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Abstract: In order to improve the efficiency of the diesel engine and reduce emissions, an improved
heat transfer model was developed in an AVL-BOOST environment which is a powerful and user-
friendly software for engine steady-state and transient performance analysis. The improved heat
transfer model considers the advantages of the Woschni1978 heat transfer model and Honhenberg
heat transfer model. In addition, a five-component biodiesel skeletal mechanism containing 475 re-
actions and 134 species was developed to simulate the fuel spray process and combustion process
since it contained methyl linolenate, methyl linoleate, methyl oleate, methyl stearate, and methyl
palmitate, which are a majority component in most biodiesel. Finally, the propulsion and load
characteristics of a diesel engine fueled with biodiesel fuel were investigated by the improved heat
transfer model in term of power, brake specific fuel consumption (BSFC), soot and NOx emissions.
Similarly, the effects of the fuel injection rate on the diesel engine’s characteristic fueled with biodiesel
was studied. The result showed that the errors between experiment and simulation were less than
2%. Thus, the simulation model could predict the propulsion and load characteristics of the diesel
engine. The nozzle diameter, injection pressure, and injection advance angle are significant to the
injection system. Thus, it is very important to choose the injection rate reasonably.

Keywords: fuel injection rate; biodiesel fuel; diesel engine; fuel injection system; comprehensive
performance

1. Introduction

Due to the reliability and economy of diesel engine [1], the diesel engine has become
the main power source for mechanical equipment [2], such as the ship, construction
machinery [3], and heavy-duty trucks [4]. Particulate matter (PM) and NOx emission from
diesel engines pose a threat to the ecosystem and public health [5]. With the supplementary
provisions that have been implemented one after another [5] requires knowledge on how
to reduce NOx and PM emissions [6] and how to improve the characteristics of the diesel
engine [7]. In order to meet the requirements of regulations [8], it is necessary to develop
renewable energy to replace fossil fuels [9] and improve the system structure of existing
diesel engines so as to adapt the new fuel [10–12].

The diesel engine combustion is a physical and chemical process, which is complex
and changeable. In order to improve the efficiency of diesel engine and reduce the cost [13],
the numerical method has often been applied to select an alternative option [14] and im-
prove the design with limited resources [15]. The designer only chose the corresponding
model and input the diesel engine parameters [16], then the designer could make a prelimi-
nary demonstration of the model because the modeling and simulation software provides a
pre-design platform [17]. For instance, Lino and Maione developed the nonlinear injection
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system model of a common rail diesel engine with AMESim software [18]. They found that
the model verified by experiment could accurately predict the good spray performance and
improved the combustion process of diesel engine. Lähde et al. had established an injection
system simulation model of an electronic control unit (ECU) pump and investigated the
effects of various structural parameters on the economy and emission characteristics of a
diesel engine [19]. The results showed that the injection rate had a great influence on the
emission and performance characteristics of a diesel engine. In addition, Fan et al. had
developed a finite element mode of a ECU pump’s high-speed solenoid valve and analyzed
the effects of various factors on the solenoid valve [20]. The result showed that the solenoid
valve delay was an important factor in the spray performance. A one-dimensional fuel
injection system model was proposed to discuss the influence of biodiesel on the perfor-
mance characteristic of a common rail diesel engine by Frosina et al. [21]. The simulation
results were in good agreement with the experimental results. The literatures concerning
the emission and performance characteristics of diesel engine are plentiful, which mainly
focuses on developing a model for the components of the fuel injection system, but the
mechanical injection system transformation for the electronically-controlled injection sys-
tem has received considerably less attention [22]. Therefore, the software provides a good
platform for the modeling of a diesel engine injection system, and it can effectively analyze
the spray performance, propulsion, and load characteristics of the diesel engine [23].

Typically, the zero-dimensional or double zone combustion models are developed
by the GT-Power or ALV-BOOST software and the influences of input parameters on
the comprehensive performance of the diesel engine are studied [24–26]. For instance,
Gupta et al. had developed simulation models by AVL-BOOST and neural network
software and investigated the relative contribution of operational parameters on emission
and performance characteristics of a common-rail diesel engine in term of such as torque,
soot, NOx, and brake specific fuel consumption (BSFC) [27]. Similarly, some scholars
have established the simulation model of homogeneous charge compression ignition
diesel and biogas fuel by using AVL-BOOST software, which were verified by test results,
and analyzed the effects of a different fuel mixing ratio on the comprehensive characteristic
of diesel engines [28–30]. Other scholars carried out the modeling and made the analysis of
four main factors that could impact the performance and emission characteristics of a diesel
engine, including the first and second injection mass ratio, interval time, main injection start
time, and exhaust gas recirculation (EGR) ratio [31–34]. The one-dimensional models are
simpler, faster, and include more detailed physical models [35]. In general, more advanced
models such as combustion, heat transfer, and pollutant formation processes should be
employed to simulate and improve the accuracy of the calculation [36]. However, the
biodiesel as a good alternative of petrochemical energy is non-toxic [37], biodegradable
and has significantly fewer emissions [38]. Thus, it is of great significance to study the
injection performance and emission performance of biodiesel [39].

In the paper, the combined weight coefficient is employed to develop an improved heat
transfer model, which is used to simulate the combustion and heat transfer processes of a
diesel engine fueled with biodiesel fuel in an AVL-BOOST environment. In addition, a five-
component biodiesel skeletal mechanism is also employed to predict the combustion
process of biodiesel fuel. Then, the AVL-BOOST model is validated by the experimental
results under different conditions. Moreover, the new developed model will be employed
to analyze the engine characteristic and the effects of the fuel injection rate on the engine
characteristic of diesel engine fueled with biodiesel fuel is investigated.

2. Methods and Model Validation
2.1. An Improved Entire Diesel Engine Simulation Model

(1) The combustion model
In order to improve the calculation accuracy, a quasi-dimensional MCC AVL combus-

tion model is used to predict the combustion process in the cylinder. The model considers
the influence of diffusion combustion and pre-mixing, and it can predict the emission
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characteristic of diesel engine accurately. The expression of heat release rate is expressed
as follow:

dQF

dϕ
=

dQMCC

dϕ
+

dQPMC

dϕ
(1)

where QF is the combustion heat release rate, QMCC is the total heat release rate of diffusion
combustion, QPMC is the total heat release rate of pre-mixed combustion, and ϕ is the crank
angle.

The total heat release rate of diffusion combustion is expressed as Equation (2):

dQMCC

dϕ
= Ccomb ·

(
mF −

QMCC

Hu

)
· (wAir)

CEGR · CRate ·
√

k
3
√

V
(2)

where QMCC is the total heat release rate of diffusion combustion, Ccomb is the Combustion
constant, mF is the evaporative fuel mass, Hu is the low calorific value of fuel oil, k is the
turbulent energy density, wAir is the effective air mass fraction, CEGR is the EGR influence
constant, and CRate is the mixing ratio constant.

The actual heat release rate of pre-mixed combustion is expressed as Equation (3):

1
QPMC

dQPMC
dϕ

=
6.908
∆ϕC

· (m + 1) · ( ϕ− ϕB

∆ϕC
) · exp[− 6.908 · ( ϕ− ϕB

∆ϕC
)
(m+1)

] (3)

where QPMC is the total heat release rate of pre-mixed combustion, ϕ is the crank angle,
∆ϕc is the pre-mixed combustion duration, ϕB is the start of combustion angle, and m is
the shape parameter.

(2) Combined heat transfer model
Heat transfer in a diesel cylinder is a very complicated process, in view of the heat

transfer calculation of a high-pressure cycle, the Woschni1978 heat transfer model is gener-
ally used. In the heat transfer process, it mainly considers the influence of the convection
heat transfer in the cylinder [32,33]. The Woschni model published in 1978 for the high-
pressure cycle is summarized as follows:

αw = 130T−0.2
c p0.8

c D−0.2[C1Cm + C2
VTIVC

pIVCVIVC
(pc − pc,o)]

0.8
(4)

where Tc is the cylinder temperature, pc is the cylinder pressure, D is the cylinder diameter,
C1 is the gas velocity coefficient, Cm is the mean velocity of piston, C2 is the model constant,
TIVC is the inlet valve closing cylinder volume, V is the actual cylinder volume, pIVC is the
inlet valve closing cylinder pressure, and pc,o is the inverted cylinder pressure.

The heat transfer coefficient of the Honhenberg heat transfer model is summarized
as follows:

αk = 130 ·V−0.06 · p0.8
c · T−0.4

c · (cm + 1.4)0.8 (5)

where pc is the cylinder pressure, Cm is the mean velocity of piston, and V is the actual
cylinder volume.

A single heat transfer model is likely to have some defects and cannot accurately
predict the heat transfer in the diesel engine’s cylinder. In order to improve the accuracy of
the calculation and make up for the lack of a single model, an optimization weighted array
model is developed to predict the heat transfer in a diesel cylinder based on the forecasting
theory of the optimization weighted array. The optimal weighting coefficients are derived
by the minimum variance method. Thus, the advantages of the two models are combined.
The improvement of combined model makes the model more accurate.

It is assumed that αi is the expected predictive value and the experimental observation
value is Xi (X1, X2, . . . , Xn). The predicted value of the Woschni1978 heat transfer model
is αwi (i = 1, 2, . . . , n), the error between the model value and the test value is ewi (i = 1, 2,
. . . , n). The predicted value of the second model is αki (i = 1, 2, . . . , n), the error between
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the second model value and test value is eki (i = 1, 2, . . . , n). Respectively, the expected
predictive value of αi and error ei(i = 1, 2, . . . , n) are as follow:

αi = w1αwi + w2αki (6)

where w1 is the weight coefficient of the Woschni1978 heat transfer model and w2 is the
weight coefficient of the Honhenberg heat transfer model.

ei = w1ewi + w2eki (7)

where e1i, e2i, w1, and w2 are defined as: w1 + w2 = 1, e1i = Xi − αwi, e2i = Xi − αki.
The minimum quadratic sum of the combined expected forecasting error is as follows:

min(∑ e2
i ) = min[w2

1∑ e2
wi + 2w1w2∑ (ewieki) + w2

2∑ e2
ki] (8)

with w1 = [∑ e2
ki −∑ (ewieki)]/[∑ e2

wi + ∑ e2
ki − 2∑ (ewieki)] and w2 = [∑ e2

wi −∑ (ewieki)]/
[∑ e2

wi + ∑ e2
ki − 2∑ (ewieki)].

It can be proved that min(∑ei
2)≤min(∑eki

2) and min(∑ei
2)≤min(∑ewi

2). Thus, the combined
heat transfer model is better than the single model prediction.

(3) Simulation model establishment of an entire diesel engine
In order to investigate the steady state and transient state performance characteristics

of a diesel engine, the entire model of the diesel engine was developed in an AVL-BOOST
environment. Figure 1 shows the layout of the entire diesel engine. In addition, the main
parameters of the diesel engine are shown in Table 1. The air cooled by the air cooler enters
the cylinder through the air intake passage. After a combustion process, the exhaust gases
are discharged and flow into the turbine inlet. The turbine drives the turbo-compressor,
which delivers the compressed air to the cooler.
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Figure 1. Simulation model of an entire diesel engine.

Table 1. Main parameters of a diesel engine.

Parameter Unit Value

Cylinder diameter mm 190
Number of cylinders - 4

Rate speed r/min 1000
Peak pressure MPa 12
Rated power kW 220

Mean effective pressure MPa 1.109
Compression ratio - 14
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2.2. Model Validation

The instantaneous injection rate (IFR) and the fuel injection pressure can be obtained
by the oil pump testing device (6PSDW300). The IFR system is composed of the electronic
control part and mechanical part. Moreover, the IFR was measured by the EFS8427 mea-
surement units of the French EFS company. The main experiment steps can be expressed
as follows:

Step 1: Preparation work. Check the oil pump testing device, fill the low-pressure oil
tank with fuel, and install the electronic unit pump in the mechanical part. The electronic
control part is supplied by a single-phase current and connected to the computer through
the Ethernet by a specific software as a user interface.

Step 2: Set the relevant operating parameters of the oil pump test bed. To start, motor
drive oil pump operation and transport oil from the low-pressure oil tank to the high-
pressure common rail pipe. Fuel that is injected from the fuel injector will be collected in a
constant static pressure fuel collection chamber.

The main parameters of the fuel injection system (FIS) of the ECU pump are shown
in Table 2. In the experimental process, the injection pressure and fuel supply pressure
were measured by the pressure sensor installed in the mechanical part, and the original
parameters such as the fuel injection rate and fuel injection mass were provided to the IFR
control system.

Table 2. Main parameters of the fuel injection system (FIS) of the electronic control unit (ECU) pump.

Title Parameter Value

Plunger Plunger diameter (mm) 13
Cam profile velocity (mm/CaA) 0.46

Injector

Opening pressure (MPa) 19
maximum needle lift (mm) 0.4
Flow (mL/(30 sec*100 bar)) 1500
Nozzle number 8
Nozzle diameter (mm) 0.26

High pressure oil pipe Length (mm) 900
internal diameter (mm) 2

Solenoid valve

rod diameter (mm) 6.98
maximum rod lift (mm) 0.21
Solenoid valve residue air gap (mm) 0.12
mass of moving parts (g) 14.5

Rapeseed is widely planted in south China and nearly half of the edible oil is rapeseed
oil. Thus, the diesel engine fueled with rapeseed oil methyl ester (RME) is employed to carry
out the experiment in this work. In our previous work, the RME could be obtained by the
transesterification method [40]. Moreover, the biodiesel transesterification was carried out
by alkali catalysis about 1.2 h in the experimental reactor. The transesterification conducted
1:6 oil molars to a methanol ratio with 1%wt/wt potassium hydroxide as the alkaline
catalyst. The detailed process can be obtained in [40] in our previous work. The physical
properties of biodiesel are shown in Table 3. The detailed biodiesel information could be
obtained from the previously published works [40–42] of our team.
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Table 3. Physical properties of fuel.

Item Rapeseed Oil Methyl Ester

Oxygen content(%m/m) 10.7
Viscosity at 40 ◦C (mm·s−2) 4.56
Cetane number (−) 53.88
Lower calorific value (MJ/kg) 39.53
Density at 15 ◦C (kg·m−3) 882
Saturation (%) 4.45
Methyl linoleate 22.27
Methyl linolenate 8.11
Methyl stearate 0.87
Methl oleate 65.18
Methyl palmitate 3.57

In order to validate the simulation result, the experiment was carried out on the
experimental bench of a diesel engine. The Horiba MEXA-1600 was used for measuring
generated NOx with a 1% error, while the AVL Dismoke-4000 was employed for measuring
generated soot. FCMM-2 was used for measuring BFSC. DEWE-2010CA was employed
for monitoring the combustion of a diesel engine. In addition, an ECU control system
was employed for controlling the electronically-controlled diesel engine. EFS-IFR600 was
employed for measuring the fuel injection rate with a 0.5% measuring error. A hydraulic
dynamometer was used for measuring the diesel engine load. Moreover, the temperature,
flow, and pressure were measured by suitable sensors. The schematics of experimental
device are shown in Figure 2.
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The typical biodiesels are mainly composed by five components, methyl linolenate,
methyl linoleate, methyl oleate, methyl stearate, and methyl palmitate. Thus, a multi–
component biodiesel skeletal mechanism, which was made up of the above five compo-
nents, was employed to investigate the combustion process of biodiesel fuel consisting of
134 species and 475 reactions in the AVL-BOOST simulation environment. The detailed
information can be obtained from the previously published works [40–42] of our team.
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The combustion model is effective for considering the influence of the jet kinetic
energy and fuel injection rate on the instantaneous heat release and can accurately predict
the formations of nitrogen oxides and soot. Thus, the combustion in the cylinder is fitted
with an AVL MCC combustion model. The AVL MCC combustion model is as follows:

dQ
dϕ

= CMod · (MF −
Q

LCV
) · exp(CRate ·

√
k

3
√

V
) (9)

where CMod is the model constant; CRate is the mixing rate constant; and LCV is the low
calorific value of fuel oil.

The Chen–Flynn model is used to calculate the loss pressure due to the friction and
the loss pressure is a function of piston speed and peak pressure in the AVL-BOOST
simulation environment. In addition, the combined heat transfer model, Woschni1978
heat transfer model, and Honhenberg heat transfer model are employed to simulate the
heat transfer process in the cylinder, respectively. In order to validate the combined
model, the experiment was carried out and comparisons of the heat transfer coefficient are
shown in Figure 3 at a 100% load. It can be found that a predicted result of the combined
model is in agreement with the experimental results. Through a contrast experiment and
correction, the predicted result of the combined model had the maximum error of 2.1%,
but the predicted result of the Woschni1978 heat transfer model had a maximum error of
3.2%. Thus, the combined model can better predict the performance characteristic of the
diesel engine.
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In the paper, the effects of the length of a high-pressure oil pipe, nozzle diameter, and
plunger diameter on the injection pressure and injection duration angle were considered.
More specifically, the length of a high-pressure oil pipe (850 and 900 mm), nozzle diameter
(0.24, 0.26, and 0.28 mm), and plunger diameter (13.5, 14 and 14.5 mm) were employed to
investigate the injection characteristics. In the experimental process, the engine speed was
1000 rpm and the fuel injection mass remains constant. If the injection pressure is greater
than 100 MPa and the injection duration angle is less than 35◦, the case will be selected.
Thus, the five cases selected are shown in Table 4. The engine characteristic of diesel engine
fueled with RME is investigated in terms of power, BSFC, NOx, and soot emissions.
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Table 4. Work cases.

Cases

High
Pressure
Oil Pipe

Length/mm

Injector
Nozzle

Diameter/mm

Plunger
Diameter/mm

Injection
Duration
Angle/◦

Injection
Pressure/MPa

Case 1 850 0.24 14.0 33.4 100.944
Case 2 850 0.24 14.5 32.9 108.377
Case 3 850 0.26 14.5 32.5 100.700
Case 4 900 0.24 14.0 33.6 100.604
Case 5 900 0.24 14.5 33.1 108.267

3. Results and Discussion

The experiments were carried out on four cylinders four-stroke. The load and speed
of each test point are shown in Table 5. In order to avoid cross-contamination, the diesel
engine fueled with RME operated for 25 min. In addition, in order to ensure the steady
state measurement, the experimental results of each operating condition are recorded after
running for 25 min. The experiments of each operating condition were carried out three
times and the recorded results averaged. In addition, the injection characteristic of the
diesel engine was also studied.

Table 5. Test cycle for different test points.

Test Cycle Item Value

Load
characteristic

Engine speed(rpm) 1000
Engine Load 100% 75% 50% 25% 10%

Propulsion
characteristic

Engine speed(rpm) 1000 911 799 628
Engine Load 100% 75% 50% 25%

3.1. Load Characteristic of Diesel Engine

The improved heat transfer model and Woschni 1978 model were used to investigate
the load characteristic of a diesel engine fueled with RME. The load characteristic is
discussed in the part in terms of torque, BSFC, temperature behind the intercooler, NOx,
and exhaust temperature. The simulation results of torque, BFSC, temperature behind the
intercooler, NOx, and exhaust temperature are compared with experimental data as shown
in Figure 4.

Processes 2021, 9, x FOR PEER REVIEW 8 of 18 
 

 

Table 4. Work cases. 

Cases High Pressure Oil 
Pipe Length/mm 

Injector Nozzle 
Diameter/mm 

Plunger 
Diameter/mm 

Injection Duration 
Angle/° 

Injection 
Pressure/MPa 

Case 1 850 0.24 14.0 33.4 100.944 
Case 2 850 0.24 14.5 32.9 108.377 
Case 3 850 0.26 14.5 32.5 100.700 
Case 4 900 0.24 14.0 33.6 100.604 
Case 5 900 0.24 14.5 33.1 108.267 

3. Results and Discussion 
The experiments were carried out on four cylinders four-stroke. The load and speed 

of each test point are shown in Table 5. In order to avoid cross-contamination, the diesel 
engine fueled with RME operated for 25 min. In addition, in order to ensure the steady 
state measurement, the experimental results of each operating condition are recorded af-
ter running for 25 min. The experiments of each operating condition were carried out three 
times and the recorded results averaged. In addition, the injection characteristic of the 
diesel engine was also studied. 

Table 5. Test cycle for different test points. 

Test Cycle Item Value 

Load characteristic 
Engine speed(rpm) 1000 

Engine Load 100% 75% 50% 25% 10% 
Propulsion 

characteristic 
Engine speed(rpm) 1000 911 799 628 

Engine Load 100% 75% 50% 25% 

3.1. Load Characteristic of Diesel Engine 
The improved heat transfer model and Woschni 1978 model were used to investigate 

the load characteristic of a diesel engine fueled with RME. The load characteristic is dis-
cussed in the part in terms of torque, BSFC, temperature behind the intercooler, NOx, and 
exhaust temperature. The simulation results of torque, BFSC, temperature behind the in-
tercooler, NOx, and exhaust temperature are compared with experimental data as shown 
in Figure 4. 

50 100 150 200

500

1000

1500

2000

To
rq

ue
(N

.m
)

Power(kW)

1-Experiment
2-Combination simulation
3-Woschni1978

(a)

3

2

 

1

 
0 50 100 150 200 250

200

250

300

350

400

 Power(kW)

1-Experiment
2-Combination simulation
3-Woschni1978

BS
FC

(g
/(k

W
.h

))

(b)

1 2

 

3

 
Figure 4. Cont.



Processes 2021, 9, 104 9 of 18
Processes 2021, 9, x FOR PEER REVIEW 9 of 18 
 

 

0 50 100 150 200 250
41

42

43

44

45

 

 

 

Power(kW)

 Experiment
 Combination simulation
 Woschni1978

Te
m

pe
ra

tu
re

 o
f b

eh
in

d 
th

e 
in

te
rc

oo
le

r(
K

)

(c)

 

50 100 150 200
10

12

14

16

18

20

22

1 2

3

 

 

 

Power(kW)

 Experiment
 Combination simulation
 Woschni1978

N
O

x(g
/(k

W
.h

))

(d)

 

20 40 60 80 100 120 140 160 180 200 220
200

250

300

350

400

450

500

 Power(kW)

1-Experiment
2-Combination simulation
3-Woschni1978

 

Ex
ha

us
t t

em
pe

ra
tu

re
(K

)

(e)

1

2

 

3
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Figure 4. Load characteristics of an electronically-controlled diesel engine. (a) Torque; (b) BSFC;
(c) Temperature of behind the inter-cooler; (d) NOx; (e) Exhaust temperature

Figure 4a shows that torque and power are proportional with the same factor and all
the points are on the same line. In addition, torque increased with the increase of power.
The results also show that the torque can be calculated accurately by numerical modes.
More specifically, the maximum different between experimental result and predicted result
calculated by the Woschni1978 model is 4.8% and the maximum difference between the
experimental result and predicted result calculated by the improved model reached 3.6%.
Thus, the improved combination model could better predict the torque of the diesel engine.
Figure 4b shows that the BSFC firstly decreases and then increases with the increase of
power. In addition, the BSFC reaches the minimum value at 75% engine load. As the
operating point at 75% engine load is the design operating point, the BSFC reached the
minimum value at 75% engine load. Actually, the predicted results of the improved model
has a better accuracy when compared with the Woschni 1978 model. More specifically,
the calculated BSFC is very similar and the maximum difference between the experiment
and improved model is 2.8%. In addition, the maximum difference between the experiment
and Woschni 1978 model is 3.5%. Thus, the BSFC can be better predicted by the improved
combination model.

In addition, Figure 4c shows that the temperature of behind the inter-cooler increases
with the increase of the engine power. More specifically, the maximum difference between
the experimental result and predicted result calculated by the Woschni1978 model is
3.8% and the maximum difference between the experimental result and predicted result
calculated by the improved model reached 2.6%. Figure 4d shows that the NOx emission
firstly decreases, increases, and finally decreases with the increased engine power. The NOx
emission increases with the increasing power, but the increase of power is slower than
the NOx emission. Thus, the NOx emission per unit power increases. When the load is
higher than 75%, the NOx emission deceases. It is due to the fact that the combustion is
deteriorated by the increase of fuel. In addition, it can also be found that the improved
combination model can better predict NOx emission. Figure 4e shows that the exhaust
temperature increases with the increase of the engine power. This is due to the increased
engine load caused by the increased of fuel injection mass. It can also be found that the
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improved model can better computed the temperature. More specifically, the maximum
difference between the experiment and the improved model is slightly lower than the
maximum difference between the experiment and Woschni 1978 model.

As mentioned, the Woschni 1978 model and improved model can also better predicted
the load characteristic of diesel engine. However, the improved model is more accurate in
prediction. It is due to the fact that the improved model combines the advantages of the
two models.

3.2. Propulsion Characteristic of Diesel Engine

In order to further study the propulsion characteristics of electronically-controlled
diesel engine, the improved heat transfer model and Woschni 1978 model are employed
to investigate the propulsion characteristic of the diesel engine fuel with RME. The diesel
engine was operated at different engine loads of 25%, 50%, 75%, and 100%, corresponding
to 628 rpm, 799 rpm, 909 rpm, and 1000 rpm engine speed. The propulsion characteristic is
discussed in part in terms of torque, BSFC, power, NOx, and exhaust temperature. The sim-
ulation results of torque, BFSC, temperature behind the intercooler, NOx, and exhaust
temperature are compared with experimental results as shown in Figure 5.
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Figure 5. Propulsion characteristic of an electronically-controlled diesel engine. (a) Torque; (b) 
BSFC; (c) Temperature of behind the inter-cooler; (d) NOx; (e) Exhaust temperature 
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mum difference between the experimental result and predicted result by the Woschni1978 
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dicted result by the improved model reached 3.7%. Thus, the improved combination 
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Figure 5a shows that the torque increases with the increase of engine speed. The torque
can be calculated accurately by the numerical modes. More specifically, the maximum
difference between the experimental result and predicted result by the Woschni1978 model
is 4.5% and the maximum difference between the experimental result and predicted result
by the improved model reached 3.7%. Thus, the improved combination model could better
predict the torque of the diesel engine. Figure 5b shows that the BSFC firstly decreases
and then increases with the increase of the engine speed. Between 799 rpm and 910 rpm,
the BFSC is lower than the other operating points. The BSFC reached the minimum value
at 75% engine load. It is due to the fact that the operating point is the design operating
point. Therefore, the efficiency is relatively large. In addition, it can also be found that the
improved model can better predict the BSFC and the maximum difference between the
improved model and experiment is slightly lower than the maximum difference between
the experiment and Woschni 1978 model.

In addition, Figure 5c shows that the engine power and exhaust temperature increase
with the increase of the engine speed. It is due to the increased engine load caused
by the increased of the fuel injection mass. Figure 5d shows that the NOx emission
firstly increases and then decreases with the increased engine speed. It is due to the
higher cylinder temperature caused by fuel injection mass. When the speed is higher than
799 rpm, the effects of a high cylinder temperature would be dominated by the impact of
decreased oxygen content. Thus, the NOx emission per unit power decreases. It can also
be found that the improved combination model could better predict the NOx emission.
Figure 5e shows that the exhaust temperature increases with the increase of the engine
speed due to the increased fuel injection mass. It can also be found that the improved model
could better compute temperature. More specifically, the maximum difference between the
experiment and improved model is slightly lower than the maximum difference between
the experiment and Woschni 1978 model.

As mentioned, the Woschni 1978 model and improved model also can better predicted
the propulsion characteristic of the diesel engine. However, the improved model is more
accurate in prediction. It is also due to the fact that the advantages of the two models are
combined.

3.3. Fuel Inject Rate

The precise measurement and calibration of the fuel inject rate is essential to an
analysis of the formation of mixed gas and combustion processes in an engine cylinder.
The main typical parameters, such as injection pressure, fuel mass per cycle, and injection
duration, should be considered. In the order to improve the combustion, the high-pressure
oil pipe, injector nozzle, plunger diameter, injection duration angle, and injection pressure
should be considered in the paper. As for the five cases shown in Table 4, the fuel injection
rates are shown in Figure 6. It can be found that the effect of the length of a high-pressure
oil pipe on the injection rate is insignificant and the injection pressure decreases with the
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increase of the length of a high-pressure oil pipe, as shown in Table 4. It is due to the
increased resistances caused by the increased length of the high-pressure pipe. In addition,
Figure 7 shows that the fuel injection rate and injection pressure increases with the increased
diameter of the plunger when the fuel injection mass keeps constant. The injection duration
angle decreases with the increased of the plunger’s diameter. With the increased of the
injector nozzle diameter, the injection pressure, injection duration angle, and injection
rate decrease. The nozzle diameter and diameter of the plunger are significant to the fuel
injection rate.
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Figure 7. The effects of the injection advance angle on the performance of a diesel engine. (a) NOx; 
(b) Soot; (c) BSFC; (d) Power. 
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Figure 7. The effects of the injection advance angle on the performance of a diesel engine. (a) NOx;
(b) Soot; (c) BSFC; (d) Power.

3.3.1. Injection Advance Angle

The injection advance angle is very important. In order to study the effects of an
injection advance angle on a diesel engine, five cases are simulated by using the combined
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heat transfer model at a different injection advance angle, respectively. Figure 7a shows
that the NOx increases with the increase of the injection advance angle and Figure 7b
shows that the soot emission decreases with the increase of the injection advance angle.
When the fuel injection advance angle increases, the combustion duration and in-cylinder
temperature increase. Thus, the NOx emission increases. However, the increase of the fuel
injection advance angle is favorable for the oxidation of soot. In addition, it can be found
that a higher injection pressure can improve the combustion of a diesel engine and reduce
the soot emission, but the NOx emission will increase. A large nozzle diameter can reduce
the injection duration, but it is not favorable for fuel atomization. Thus, Case 3 has the
lowest soot emission.

Figure 7c shows that BSFC firstly decreases and then increases when the injection
advance angle reduces. BSFCs is the minimum value when the injection advance angle
is −20 ◦CA. It is due to the fact that lots of negative work is produced when the injection
advance angle is more than −20 ◦CA. The greater the injection advance angle, the more
negative work there is. In addition, if the injection advance angle is too small, the fuel
cannot burn quickly near the top dead center. Thus, the BSFC also increase. It also can
be found that fuel injection pressure and nozzle diameter have great effects on BSFC.
A large nozzle diameter and low injection pressure is not favorable for fuel atomization.
Thus, Case 3 has the highest BSFC. Figure 7d shows that the power firstly increases
and then decreases when the injection advance angle reduces. The different injection
advance angle will result in fluctuation of engine power due to the negative work and
combustion. The big injection advance angle is beneficial to improving the combustion.
Nevertheless, by further increasing the injection advance angle, the improving effect would
be dominated by the impact of increased negative work. Thus, the proper injection advance
angle is very important.

3.3.2. Characteristic Analysis

The improved heat transfer model is used to investigate the effect of a fuel injection rate
on a diesel engine fueled with rapeseed oil methyl ester (RME) in terms of cylinder pressure,
heat release rate, soot, NOx, and cylinder temperature. In the experiment, the engine speed
is at 1000rpm and the fuel injection mass remains constant. The effects of the injection rate
on the diesel engine are shown in Figure 8.
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Figure 7. The effects of the injection advance angle on the performance of a diesel engine. (a) NOx; 
(b) Soot; (c) BSFC; (d) Power. 
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As shown in Figure 8a, the cylinder pressure of case 2 is the highest. It is due to the fact
that the fuel atomization and cylinder combustion is improved by the high fuel injection
pressure. In addition, with the fuel injection pressure delayed, the maximum peak pressure
corresponding to the lower, and the time to reach the peak pressure also has a certain delay.
As shown in Figure 8b, the fuel injection rate is larger and the heat release rate is larger
at an early stage due to the larger injector nozzle diameter. The smaller the fuel injection
pressure, the greater the fuel injection map, the longer the delay of heat release rate.

As shown in Figure 8c, the soot generation rate of case 3 is the first to reach the
peak. The injector nozzle diameter is larger so that the injection pressure becomes lower.
Finally, the fuel atomization becomes worse. Therefore, the soot of case 3 generates the
most, followed by case 1 and case 4. As shown in Figure 8d, the NOx generation rate is
the minimum in case 4 and the NOx generation rate is the maximum in case 3. The high
cylinder temperature is the important parameter, resulting in NOx generation. In the early
stage, a large amount of fuel is injected into the cylinder in case 3. In addition, the fuel
injection pressure is low so that the fuel atomization is relatively bad. It is easy to form the
local high temperature area in case 3. Thus, the NOx generation rate is the maximum in
case 3. It can be found that the curve of NOx generation is delayed with the decrease of the
fuel injection rate, the NOx generation value in turn reaches the maximum value.

As shown in Figure 8e, due to the high fuel injection pressure and fine atomization,
the peak in-cylinder temperature is the highest in case 2, followed by case 5. The faster the
fuel pressure is built, the faster the temperature will reach the maximum value. In other
words, with the delay of building pressure time, the peak in-cylinder temperature is also
delayed. The fuel injection pressure and atomization effect of the fuel have the most
efficient influence on the cylinder temperature.

Figure 9 shows comparisons of the simulation and experiment results. It can be
found that the error between the experiment’s result and simulation result is less than 2%.
Thus, the simulation model can accurately forecast the trend of the engine characteristic.

The BFSC and soot emission are the minimum and the effective power is the maximum
in case 5. More specifically, compared with case 4, the NOx emission of case 5 is more than
0.94%, but the soot emission of case 5 decreased by 5% and the BFSC of case 5 decreased by
0.42% in case 5. In addition, it can be found that the economy is worse in case 3. The NOx
emission is the least in case 4. The efficiency power and torque are relatively large, and
the BFSC and soot emission are the least in case 5. Compared with case 3, the effective
power and effective torque of case 5 increased by 1.02% and 1.023% respectively, the soot
emission of case 5 decreased by 7.4%, but the nitrogen oxides of case 5 only increased by
1.1%. Based on the overall consideration of various factors, case 5 is the most reasonable.
Therefore, it is very important to choose the injection rate reasonably. The big inject nozzle
is not beneficial for fuel atomization and more soot is produced.
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4. Conclusions

With the development in the energy crisis [43–48] and environmental problems [10,49–
57], the effective control of energy saving and the reduction of emissions in engines is
a primary area of focus for scholars. In this work, an improved heat transfer model in
a cylinder was developed in the AVL-BOOST environment. The corresponding entirety
model was performed by an AVL-BOOST coupled a five–component skeletal chemical
mechanism consisting of 475 reactions and 134 species, which was then validated by the
experiment under different load conditions. Finally, the propulsion and load characteristics
of a diesel engine fueled with biodiesel were simulated by the improved heat transfer
model. In addition, the effect of the fuel injection rate on the characteristics of a diesel
engine fueled with RME was investigated in term of power, BSFC, soot, and NOx emission.
The main conclusions are as follows:

(1) Compared with the Woschni 1978 model, the improved model was more accurate
in prediction. The maximum difference between the experiment and Woschni 1978
model was reduced. It is due to the fact that the advantages of the two models were
combined by the improved model;

(2) The effective torque, exhaust temperature, and the temperature behind the inter-
cooler increased with the increase of engine power. In addition, the torque, power,
and exhaust temperature increased with the increase of engine speed;

(3) The big injection advance angle was beneficial to improving the combustion. Never-
theless, by further increasing the injection advance angle, the improving effect would
be dominated by the impact of increased negative work;

(4) Compared with case 3, the effective power and effective torque of case 5 increased by
1.02% and 1.023% respectively, soot emission decreased by 7.4%, but nitrogen oxides
only increased by 1.1% in case 5. Based on an overall consideration of various factors,
case 5 is the most reasonable.
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