types, 

such as antibody fragments, peptides, and VLPs available at the institute, as well as pilot-

ing studies of the APC conception proposed. 
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Abbreviations 

APC advanced process control 

ATPE aqueous two-phase extraction 

ATR Attenuated total reflectance 

DoE design of experiments 

DSP downstream processing 

EMA European Medicines Agency 

FDA Food and Drug administration 

FTIR Fourier-transformed infrared spectroscopy 

HIC hydrophobic interaction chromatography 

iCCC integrated counter-current chromatography 

IEX ion exchange chromatography 

IPC inline process control analytics 

mAb monoclonal antibody 

MCSGP multicolumn countercurrent solvent gradient purification 

MPC model-based process control 

MS mass spectrometry 

PAT process analytical technology 

PCA principle component analysis 

PCS process control system 

PLSR Partial least squares regression 

Prot A protein A chromatography 

QA quality assurance 
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QbD quality-by-design 

UF/DF Ultrafiltration/diafiltration 

USP upstream processing 

VLP virus-like particles 
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