Optimisation of the Geometric Parameters of Longitudinally Finned Air Cooler Tubes Operating in Mixed Convection Conditions
Abstract
:1. Introduction
2. Calculation Model
3. Optimisation of Geometric Parameters of Heat Pump Evaporator Tubes
3.1. Assumptions for Optimisation Calculations
- − maximisation of heat flow for constant mass of the aluminium profile
- − with the equality constraint:
- − maximisation of the objective function, which is the quotient of the heat flow to the mass of the aluminium profile:
- − inlet flow rate condition, wa = 2.3 ms−1,
- − free flow condition at the outlet, p = 0 Pa
- − outside air temperature, Ta = 275.15 K,
- − temperature on the inner surface of the exchanger tube, Tw = 247.15 K.
3.2. Results of Optimisation Calculations
3.2.1. Maximisation of the Heat Flow at Minimum Mass
3.2.2. Maximising Heat Flow at Constant Mass MPR-M
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | surface area, (m2) |
ai | coefficients in the Equation (9) |
d | tube diameter, (m) |
Dfin | fin diameter, (m) |
Gi | objective function, (W), (Wkg−1) |
h | equivalent fin height, (m) |
hfin | actual fin height, (m) |
l | length, (m) |
L | tube height, (m) |
MPR | fin mass, (kg) |
n | number of fins |
p | pressure, (Pa) |
heat flow in the Equation (9), (W) | |
heat flow, (W) | |
s | fin thickness, (m),(mm) |
t | fin spacing, (m),(mm) |
T | temperature, (°C) |
w | average flow rate, ms−1 |
Symbols | |
α | heat transfer coefficient, (Wm−2K−1) |
ε | fin efficiency |
φ | relative humidity, (%) |
ρAl | aluminium density (ρAl = 2720), (kgm−3) |
Indices | |
a | air |
bott | bottom |
CFD– | CFD numerical calculations |
exp | experimental value |
fin | related to the finned area |
in | related to the internal surface |
loc | local value |
M | related to the exchanger tubes profile model |
max | maximum value |
opt | optimal value |
out | related to the external surface |
PR | fin mass |
top | on top |
w | wall |
References
- Daikin Systemy Grzewcze. Daikin_katalog_2012_Ogrzewanie. Available online: https://www.daikin.pl/pl_pl/customers.html (accessed on 10 December 2020).
- Niezgoda-Żelasko, B.; Zalewski, W.; Żelasko, J. Development of Technology and Technical Documentation and Testing of a Prototype of an Air-to-Water Heat Pump, Targeted Project No. ROW-II-436/2008; Cracow University of Technology: Kraków, Poland, 2008. [Google Scholar]
- Octopus Heat Pumps is an Efficient Solution. Available online: http://www.the-green-house.net/octopus-heat-pumps-is-an-efficient-solution/ (accessed on 16 September 2011).
- Niezgoda-Żelasko, B. Intensification of the Process of Heat Exchange in Evaporators of Air Heat Pumps Working at Low Airflow Velocities; Raport of Project N N512 458040; Cracow University of Technology: Kraków, Poland, 2013. [Google Scholar]
- Niezgoda-Żelasko, B.; Żelasko, J. Free and forced convection on the outer surface of vertical longitudinally finned tubes. Exp. Therm. Fluid Sci. 2014, 57, 145–156. [Google Scholar] [CrossRef]
- Acharya, S.; Patankar, S.V. Laminar Mixed Convection in a Shrouded Fin Array. J. Heat Transf. 1981, 103, 559–565. [Google Scholar] [CrossRef]
- Maughan, J.R.; Incropera, F.P. Mixed Convection Heat Transfer with Longitudinal Fins in a Horizontal Parallel Plate Channel: Part I—Numerical Results. J. Heat Transf. 1990, 112, 612–618. [Google Scholar] [CrossRef]
- Dogan, M.; Sivrioglu, M. Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel: In natural convection dominated flow regimes. Energy Convers. Manag. 2009, 50, 2513–2521. [Google Scholar] [CrossRef]
- Dogan, M.; Sivrioglu, M. Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel. Int. J. Heat Mass Transf. 2010, 53, 2149–2158. [Google Scholar] [CrossRef]
- Dogan, M.; Sivrioglu, M. Experimental and numerical investigation of clearance gap effects on laminar mixed convection heat transfer from fin array in a horizontal channel-A conjugate analysis. Appl. Therm. Eng. 2012, 40, 102–113. [Google Scholar] [CrossRef]
- Zhang, Z.; Patankar, S. Influence of buoyancy on the vertical flow and heat transfer in a shrouded fin array. Int. J. Heat Mass Transf. 1984, 27, 137–140. [Google Scholar] [CrossRef]
- Al-Sarkhi, A.; Abu-Nada, E.; Akash, B.A.; Jaber, J. Numerical investigation of shrouded fin array under combined free and forced convection. Int. Commun. Heat Mass Transf. 2003, 30, 435–444. [Google Scholar] [CrossRef]
- Petrone, G.; Cammarata, G. Numerical and experimnetal analysis of natural and mixed convection heat transfer for vertically arranged DIMM. In Proceedings of the COMSOL Conference, Hannover, Germany, 4–6 November 2008. [Google Scholar]
- Das, B. Mixed Convection Heat Transfer from A Shrouded Fin Array with and without Vortex Generator. Ph.D. Thesis, Deemed University, Arunachal Pradesh, India, 2014. [Google Scholar]
- Razelos, P. A note on the heat transfer in convective fins. Wärme Stoffübertrag. 1979, 12, 113–119. [Google Scholar] [CrossRef]
- Bhargava, S.; Duffin, R.J. On the Nonlinear Method of Wilkins for Cooling Fin Optimization. SIAM J. Appl. Math. 1973, 24, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Mikk, I. Convective fin of minimum mass. Int. J. Heat Mass Transf. 1980, 23, 707–711. [Google Scholar] [CrossRef]
- Maday, C.J. The Minimum Weight One-Dimensional Straight Cooling Fin. J. Eng. Ind. 1974, 96, 161–165. [Google Scholar] [CrossRef]
- Ahmadi, G.; Razani, A. Some optimization problems related to cooling fins. Int. J. Heat Mass Transf. 1973, 16, 2369–2375. [Google Scholar] [CrossRef]
- Chung, B.T.F.; Zhang, B.X. Optimization of Radiating Fin Array Including Mutual Irradiations Between Radiator Elements. J. Heat Transf. 1991, 113, 814–822. [Google Scholar] [CrossRef]
- Kern, J. Zur Bewertung von Kompakt-Wärmetauschern. Wärme Stoffübertrag. 1980, 13, 205–215. [Google Scholar] [CrossRef]
- Unk, J. Verfahren zur Optimierung von Rippenrohren und der Rohrreihenzahl in Wärmerückgewinnunggeräten. Klima Kälte Heizung 1981, 2, 73–79. [Google Scholar]
- Bulck, E.V.D. Optimal Design of Crossflow Heat Exchangers. J. Heat Transf. 1991, 113, 341–347. [Google Scholar] [CrossRef]
- Niezgoda, B. Minimising Investment and Operating Costs of Heat Exchangers with Developed Heat Exchange Surfaces. Ph.D. Thesis, Cracow University of Technology, Kraków, Poland, 1992. [Google Scholar]
- Niezgoda, B. Optymalizacja termiczno-przepływowych parametrów pracy ożebrowanych wymienników ciepła (Optimisa-tion of thermal-flow parameters of finned heat exchangers). Techn. Trans. 1995, Z.-1, 126–135. [Google Scholar]
- Niezgoda-Żelasko, B.; Zalewski, W.; Pacześna, J. Optymalizacja podziałki rozstawienia lamel w chłodnicach cieczy i skraplaczach chłodzonych powietrzem (Optimisation of fin spacing in liquid coolers and air-cooled condensers). Tech. Chłod. Klim. 2000, 6, 235–239. [Google Scholar]
- Maltson, J.D.; Wilcock, D.; Davenport, C.J. Comparative performance of rippled fine plate fin and tube heat exchanger. J. Heat Transf. 1989, 111, 21–28. [Google Scholar] [CrossRef]
- Ko, T. Thermodynamic analysis of optimal curvature ratio for fully developed laminar forced convection in a helical coiled tube with uniform heat flux. Int. J. Therm. Sci. 2006, 45, 729–737. [Google Scholar] [CrossRef]
- Rustum, I.; Soliman, H. Numerical analysis of laminar mixed convection in horizontal internally finned tubes. Int. J. Heat Mass Transf. 1990, 33, 1485–1496. [Google Scholar] [CrossRef]
- Chai, J.C.; Patankar, S.V. Natural laminar convection in internally finned horizontal annuli. Numer. Heat Transf. Part A 1993, 24, 67–87. [Google Scholar] [CrossRef]
- Haldar, S.; Kochhar, G.; Manohar, K.; Sahoo, R. Numerical study of laminar free convection about a horizontal cylinder with longitudinal fins of finite thickness. Int. J. Therm. Sci. 2007, 46, 692–698. [Google Scholar] [CrossRef]
- Haldar, S.C. Laminar Free Convection Around a Horizontal Cylinder with External Longitudinal Fins. Heat Transf. Eng. 2004, 25, 45–53. [Google Scholar] [CrossRef]
- Farinas, M.-I.; Garon, A.; Saint-Louis, K. Study of heat transfer in a horizontal cylinder with fins. Rev. Gén. Therm. 1997, 36, 398–410. [Google Scholar] [CrossRef]
- Ibrahim, E.; Moawed, M. Forced convection and entropy generation from elliptic tubes with longitudinal fins. Energy Convers. Manag. 2009, 50, 1946–1954. [Google Scholar] [CrossRef]
- Kundu, B. Beneficial design of unbaffled shell-and-tube heat exchangers for attachment of longitudinal fins with trapezoidal profile. Case Stud. Therm. Eng. 2015, 5, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Wang, Q.W. Turbulent heat transfer performance of internally longitudinally finned tubes. WIT Trans. State Art Sci. Eng. 2013, 63, 185–210. [Google Scholar]
- Awasarmol Umesh, V.; Pise Ashok, T. An experimental investigation of natural convection heat transfer anhancement from perforated rectangular fins array at different inclinations. Exp. Therm. Fluid Sci. 2015, 68, 145–154. [Google Scholar] [CrossRef]
- Kast, W.; Klan, H. Wärmeübergang durch freie Konvection an umströmten Körpern. In VDI-Wärmeatlas; VDI: Düsseldorf, Germany, 1991; pp. Fa1–Fa7. [Google Scholar]
- Yazicioglu, B. Performance of Rectangular Fins on a Vertical Base in Free Convection Heat Transfer. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2005. [Google Scholar]
- Gnielinski, V. Wärmeübergang bei erzwungener einphasiger Strömung. In VDI-Wärmeatlas; VDI: Düsseldorf, Germany, 1991; pp. Ga1–Ga2. [Google Scholar]
- Mahdi, Q.S.; Abbod, S.A.; Abbas, F.A. Investigation of heat transfer augmention from U-longitudinal finned tube heat ex-changer. Adv. Energy Power 2015, 3, 19–28. [Google Scholar] [CrossRef]
- Pronobis, M. Prenos tepla ve svazcich zebrovanych trubek. Energetika 1987, 12, 572–575. [Google Scholar]
- Kopeć, P.; Niezgoda-Żelasko, B. Heat transfer on the outer surface of vertical longitudinally finned tubes. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 214, p. 012058. [Google Scholar]
- Ansys Fluent Theory Guide; Relase 14.0. 2011. Available online: https://www.scribd.com/doc/140163341/Ansys-Fluent-14-0-Theory-Guide (accessed on 10 December 2020).
- Kopeć, P.; Niezgoda-Żelasko, B. Modeling of the heat transfer process in an air heat pump fanless evaporator. MATEC Web Conf. 2018, 240, 05012. [Google Scholar] [CrossRef]
- Niezgoda-Żelasko, B.; Żelasko, J.; Zalewski, W. Longitudinal Finned Tube, Utility Model No. PL 66649; Patent Office of the Republic of Poland: Warszawa, Poland, 2011. [Google Scholar]
n | a0 | a1 | a2 | a3 |
---|---|---|---|---|
6 | 977.21 | 12,520.23 | 152,116.83 | 495,515.85 |
8 | −216.60 | 18,905.33 | −83,271.52 | 0 |
10 | −250.14 | 20,449.23 | −92,935.4 | 0 |
12 | 518.15 | 6109.04 | −32,099.01 | 10,132.31 |
n | hopt3(m) | sopt × 103 (m) | |
---|---|---|---|
6 | 850 | 0.160 | 2.24 |
8 | 856 | 0.114 | 2.19 |
10 1 | 875 | 0.110 | 1.80 |
12 | 818 | 0.100 | 1.65 |
n | b0 | b1 | b2 |
---|---|---|---|
6 | 1095.59 | −24.25 | −149.54 |
8 | 1194.83 | −25.33 | −234.25 |
10 | 1344.47 | −30.56 | −354.91 |
12 | 1434.12 | −31.42 | −410.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopeć, P.; Niezgoda-Żelasko, B. Optimisation of the Geometric Parameters of Longitudinally Finned Air Cooler Tubes Operating in Mixed Convection Conditions. Processes 2021, 9, 111. https://doi.org/10.3390/pr9010111
Kopeć P, Niezgoda-Żelasko B. Optimisation of the Geometric Parameters of Longitudinally Finned Air Cooler Tubes Operating in Mixed Convection Conditions. Processes. 2021; 9(1):111. https://doi.org/10.3390/pr9010111
Chicago/Turabian StyleKopeć, Piotr, and Beata Niezgoda-Żelasko. 2021. "Optimisation of the Geometric Parameters of Longitudinally Finned Air Cooler Tubes Operating in Mixed Convection Conditions" Processes 9, no. 1: 111. https://doi.org/10.3390/pr9010111
APA StyleKopeć, P., & Niezgoda-Żelasko, B. (2021). Optimisation of the Geometric Parameters of Longitudinally Finned Air Cooler Tubes Operating in Mixed Convection Conditions. Processes, 9(1), 111. https://doi.org/10.3390/pr9010111