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Abstract: The effect of cascade aerodynamic optimization on turbomachinery design is very significant.
However, for most traditional cascade optimization methods, aerodynamic parameters are considered
as boundary conditions and rarely directly used as the optimization variables to realize optimization.
Given this problem, this paper proposes an improved cascade aerodynamic optimization method in
which an incidence angle and nine geometric parameters are used to parameterize the cascade and
one modified optimization algorithm is adopted to find the cascade with the optimal aerodynamic
performance. The improved parameterization approach is based on the Non-Uniform Rational
B-Splines (NURBS) method, the camber line superposing thickness distribution molding (CLSTDM)
method, and the plane cascade design method. To rapidly and effectively find the cascade with the
largest average lift-drag ratio within a certain range of incidence angles, modified particle swarm
optimization combined with the modified very fast simulated annealing algorithm (PSO-MVFSA)
is adopted. To verify the feasibility of the method, a cascade with NACA4412 and a practical
cascade are optimized. It is found that the average lift-drag ratios of two optimal performance
cascades are respectively increased by 13.38% and 15.21% in comparison to those of two original
cascades. Meanwhile, through optimizing the practical cascade of the Blade D500, under different
volume flow rates, the pressure coefficient of the optimized cascade is increased by an average
of more than 6.12% compared to that of the prototype, and the average efficiency is increased by
11.15%. Therefore, this improved aerodynamic optimization method is reliable and feasible for the
performance improvement of cascades with a low Reynolds number.

Keywords: cascade; aerodynamic; parameterization; plane cascade design; incidence angle;
PSO-MVFSA; optimization

1. Introduction

Blade design is of great importance to the efficiency and properties of turbomachinery. Achieving the
aerodynamic design of a blade is a very complex and arduous task due to complicated flow phenomena
and the interactions among various parameters [1]. A small geometric change of one blade can lead to a
deterioration of the aerodynamic performance of the whole machine [2]. In general, the cascade design
method is one of the most popular design methods employed for turbomachinery [3,4]. In this method,
the blade is stacked by the sections on the different radiuses and shown in Figure 1a. Additionally,
the section is projected onto the plane to form the cascade, as shown in Figure 1b. Therefore, the blade
performance is affected by the cascade design. With the rapid development of the computer technique,
more and more parameterization methods and optimization algorithms have been proposed and used in
the design process of a cascade. This means that the time required to design a new cascade is becoming
shorter and the aerodynamic performance of the new cascade is becoming better.
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Figure 1. An explanation of blades and a cascade. 
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Henne function [8], radial basis function [9], Bezier function [10], B-Spline function [11], and Non-
Uniform Rational B-Splines (NURBS) function [12–14] are usually used as deformative functions to 
generate a new airfoil based on the original airfoil. In particular, NURBS [12] is the most popular 
function due to its ability of local control and its conics description over the curve. However, these 
deformative functions are used to generate one new airfoil based on the point coordinates of an 
airfoil. To relate the airfoil shape to the airfoil geometric feature parameters, the camber line 
superposing thickness distribution molding (CLSTDM) method [15] was proposed. In this method, 
several airfoil geometric parameters are used to parameterize the half-thickness distribution curve 
and the mean camber curve through two polynomials. Then, these two curves are coupled to form a 
whole airfoil. The feasibility of this method has been proved by several works [15–17]. In the 
CLSTDM method [15,16], the blade contours described by many coordinate points can be 
transformed into functions controlled by several parameterized variables. Moreover, it is convenient 
for designers to use this method to parameterize one blade based on their experience. Nowadays, it 
is widely used in the optimization of turbomachinery. However, the aerodynamic parameters are not 
considered in the parameterization and still act as the boundary condition of flow field computing. 
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genetic algorithm (GA) [18–21] and the simulated annealing (SA) algorithm [10,11,22], as two 
traditional intelligent optimization algorithms, have been widely used in airfoil optimization. They 
aim to find the airfoil with the optimal performance precisely. However, much time is required to 
complete the search, which leads to a poor computational efficiency [23,24]. A new intelligent 
algorithm, known as particle swarm optimization (PSO) and proposed by Kenney and Eberhart [25], 
can be used to solve this problem. PSO is a population-based, self-adaptive searching optimization 
method. The principle of this method is based on animal social behaviors, such as birds’ migration. 
However, it is easy to become trapped into a local extreme value or converged to precocity by the 
standard PSO. Therefore, researchers began looking for improved methods to solve this problem. Shi 
[26] used a linearly decreasing inertia weight to balance the global and local searching character. 
However, the local searching capability of this method was weak. Simultaneously, it is hard to predict 
the maximum iteration number. Clerc [27] set a constriction factor determined by two learning factors 
to cancel the boundary limits of velocity, and to balance the global and local searching capability. Hu 
[28] adopted a stochastic inertia weight to replace the linearly decreasing inertia weight. This method 
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A good parameterization method can not only use fewer design variables to describe an airfoil
accurately, but also rapidly re-construct one airfoil in the optimization process [5,6]. The parameterization
methods are usually divided into two categories: The constructive method and the deformative method.
Each method has been continuously improved by many researchers [7]. The deformative parameterization
method is the simpler of the two methods. In this method, a standard airfoil is deformed to generate one
new airfoil, in order to satisfy a certain condition. The Hicks-Henne function [8], radial basis function [9],
Bezier function [10], B-Spline function [11], and Non-Uniform Rational B-Splines (NURBS) function [12–14]
are usually used as deformative functions to generate a new airfoil based on the original airfoil. In particular,
NURBS [12] is the most popular function due to its ability of local control and its conics description
over the curve. However, these deformative functions are used to generate one new airfoil based on the
point coordinates of an airfoil. To relate the airfoil shape to the airfoil geometric feature parameters, the
camber line superposing thickness distribution molding (CLSTDM) method [15] was proposed. In this
method, several airfoil geometric parameters are used to parameterize the half-thickness distribution
curve and the mean camber curve through two polynomials. Then, these two curves are coupled to
form a whole airfoil. The feasibility of this method has been proved by several works [15–17]. In the
CLSTDM method [15,16], the blade contours described by many coordinate points can be transformed
into functions controlled by several parameterized variables. Moreover, it is convenient for designers to
use this method to parameterize one blade based on their experience. Nowadays, it is widely used in
the optimization of turbomachinery. However, the aerodynamic parameters are not considered in the
parameterization and still act as the boundary condition of flow field computing.

To rapidly find the airfoil with the optimal aerodynamic property, many intelligent optimization
technologies have been used in the process. Among all of the published optimization algorithms,
the genetic algorithm (GA) [18–21] and the simulated annealing (SA) algorithm [10,11,22], as two
traditional intelligent optimization algorithms, have been widely used in airfoil optimization. They aim
to find the airfoil with the optimal performance precisely. However, much time is required to complete
the search, which leads to a poor computational efficiency [23,24]. A new intelligent algorithm, known
as particle swarm optimization (PSO) and proposed by Kenney and Eberhart [25], can be used to solve
this problem. PSO is a population-based, self-adaptive searching optimization method. The principle of
this method is based on animal social behaviors, such as birds’ migration. However, it is easy to become
trapped into a local extreme value or converged to precocity by the standard PSO. Therefore, researchers
began looking for improved methods to solve this problem. Shi [26] used a linearly decreasing inertia
weight to balance the global and local searching character. However, the local searching capability of
this method was weak. Simultaneously, it is hard to predict the maximum iteration number. Clerc [27]
set a constriction factor determined by two learning factors to cancel the boundary limits of velocity,
and to balance the global and local searching capability. Hu [28] adopted a stochastic inertia weight to
replace the linearly decreasing inertia weight. This method could accelerate the convergence velocity
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and avoid being trapped into a local best solution. However, these methods still have the risk of
local convergence.

Most approaches to parameterization of the cascade have been used with only the help of geometric
feature parameters, and the aerodynamic parameters were not referred to. The efficiency of optimization
was thus negatively affected. Therefore, in this paper, considering the cascade aerodynamic characters,
one aerodynamic parameterization approach for a low Reynolds number cascade is proposed. To find
the airfoil with the optimal performance during a certain range of incidence angles, a modified
PSO-MVFSA algorithm is studied. Furthermore, two cases, such as the cascade with NACA4412 and
the blade of FAN D500, are selected to verify the feasibility of the improved parameterization and
optimization method.

2. Aerodynamic Parameterization Method

2.1. CLSTDM-NURBS Method

In this paper, for the CLSTDM method, the pressure side and suction side are obtained through
the camber curve superposing the half-thickness distribution curve. This method is used to describe an
airfoil and is shown in Figure 2. Due to its good ability to design a complex geometry, the two-order
NURBS function defined by Equation (1) is used to describe the camber curve and the half-thickness
distribution curve.
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 C(u) =
n∑

i=0

B2,i(u)ωiQi
B2,iωi(u)

B2,i(u) = 2!
i!(2−i)! u

i(1− u)2−i
, (1)

where u is the knot vector, n is the order of NURBS (n = 2), i is the mark of the control points (i = 0, 1, 2),
C(u) is the coordinate of the point of the fitting curve parameterized by the NURBS function, B2,i(u)
is the Bernstain function, ωi represents the weight coefficients (ω0= 1, ω2= 1, ω1 = ω), and Qi is the
control point. To solve the two-order NURBS function, the De Boor algorithm [29], which provides a
fast and numerically stable way of finding a point on a B-spline curve with the given u in the domain,
is adopted and programed.

For camber parameterization, the camber curve is divided into two two-order NURBS curves
(solid line), and these two NURBS curves are respectively controlled by several geometric control
points (Q0, Q1, Q2, Q3, Q4) shown in Figure 3. Five geometric feature parameters of an airfoil, such as
the chord line L = 1.0, the leading edge angle χ1, the trailing edge angle χ2, and the coordinate of the
maximum camber point

(
Bx, By

)
, are adopted to derive the coordinates of the geometric control points

of NURBS. To ensure the continuous property of two NURBS curves at the location of the maximum
camber point Q2, two lines Q1Q2 and Q2Q3 need to be collinear. Moreover, all of the geometric control
points of NURBS are derived as follows in Equation (2).
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By/tan(χ1), Bx
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)
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For parameterization of the half-thickness distribution curve, the curve is divided into three parts,
including the leading edge half-thickness, the middle half-thickness, and the trailing edge half-thickness,
as shown in Figure 4. The leading edge (LE) part is described by one two-order NURBS curve,
the middle part by two two-order curves, and the trailing edge (TE) part by one two-order NURBS curve.
Four NURBS curves are controlled by nine geometric control points (P0, P1, P2, P3, P4, P5, P6, P7, P8),
which are derived by seven geometric feature parameters of the airfoil, such as the leading edge radius R1,
the trailing edge radius R2, the chord line L = 1.0, the thickness gradient angles α1,α2, and the coordinate
of the maximum half-thickness point (Tx, Ty). As is the case for the camber curve, the half-thickness
distribution curve also requires continuity. Therefore, at the three geometric control points P2, P4, P6,
it is necessary to maintain collinearity for the relative lines. Utilizing geometric principles, these control
point coordinates are shown in Equation (3).
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Ty −R2 ∗ cos(α2)

)
/tan(α2) + L−R2 ∗ (1− sin(α2)), Ty

)
(L−R2 ∗ (1− sin(α2)), R2 ∗ cos(α2))

(L, R2 ∗ cos(α2) −R2 ∗ tan(α2) ∗ (1− sin(α2)))

(L, 0)



(3)
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2.2. Improved Aerodynamic Parameterization

Unlike conventional parameterization approaches in which the airfoil is only parameterized
with the geometric feature parameters [30–32], an improved aerodynamic parametrization approach
combining the plane cascade design method and the CLSTDM-NURBS is proposed, in which the
incidence angle, i, and nine geometric parameters are used as control variables.

For one specific cascade, it can be assumed for the airflow condition that the inlet flow angle β1 is
constant and along the tangential line. In this case, a change of the incidence angle can cause a change
of the geometric inlet angle of the cascade, and the variation of the incidence angle ∆i is equal to that
of the geometric inlet angle ∆β1A. From the definition of the geometric inlet angle, it is clear that the
slope of the mean camber curve at the leading point is changed with the changing of the geometric
inlet angle. This means that the variation of the incidence angle ∆i has an indirect influence on the
modified value of the leading edge angle χ′1. The relationship is shown in Equation (4).

χ′1 = χ1 − ∆i (4)

Simultaneously, the deviation angle δ can also be affected by a change of the incidence angle.
In order to determine the deviation angle, one semi-rational formula of the deviation angle was used,
based on the plane cascade experiments by Howell [33,34], which was suitable for a low Reynolds
number cascade and only applicable in the application conditions (τ = 0.7 ∼ 2.0, Ty = 0.05 ∼ 0.12,
and Bx = 0.4 ∼ 0.5). The definition formulas of the incidence angle i and the deviation angle δ have
been proposed in the cascade design process [3,35].

τ =
t
L

(5)

δ = β2A − β2 (6)

In this paper, one special equation combining a semi-empirical formula [33,34] is shown in Equation (7),
where ϕ is equal to 0.5 for the rotor blade. Therefore, if the aerodynamic and geometric parameters i, τ,
β1, β2, and Bx are given, the geometric outlet angle β2A can be calculated by Equation (7). Additionally,
the revised trailing edge angle χ′2 can be obtained by Equation (8). However, in Equation (7), it is found
that the cascade solidity τ and the outlet flow angle β2 cannot be determined.

(β2A − β2) =
[
0.23(2Bx)

2
− 0.002β2 + 0.18

]
(β2A − i− β1)

(1
τ

)ϕ
(7)

χ′2 = χ2 − ∆β2A (8)

In order to obtain the abovementioned two parameters, the diffusion factor D related to the
cascade solidity τ, the inlet flow angle β1, and the outlet flow angle β2, is introduced as a constraint.
This coefficient can be used to control the aerodynamic load of the cascade. The definition of the
diffusion factor is shown in Equation (9).

D =

(
1−

sin β1

sin β2

)
+

sin β1

2τ
(ctgβ1 − ctgβ2) (9)

Therefore, during the process of parameterization, the leading edge angle and trailing edge angle
shown in Figure 3 are independent variables and no longer depend on the incidence angle. In this way,
the control variables of cascade parameterization are determined, such as Bx, By, Tx, Ty, R1, R2, α1, α2,
and i.
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3. The Improved Airfoil Aerodynamic Optimization Method

3.1. Modified PSO-MVFSA

With the extensive use of standard particle swarm optimization (PSO), some drawbacks have been
found, such as the local extreme minimum and the precocity. To solve these problems, many works
have been published [26–28]. Some only adjusted the change of inertia weight to avoid being trapped
into a local optimal solution. Moreover, some used two learning factors to balance the local searching
and global searching. In this paper, the control variables of cascade parameterization are grouped as a
particle. Additionally, the best particle position Xi, j corresponding to the optimal cascade is obtained
by the modified PSO, as shown in Equation (10) [27].

V1
i, j = φ·

[
ωV0

i, j + c1γ1

(
Pi, j −X0

i, j

)
+ c2γ2

(
Pg, j −X0

i, j

)]
φ = 2∣∣∣∣∣2−(c1+c2)−

√
(c1+c2)

2
−4(c1+c2)

∣∣∣∣∣
ω = µmin + (µmax − µmin) ∗ γ4 + σ·γ3

X1
i, j = X0

i, j + V1
i, j

, (10)

where V is the particle velocity, subscript i, j is the particle sequence, ω is the stochastic inertia
weight [28], φ is the constriction factor [27], c1, c2 represents two learning factors, γ1, γ2 represents
the random number uniformly distributed in (0, 1), Pi, j is the best position in its flight history, Pg, j is
the best position in the particle swarms, µmax is the maximum stochastic inertia weight, µmin is the
minimum stochastic inertia weight, σ is the variance of the stochastic inertia weight, and γ3, γ4 is the
random number of the standard normal distribution.

However, it is very difficult to judge whether the results are the local optimal solutions or the
global solutions when only using the modified PSO. Due to the probability of the simulated annealing
(SA) algorithm jumping out of the local value, it can be used to solve the problem. Furthermore,
considering that the low searching velocity of the standard SA algorithm can lead to a greater time
consumption, modified very fast simulated annealing (MVFSA) [36] is adopted to search for the global
optimal minimum. Since the Cauchy distribution depending on temperature was better than the
Gaussian distribution, the coefficient of variable perturbation yi j based on the Cauchy distribution has
been redefined by Equation (11). In order to improve the efficiency further, the random probability
of the acceptance, Pr, has been redefined based on the Boltzmann–Gibbs distribution, as shown in
Equation (12).

yi j = Tmax exp
(
−ck1/N1

)
·sgn(u− 0.5)

[(
1 +

1
T

)|2u−1|
− 1

]
, (11)

Pr =
[
1− (1− h)

(
E
(
M′i j

)
− E

(
Mi j

))
/T

]1/(1−h)
, (12)

where u is a random number ranging from 0 to 1, Tmax is the initial simulated high temperature, N1 is
the syllogism coefficient, k is the number of the marked annealing stage, c is a given constant value,
M′i j is the disturbed variable, Mi j is the undisturbed variable, and h is a real number (set h = 0.5).

Furthermore, E
(
Mi j

)
is adopted to evaluate the current energy of the particle.

3.2. Verification of Modified PSO-MVFSA

Due to its local optimums and premature results, the Rastrigin function is usually used as a test
function. The definition of the function is shown in Equation (13).

f (x) =
D∑

j=0

x2
j − 10· cos(2πx j) + 10 x j ∈ [−20, 20] (13)
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In theory, when the independent variable x j is equal to 0, the global minimum optimum of the
function is f (x j) = 0. In Figure 5, three different solutions of the function are respectively shown.
When the independent variable range is [−20, 20], the function looks smooth and monotonic, as shown
in Figure 5a. With the increase of the resolution, many small peaks and valleys are observed in
Figure 5b,c. This means that the function has many widespread local minima.
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To prove the feasibility and accuracy of the modified PSO-MVFSA, two other PSO-based
optimization algorithms, as two comparison algorithms, are adopted to search for the optimal
minimum of the Rastrigin function. As the function is two-dimensional, each particle consists of two
variables for three kinds of PSO algorithms. The initial particle number, the total iteration number
of PSO, and the total iteration number of MVFSA are set to 30, 80, and 40, respectively. Some other
coefficients are listed in Table 1, such as the positive value α, the Markov chain length J, and so on.
By means of these searching optimization methods, the optimal results are obtained and shown in
Table 2. It can be seen that the optimal function value obtained by PG-PSO is smaller than that of the
standard PSO. However, the computing time is longer than that of the standard PSO. For the modified
PSO-MVFSA, not only its time consumption, but also its ability for minimum searching, are optimal in
comparison with the other two algorithms.

Table 1. Coefficients of three algorithms based on particle swarm optimization (PSO).

Maximum Stochastic
Inertia Weight,

µmax

Minimum Stochastic
Inertia Weight,

µmin

Variance Stochastic
Inertia Weight,

σ

Learning Factor,
c1

Learning Factor,
c2

0.8 0.4 0.2 2.25 1.85

The Initial Simulated
High Temperature,

Tmax

The Final Cooling
Simulated Temperature,

Tmin

The Syllogism
Coefficient,

N1

The Positive
Value,
α

Markov Chain
Length,

J

30 0.0001 9 0.8 15

Table 2. Results of three algorithms based on PSO.

Algorithms Computing Time
T (Seconds)

Optimal Particle
xopt

Optimal Function Value
f(xopt)

Standard PSO [22] 1.08942 (0.001225, −0.000958) 0.000481

PG-PSO [21] 1.14177 (−0.001495, 0.0000077) 0.000443

PSO -MVFSA 0.898254 (0.000177, −0.000476) 0.000051
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3.3. The Improved Airfoil Aerodynamic Optimization

3.3.1. Fitness Function

For improved cascade aerodynamic optimization, nine control variables are used to parameterize
the cascade and grouped as a particle. In all flights, the selection of the particle with the best position
through the optimum target is very important. The lift-drag ratio of the airfoil is related to its capability
regarding the power output and aerodynamic loss [16]. Therefore, the optimization proposition is set
up as shown in Equation (14).

f (S1, S2 · · · S10) =
n∑

i=1
(CL/CD)i/n

s.t.
χ1 > arctan

(
By/Bx

)
− χ2 > arctan

(
By/(1− Bx)

)
α1 > arctan

(
Ty/Tx

)
− α2 > arctan

(
Ty/(1− Tx)

)
0.4 ≤ D ≤ 0.6

, (14)

where Si is the control variable, CL/CD is the lift-drag ratio,
(
Bx, By

)
is the coordinate of the maximum

camber point,
(
Tx, Ty

)
is the coordinate of the maximum half-thickness point, α1, α2 represent the

LE and TE thickness gradient angles, χ1, χ2 represent the LE and TE angles, and n is the number of
incidence angles. In this paper, the average lift-drag ratio of the airfoil is evaluated under all airflow
incidence angles. Additionally, the fitness function can be obtained as shown in Equation (15).

−F = c1
f (S1,S2···S10)−

∑
(CL/CD)re f∑

(CL/CD)re f
+ c2

α1−arctan(By/Bx)
arctan(By/Bx)

− c3
α2+arctan(By/(1−Bx))

arctan(By/(1−Bx))

+ c4
X1−arctan(Ty/Tx)

arctan(Ty/Tx)
+ c5

−X2−arctan(Ty/(1−Tx))
arctan(Ty/(1−Tx))

+ c6(Di −D)
(15)

where ci is the weighting factor and subscript re f presents the original airfoil.

3.3.2. Aerodynamic Optimization Process

During the evaluation of airfoil aerodynamic performance two-dimensional computational fluid
dynamics (2D CFD) code which utilized the standard k − ω turbulence model [37,38] to solve the
Reynolds Average Navier-Stokes (RANS ) equations was used, and it was only used to simulate the
low Reynolds number airfoils [23,39]. Due to the fact that the lift-drag ratio of one airfoil could be
obtained quickly by this code, this 2D CFD code was integrated into MATLAB as a fast solver to
evaluate the fitness value of each particle. The whole aerodynamic optimization flowchart is shown in
Figure 6. Moreover, the detailed process is introduced in the following steps:

(a) Inputting coordinate points of one airfoil, and setting coefficients of the modified PSO-MVFSA;
(b) Selecting one angle from the sets of incidence angles and nine geometric variables as an

initial particle;
(c) Conducting perturbation of nine geometric variables of the initial particle to generate the initial

particle swarm with one incidence angle, based on the super Latin square method; constructing
airfoil swarm by the improved parameterization method; and evaluating the airfoil fitness value
by Equation (15);

(d) Finding the best previous position of the particle and the best position of the swarm, re-calculating
the velocity and the position of each particle by adopting Equation (10), and re-calculating the
fitness values of the new swarms;

(e) If ∆E > 0 (∆E = E
(
M′i j

)
− E

(
Mi j

)
is the error function), the data related to the particle are

unchanged; if not, replace the data and particles with new data and particles;
(f) Repeating steps (d) and (e) until the total iteration of the modified PSO is reached;
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(g) Obtaining the swarm particles (S)i that satisfy
[
Fopt − F((S)i)

]
/Fopt < 10%;

(h) Putting the swarm particles (S)i into the optimization process of MVFSA, conducting perturbation,
and re-evaluating the fitness by Equation (10);

(i) If ∆E > 0, the corresponding particle is preserved; if not, the corresponding particle as a basic
particle is re-disturbed and re-evaluated;

(j) If ∆E > 0, the re-disturbed particle is retained; if not, the particle is accepted with the acceptance
probability equation;

(k) Repeating steps (g) (h) (i) until the total iteration of MVFSA is reached;
(l) Outputting the particle with the largest function F from the preserved particle swarm at different

incidence angles respectively;
(m) Selecting the best of the optimal particles by MVFSA as the final optimal particle.
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4. Applications in Cascade Optimization

4.1. Optimization of a Cascade with an NACA4412 Profile

NACA4412 is adopted as the original basic profile of the cascade and evolved into an advanced
airfoil by this improved method. The initial particle number, the total iteration number of the modified
PSO, and the total iteration number of MVFSA are set to 30, 100, and 50, respectively. Each cascade
is described by the improved aerodynamic parameterization method. The average lift-drag ratio of
the airfoil of the cascade is calculated by the flow solver. Moreover, the constant airflow boundary
condition is set so that the Reynolds number is as high as 1 × 105, the Mach number is 0.1, and the
solidity of the cascade is 1.5. Moreover, some other coefficients of the modified PSO-MVFSA are shown
in Table 3.
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Table 3. Coefficients of modified PSO-modified very fast simulated annealing (MVFSA).

Maximum Stochastic
Inertia Weight,

µmax

Minimum Stochastic
Inertia Weight,

µmin

Variance Stochastic
Inertia Weight,

σ

Learning
Factor,

c1

Learning
Factor,

c2

0.8 0.4 0.2 2.25 1.85

The Initial Simulated
High Temperature,

Tmax

The Final Simulated
Cooling Temperature,

Tmin

The Syllogism
Coefficient,

N1

The Positive Value,
α

Markov Chain Length,
J

40 0.0001 9 0.8 20

In actual airflow conditions, the incidence angle of the cascade is not constant and limited to a
certain range. Therefore, the aim of multi-point optimization is not to obtain the best aerodynamic
performance under one constant incidence angle, but to reach the best whole aerodynamic performance
in the whole working range, referred to in Equation (12). In this paper, the incidence angle is uniformly
distributed from 0◦ to 15◦ by a step of 1.0◦. The aerodynamic performance of each cascade parameterized
by one incidence angle and eight geometric variables is calculated by the CFD simulation. Based on
Equation (13), the fitness value corresponded to each cascade is figured out. Then, the global minimum
value is found by the user of the improved PSO-MVFSA method. NACA4412 airfoil and the optimal
airfoil are shown in Figure 7, in which the blue curve is the optimal airfoil and the red curve denotes
the original airfoil. From this figure, it can be observed that the suction side and pressure side of the
optimized airfoil are changed in terms of geometry in comparison with that of NACA4412.
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To evaluate the aerodynamic performance of the cascade, the pressure coefficient Cp is adopted,
which is defined by Equation (16).

Cp = −

p− p∞
1
2ρu2

∞

 = p∞ − p
p0 − p∞

, (16)

where p, p0, p∞ are the current pressure, the stagnation pressure, and the inlet airflow pressure,
respectively; ρ is the density; and u∞ is the inlet airflow velocity.

The increasing curvature of the suction side close to LE can lead to the intensifying of the
velocity increasing and the pressure decreasing. Then, the pressure coefficient of the suction side of the
optimized Cp near LE is larger than that of the original cascade. However, it is due to the geometric
change of the pressure side close to LE that the decreasing of the velocity and the increasing of the
pressure are alleviated. These phenomena can be observed in Figure 8. In the figure, the detailed
pressure distributions on the suction and pressure side are shown, which respectively correspond
to four incidence angle conditions of i = 0◦, i = 3◦, i = 6◦, and i = 12◦. It is also clear that the
optimized airfoil surface pressure distribution presented by the blue curve is better than that of the
original airfoil described by the red curve under each condition. Therefore, the pressure differences
between the pressure side and suction side of the optimized airfoil are larger than those of the original
airfoil. The cascade performances under the incidence angles ranging from 0◦ to 15◦ are shown in
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Figure 9. The average lift-drag ratio of the optimized cascade is increased by 13.38% in comparison
with that of the cascade with NACA4412.
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For further analysis, CFD simulation software CFX was used to calculate the cascade performance.
The velocity contours of the original and optimized cascades at incidence angles of i = 0◦ and i = 12◦

are shown in Figure 10. It is clear that the velocity difference between the suction side and pressure
side of the optimized cascade is bigger than that of NACA4412. Therefore, the diffusion factor D of
the optimized cascade can be increased. It can also be observed that the airflow separation point on
the suction side of the optimized cascade moves backward along the airfoil in comparison with that of
NACA4412 and the area of the wake becomes smaller than that of NACA4412. Therefore, it can be



Processes 2020, 8, 1150 12 of 19

considered that the aerodynamic load of the cascade is increased and the aerodynamic loss is controlled
with the help of the improved aerodynamic optimization algorithm.

Figure 10. Velocity contours.

4.2. Blade D500 Optimization

Blade D500 is used in an axial-flow fan for an evaporator system. It is a kind of low Reynolds
number 3D blade. In this work, in order to verify the feasibility of the improved method applied to
the practical blade design, the cascade at the 50% radius of Blades D500 was selected and optimized.
Two performance parameters, including the pressure coefficient Cp defined by Equation (16) and the
efficiency η defined by Equation (17), were used to evaluate the aerodynamic performance of Blade
D500. In order to obtain the aerodynamic performance parameters, CFX was used to calculate the
airflow field of Blade D500.

η =
Qv·P

N
, (17)

where Qv is the volume flow rate, P is the static pressure increase, and N the aerodynamic power.

4.2.1. Validation of the CFD Simulation Based on Experiments

The experiments of the axial fan with Blade D500 shown in Figure 11 were conducted in the
Key Lab for Power Machinery and Engineering of SJTU. In order to match the practical situation, the
rotor was mounted on the guard grill, which was connected with a short bell month at the inlet of
the tube. The diameter of the tube was increased to 600 mm to avoid destroying the flow field at the
rotor outlet and simulate the real situation in the evaporator system as much as possible. The pressure
probes were mounted at points A and B, by which the flow rate and the pressure increase could be
calculated. Under eight volume flow rates, the pressure increases were calculated.
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Figure 11. The experiment of Blade D500.

Under the same conditions as those used in the experiments, CFX was adopted to simulate the
aerodynamic performance of the axial fan. The grids consisted of the structured hexahedral meshes
shown in Figure 12 that were generated by TurboGrid. The total number of nodes was 1,260,626 for the
full channel after studying the grid independence, and the minimum value of the mesh quality was
0.3. Due to the excellent ability to simulate the flow with a fiercely adverse pressure gradient of the
standard k−ω model, it was selected as the turbulent model to simulate the flow field. The mass flow
and static pressure were set at the inlet and outlet, respectively.
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After a series of experiments and CFD simulations of the axial fan with Blade D500, the pressure
coefficients were obtained and are shown in Figure 13. Based on Figure 13, it could be found that the
pressure coefficients Csp calculated by CFD are slightly higher than those calculated by experiments.
However, the trends of the two curves are very similar. In Figure 14, the efficiency is compared for
values obtained by calculations and experiments. It can be observed that the relative error between the
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two series of average efficiencies is under 8.35%. Considering the abovementioned results, the CFD
simulation can be used to feasibly estimate the aerodynamic performance of an axial fan.Processes 2020, 8, x FOR PEER REVIEW 14 of 19 
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4.2.2. Optimization of Blade D500

For aerodynamic optimization of the cascade at the 50% radius of Blade D500, the airflow condition
was set as Re = 1× 105, Ma = 0.1, i = 2◦ ∼ 10◦, D = 0.4 ∼ 0.6. After a series of optimization iterations,
the airfoil of the optimal cascade was obtained and is shown in Figure 15, as well as the airfoil of the
original cascade. It can be observed that the airfoil of the optimized cascade is different from that of
the original cascade. These geometric changes of the optimal cascade can lead to an increase of the
curvature of the suction side, while the pressure side is changed a little. Additionally, aerodynamic
performance comparisons are shown in Figure 16. It could be found that the pressure differences of the
optimized cascade are larger than those of the original airfoil along the chord line within the range
of the incidence angle. After a series of simulation calculations, it could be found that the average
lift-drag ratio of the optimized cascade is increased by 15.21% in comparison with that of the original
cascade. Therefore, it can be considered that the aerodynamic performance of the optimized cascade is
better than that of the original one.
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Figure 16. Surface pressure distributions.

To evaluate the feasibility of the improved aerodynamic optimization method, the optimized 3D
Blade D500 and the original 3D Blade D500 were simulated by CFD under the same airflow condition.
Moreover, the simulation results of two blades were compared. The streamlines of the suction surfaces
of the two blades are shown in Figure 17. From the figure, it is clear that the streamline between the
middle section and the hub of the original blade is not very good, and a large turbulence loss must have
occurred in this region. In contrast, the streamline in the same region of the optimized blade becomes
very smooth. The pressure coefficients Csp of the two fans are shown in Figure 18. In this figure, it can
be seen that the pressure coefficient of the optimized fan is better than that of the original fan, and the
average pressure coefficient is increased by 6.12%. Meanwhile, from Figure 19, it can be observed that
the efficiency of the optimized fan is higher than that of the original one, and averagely increased by
11.15%. Therefore, from the above analysis, it can be considered that the aerodynamic performance of
optimized Blade D500 is improved and the improved aerodynamic optimization method is feasible.
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5. Conclusions

In this paper, an improved optimization method especially applied to a cascade with a low
Reynolds number is proposed. In this method, the incidence angle and eight geometric parameters are
used as the control variables altogether. Meanwhile, the modified PSO-MVFSA algorithm is adopted to
optimize the objective cascades, and two cascade cases, such as NACA4412 and Blade D500, are selected
to testify the method. Some valuable results are as follows:

(a) Since the aerodynamic parameter, such as the incidence angle, is considered as one of the control
variables, the relationship between the geometry of the airfoil and the aerodynamic performance
of the cascade is learnt. Therefore, during the whole optimization process, an improvement of
the aerodynamic performance can give rise to a direct modification of the geometry so that the
optimization becomes more targeted and more efficient;

(b) In this study, particular effort was devoted to designing a fitness function which is suitable for
optimizing a cascade with a low Reynolds number. Furthermore, the combination of PSO and
MVFSA succeeded in increasing the optimization efficiency and avoided the local optimal to
reach a global solution, which was verified by the Rastrigin function and two cascade cases;

(c) Based on the analysis of the results from the two cascade cases, such as NACA4412 and Blade
D500, it was demonstrated that the average lift-drag coefficient of the optimized cascade was
improved, whilst the drag coefficient was kept at a low level. Therefore, it can be considered
that the modified PSO-MVFSA can be adopted as an efficient and robust optimizer to solve the
problems of multi-variable optimization confronted in cascade design.
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Abbreviations

NURBS Non-Uniform Rational B-Splines
CLSTDM Camber Line Superposing Thickness Distribution Molding
PSO Particle Swarm Optimization
PSO-MVFSA Particle Swarm Optimization-Modified Very Fast Simulated Annealing

Nomenclature

Bx Vertical coordinate of the maximum camber point
By Horizontal coordinate of the maximum camber point
Cp Pressure coefficient
CL Lift coefficient
CD Drag coefficient
D Diffusion factor
L Aerodynamic chord length
M Variable
N1 Syllogism coefficient
N Shaft power
R1 LE radius
R2 TE radius
P Control points of the thickness distribution curve
Q Control points of the camber curve
Qv Volume flow rate
T Temperature
χ1 LE angle
χ2 TE angle
Tx Vertical coordinate of the maximum half thickness
Ty Horizontal coordinate of the maximum half thickness
Pr Acceptance probability
α1 Thickness gradient angle of LE
α2 Thickness gradient angle of TE
β1A Geometric inlet angle
β2A Geometric outlet angle
β1 Inlet flow angle
β2 Outlet flow angle
yi j Coefficient of variable perturbation
ω Weight
i Incidence angle
µ Stochastic inertia weight
λ Constriction factor
τ Cascade solidity
γ Random number in (0, 1)
η Pressure efficiency
c Learning factor
(x, y) Cartesian coordinates
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