
processes

Article

Influences of Water Content in Feedstock Oil on
Burning Characteristics of Fatty Acid Methyl Esters

Cherng-Yuan Lin * and Lei Ma

Department of Marine Engineering, National Taiwan Ocean University, Keelung 202, Taiwan;
awpcsawp@yahoo.com.tw
* Correspondence: Lin7108@ntou.edu.tw

Received: 15 August 2020; Accepted: 8 September 2020; Published: 10 September 2020
����������
�������

Abstract: Strong alkaline-catalyst transesterification with short-chain alcohol is generally used for
biodiesel production due to its dominant advantages of shorter reaction time and higher conversion
rate over other reactions. The existence of excess water content in the feedstock oil might retard the
transesterification rate and in turn deteriorate the fuel characteristics of the fatty acid methyl esters.
Hence, optimum water content in the raw oil, aimed towards both lower production cost and superior
fuel properties, becomes significant for biodiesel research and industrial practices. Previous studies
only concerned the influences of water contents on the yield or conversion rate of fatty acid methyl
esters through transesterification of triglycerides. The effects of added water in the reactant mixture
on burning characteristics of fatty acid methyl esters are thus first investigated in this study. Raw palm
oil was added with preset water content before being transesterified. The experimental results show
that the biodiesel produced from the raw palm oil containing a 0.05 wt.% added water content had
the highest content of saturated fatty acids and total fatty acid methyl esters (FAME), while that
containing 0.11 wt.% water content had the lowest content of total FAME and fatty acids of longer
carbon chains than C16 among the biodiesel products. Regarding burning characteristics, palm-oil
biodiesel made from raw oil with a 0.05 wt.% added water content among those biodiesels was found
to have the highest distillation temperatures, flash point, and ignition point, which implies higher
safety extents during handling and storage of the fuel. The added water content 0.05 wt.% in raw
oil was considered the optimum to produce palm-oil biodiesel with superior fuel structure of fatty
acids and burning characteristics. Higher or lower water content than 0.05 wt.% would cause slower
nucleophilic substitution reaction and thus a lower conversion rate from raw oil and deteriorated
burning characteristics in turn.

Keywords: burning characteristics; fatty acid methyl ester; added water content; fuel structure;
distillation temperature

1. Introduction

Biodiesel is composed of mono-alkyl esters of long-chain fatty acids primarily produced through
transesterification of vegetable oils, animal fats or microalgae lipids with short chain alcohols by virtue
of nucleophilic substitution. Biodiesel has been considered a superior alternative fuel to petro-diesel
due to its dominant advantages including superior biodegradability, being free of SOx emissions and
acid rain, having enhanced combustion due to its higher oxygen content, exhibiting excellent lubricity,
containing no carcinogenic PAHs (polycyclic aromatic hydrocarbons), etc. [1,2]. The application of
biodiesel fuel could alleviate the emission of greenhouse gas CO2 owing to the lower carbon content
of biodiesel by about 10 wt.% compared to petro-diesel. However, in comparison with diesel fuel,
biodiesel has a higher kinematic viscosity and inferior low-temperature fluidity. Heating or adding
adequate antifreeze would improve these characteristics of biodiesel [3].
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International fuel specifications for biodiesel, such as ASTM D6751 and EN 14214, have been
drafted to regulate fuel properties in order to protect users’ equipment. Water content is a significant
fuel characteristic of biodiesel. Higher water content in biodiesel will accelerate the corrosion rate
of metallic engine parts [4]. Partial emulsion may be formed from accumulation of water content
with liquid fuel to block the fuel feeding system [5]. During the production process of biodiesel,
the water content has a dominant influence on the conversion rate of feedstock and the appearance of
the saponification phenomenon.

Bitonto and Pastore [6] found that water content, acid value, and free fatty acids (FFA) of feedstock
oils should be lower than 0.06 wt.%, 1 mg KOH/g, and 0.5 wt.%, respectively, to prevent negative
effects on the biodiesel product. Hakimi et al. [7] even suggested all reactants should be substantially
anhydrous during alkali-catalyzed transesterification. Yasar [8] studied the effect of water content of
the feedstock on the ester content of biodiesel. Chen et al. [9] further indicated that the upper limit of
water content in raw oil is 0.05 wt.%, for which the conversion rate of transesterification could reach
above 90%. The conversion rate is only 5.6% if the added water in feedstock oil is 5 wt.%. Shi et al. [10],
after investigating the effects of water content in rapeseed oil on transesterification, found that the
addition of 2.5 wt.% to the feedstock oil achieved the highest conversion rate of transesterification.
They considered that the addition of an adequate amount of water enhances the hydrolysis of fatty
acids. However, the free fatty acids formed from such a hydrolysis process facilitate a transesterification
reaction towards biodiesel production [11].

The effects of added water contents on the types of reaction and the yields of methyl esters
in transesterification of triglycerides have been widely studied. They inferred that water presence
in biodiesel might cause ester hydrolysis, leading to hydrolytic and oxidative degradation and rapid
growth of microorganisms. In addition, the engine performance and emission characteristics of
emulsion of water-in-biodiesel were investigated previously. Zhang et al. [12] studied the effects of
water addition in biodiesel emulsion on spray, combustion, and emission characteristics of a diesel
engine. They found water in the emulsion might enhance micro-explosion, resulting in improving
fuel-air mixing and reduction of NOx and CO emissions. Rao and Anad [13] prepared biodiesel
emulsion added with 5 to 10 wt.% water and observed lower brake thermal efficiency and higher
NO emission for the emulsion than those for neat diesel. The effects of water addition in the
corn-oil biodiesel on engine performance were studied by Sudalaimuthu et al. [14]. Zakaria et al. [15]
experimentally found that the water contents in palm-oil biodiesels increased with the increase of
storage temperatures and storage time, leading to degradation of fuel properties. Lawen et al. [16]
observed that occurrence of intensive microbial activity in biodiesel might cause the increase of its
water content. Delfino et al. [17] developed an alternative method of electrochemical impedance
spectroscopy to determine water content in biodiesel. Although the fuel properties might be influenced
by added water contents of feedstock oil, the water effects on burning characteristics of fatty acid
methyl esters have not been investigated as yet in the literature [18–21]. The optimum water content
for achieving superior burning characteristics of biodiesel have not been studied either. Therefore,
the effects of the added water content in palm oil feedstock on the burning characteristics of a biodiesel
product including the profile of fatty acid compounds, heating value, flash point, etc., were first
experimentally investigated in this study. The results of this study could provide valuable references
to possible audience for adopting adequate process of water removing from or adding into feedstock
oils during transesterification reaction.

2. Experimental Details

2.1. Preparation of Biodiesel from Palm Oil with Various Water Contents Added

Palm oil, with water contents ranging from 0.02 wt.% to 0.12 wt.%, was added and stirred by
a mechanical homogenizer (Model Ultra-Turrax T50, IKA Inc., Staufen, Germany). The properties
of the palm oil that were provided by the vender (Formosa Oilseed Processing Ltd. in Taichung
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City, Taiwan) are shown in Table 1. The palm oil and water mixtures were then preheated to 60 ◦C.
Methanol was mixed with the alkaline catalyst NaOH using a mechanical homogenizer. The molar
ratio of methanol to palm oil was set at 6. The alkaline catalyst NaOH was weighted to be 1 wt.% of the
palm oil. The premixed methanol and catalyst NaOH solution was slowly added into the preheated
palm oil and water mixture and stirred using a mechanical homogenizer at a speed of 6000 rpm to
undergo transesterification for 30 min. After the completion of the transesterification reaction, adequate
amounts of glacial acetic acid were added to the product mixture to neutralize the pH value, and this
was stirred for 1 min. The product settled and separated to create an upper biodiesel layer and a lower
glycerol layer. The biodiesel, after being removed from the glycerol layer, was heated to 70 ◦C for 30 min
to vaporize any volatile impurity, such as methanol, away from the biodiesel product. The biodiesel
was then water-washed with 10 wt.% de-ionized water and settled for 15 min to remove the lower-layer
liquid. The biodiesel was then distilled at 110 ◦C for 30 min to separate from the residual water and
methanol to complete the production process.

Table 1. Properties of palm oil feedstock.

Item Property

Water content (wt.%) 0.029
Acid value (mg KOH/g) 0.16
Peroxide value (meq/kg) 0.53

Lovibond Tintometer R1.5 Y15
Melting point (◦C) 23.01

Specific gravity 0.907
Cold filter plugging Point (◦C) 16

2.2. Analysis of Burning Characteristics of Fatty Acid Methyl Esters from Palm Oil with Various
Water Contents

The burning characteristics of biodiesel produced through a transesterification reaction from
palm oil with various added water contents were analyzed. An optical microscope (Model BX-60,
Olympus Inc., Tokyo, Japan) along with a charged-couple device, Image-Pro Plus version 4.1 analysis
software (Media Cybernetics Inc., Rockville, MD, USA), and an image analyzer (Model TK-C1380,
JVC Inc., Yokohama, Japan) were utilized to observe the added water droplets within the palm oil
layer. The weight proportions of the fatty acids of biodiesel produced from palm oil with various
water contents added were analyzed by a gas chromatograph (GC) analyzer (Model GC14A, Shimadzu
Inc., Kyoto, Japan) accompanied with a Flame Ionization Detector (FID) and a chromatograph data
management system (Avantech Inc., Taipei, Taiwan). The fused silica capillary column (Model Zebron
ZB-5HT Inferon Column, Phenomenex Inc., Torrance, CA, USA) used in the GC analyzer was 30 min
length, 0.32 mm in inside diameter, and 0.25 µm in film thickness. Adequate type of capillary column
is significant to identify fatty acid compounds. The compound of heptadecanoic acid methyl ester of
99% purity was used as the internal standard to mix with the biodiesel sample. The temperature of the
injector and FID was set at 250 ◦C. Nitrogen gas at 20~100 mL/min flow rate was used as the carrier
gas. The retention times and elution order were used to chromatographically resolved into the types of
methyl esters appeared in the biodiesel samples. The weight fraction of the corresponding fatty ester i
(Ci) could be determined by the following formula:

Ci =
Ai

AEI

[CEI ×VEI

m

]
(1)

where Ai is the peak area of the corresponding fatty acid, AEI is the peak area of heptadecanoic acid
methyl ester, CEI and VEI are the concentration and volume of the internal standard, and m is the mass
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of the sample. The weight fraction of total fatty acid methyl esters can be calculated based on the
following formula:

C =
(
∑

A) −AEI

AEI
×

CEI ×VEI

m
× 100% (2)

where ΣA is the integrated peak areas of the fatty acid methyl esters identified in the biodiesel
sample [22]. The weight percentage of longer carbon-chain fatty acids than C16 was calculated by
summing up the weight percentages of those fatty acids longer than C16.

The heating value, in units of cal/g or MJ/kg, is defined as the amount of heat released after
the complete burning of a tested fuel. An oxygen bomb calorimeter (Model 1261 automatically
adiabatic, Parr Inc., Demopolis, AL, USA) was used to analyze the heating value of the biodiesel sample.
The specific gravity (sg) of the fuel sample at 15 ◦C was measured with a hydrometer (Model 0709,
Ho Yu Inc., Taoyuan City, Taiwan) placed in a graduated cylinder. The flash point and ignition point,
which are two important safety indicators during fuel storage and transportation, were measured
with a Pensky-Marten closed-cup flash point tester based on the ISO 3679:2015 standard method [23].
When a fuel sample is heated at some temperature to accumulate its vaporized gas concentration,
a flame holder is swept over the gas environment to cause an instantaneous spark and then be
distinguished. Such a temperature is termed a flash point. If the tested fuel sample is heated at some
temperature to accumulate vaporizing fuel gas, the burning of the fuel sample could occur and last
continuously for at least 5 sec; the ignition point was recorded for that temperature.

The distillation temperatures of the tested samples were analyzed by a distillation temperature
analyzer (Model HAD-620, Petroleum Analyzer Inc., Houston, TX, USA). An ASTM D86 curve of
liquid fuel for comparison can be plotted using the data for the distillation temperatures corresponding
to various volumetric percentages of distilled and condensed fuel. The distillation temperature at
50 vol.% liquid fuel distilled, condensed, and collected is denoted as T50. The specific gravity (sg)
together with the T50 of the sample fuel can be used to calculate the cetane index (CI) of the liquid
fuel [24], which indicates the time delay of compression-ignition of the sample fuel:

CI = −420.34 + 0.016 API2 + 0.192 (log T50) + 65.01 (log T50)2
− 0.0001809 T50 (3)

where
API = 141.5/sg − 131.5 (4)

3. Results and Discussion

The effects of the added water content in palm oil on the burning characteristics of fatty acid
methyl esters were experimentally investigated in this study. The mean values of the experimental
data were recorded after at least three repetitions. The experimental uncertainties of the results were
estimated based on the method by Holman [25]. The experimental uncertainties of the flash point,
specific gravity, ignition point, distillation temperature, and the heating value were ±1.27%, ±3.16%,
±2.93%, ±3.52%, and ±1.83%, respectively. The experimental results were described and discussed
in the following.

3.1. Micrograph of Water in Palm Oil and Fatty Acid Methyl Esters (FAME)

Palm oil with various water contents added, ranging from 0.02 wt.% to 0.12 wt.%, was used as
the raw oil to undergo a methanol assisted transesterification reaction with strong alkaline catalyst
NaOH. A micrograph of the added water droplets of 0.05 wt.% distributed within the palm oil layer
captured by an optical electron microscope in conjunction with a charged-couple device is shown
in Figure 1. A rather even distribution of micrometer-sized water droplets within the palm oil layer at
50×magnification was observed. The mean diameter of the water droplets was 0.229 µm. Mechanical
stirring using a homogenizer was employed to mix the added water of 0.05 wt.% with the palm oil
without adding any surfactant before observing and capturing the results using optical microscope
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equipment. Micro-explosion might occur after the µm-sized water droplets absorbed sufficient
surrounding heat to explode outwards through enveloping oil layer [26], leading to much increase of
contacting surface among the reactants and in turn a larger extent of chemical reaction. In addition,
the even distribution of µm-sized water droplets in palm oil might increase the homogeneous mixing
extent with hydrophilic methanol, leading to enhancement of alkali-catalyzed reaction and formation
of fatty acid methyl esters.
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Figure 1. Photograph of physical structure of water droplets distributed within palm oil layer when
0.05 wt.% water was added.

Fatty acid methyl esters (FAME) were produced from the transesterification of triglyceride-rich
vegetable oil or animal fats with short-chain alcohol particularly methanol. The FAME content is
available to determine the extent of transesterification. Higher FAME amount indicates higher purity
of the biodiesel product [27]. On the contrary, inferior fuel properties exist for a biodiesel with lower
FAME content. The Gas chromatograph (GC) method was used to analyze the fatty acid compositions
of the biodiesel produced from palm oil with seven different water contents added. The results of
the fatty acid compositions, analyzed by GC equipment, are shown in Table 2. Biodiesel is excellent
alternative fuel to petro-diesel due to their similar carbon-chain structure and fuel characteristics.
The fatty acid compositions of biodiesel made from vegetable oil or animal fat are mostly in the similar
range between C14 and C18 as those carbon-chains of petro-diesel. This can be justified that the total
contents of FAME in the range between C14 and C18 for those seven biodiesel samples are only from
81.1 wt.% to 82.1 wt.%. In addition, the FAME contents of carbon chains longer than C16 of those seven
biodiesel samples are at least 80.9 wt.% in Table 2. The FAME produced from palm oil added with
0.05 wt.% water content was observed to have the highest saturated fatty acids, which amounted to
46.3 wt.%. Carbon chains of fatty acids ranging from C14 to C24 are frequently identified in biodiesel
samples made from various feedstocks. The fatty acid compositions in Table 2 are similar to those of
biodiesel structures in previous studies [28,29]. Hence, the biodiesels in this study were successfully
produced. The total contents of the palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1)
of those biodiesels accounted for more than 70 wt.% in Table 2, which agrees well with the results of
Pinzi et al. [30].

Table 2. Comparison of fatty acid compositions of the biodiesel produced from palm oil added with
various water content through transesterification.

Types of Fatty Acids
Added Water Contents (wt.%)

0.02 0.03 0.05 0.07 0.09 0.11 0.12

C14:0 0.8 0.6 0.8 0.6 0.6 0.6 0.8
C16:0 33.3 31.1 34.2 27.6 27.3 28.3 34.1
C18:0

43.4
14.1 11.2 14.6 15.5

48.9 43.2C18:1 32.4 31.7 35.4 34.4
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Table 2. Cont.

Types of Fatty Acids
Added Water Contents (wt.%)

0.02 0.03 0.05 0.07 0.09 0.11 0.12

C18:2 3.6
3.9 3.8

3.4 3.4
3.3 3.2C18:3 0.4 0.1 0.1

C24:0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
C24:1 0.3 0.3 0.2 0.3 0.3 0.3 0.3

Saturated fatty acids - 45.9 46.3 42.9 43.5 - -
Longer carbon-chain
fatty acids than C16 81.1 81.9 81.2 81.5 81.1 80.9 80.9

Total FAME 93.5 95 97.3 95.3 94.1 93.3 93.7

The variations in the total fatty acid compositions with water contents added to the palm oil are
shown in Figure 2. The highest content of fatty acid methyl esters, which amounted to 97.3 wt.%,
was produced from palm oil with 0.05 wt.% water added. This is probably owing to the enhancement
of the dissociation of OH- radicals from the water to conjugate with the long carbon-chain fatty acids.
Although Wu et al. [31] suggested that a water content that is as low as possible in raw oil is required to
result in a more complete transesterification reaction, insufficient or excessive amounts of OH- radicals
dissociated from the water might be ineffective to move forward the transesterification reaction. Hence,
adequate water content would facilitate the conversion reaction, and this postulate agrees well with
Nguyen et al. [32]. Less or larger than 0.05 wt.% water added to the palm oil caused less extent of
transesterification and thus lower production of total fatty acid methyl esters (FAME) in Figure 2.
Hence, the lower FAME formation appeared when the biodiesel produced from palm oil added with
0.02 wt.% or 0.11 wt.% water contents. Sun et al. [33] found that water content was negative to algae
dissolution and [Bmim] [HSO4] catalyzed in-situ transesterification. The biodiesel production from
wet algae was thus reduced. Arumugam and Ponnusami [34] observed that the highest conversion
rate of triglycerides (92.5%) was produced from waste sardine oil at a water content of 10 vol.% for
transesterification reaction catalyzed by enzymes. Excess water in reactants favors hydrolysis and thus
decreases biodiesel production.
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Figure 2. Effects of added water content in palm oil on the fatty acid methyl esters.

Table 2 reveals the analytic results of fatty acid methyl esters from the biodiesel produced from
palm oil with various water contents added. The biodiesel produced from palm oil with 0.05 wt.%
water added was primarily composed of palmitic acid (C16:0), oleic acid (C18:1), and stearic acid
(C18:0), which accounted for 34.2 wt.%, 31.7 wt.%, and 11.2 wt.%, respectively. This implies that
the biodiesel is relatively oxidatively stable, and thus, fuel properties are not prone to deterioration.
In contrast, the biodiesels produced from palm oil added with 0.02 wt.% and 0.12 wt.% water were
shown to have much less formation of total fatty acid methyl esters. The content of fatty acids from C16
to C18 amounted to 80.7 wt.% and 80.5 wt.% for the biodiesel made from palm oil added with 0.02 wt.%
and 0.12 wt.% water, respectively. This implied that although the biodiesel made from palm oil added
with water contents from 0.02 wt.% to 0.12 wt.% resulted in various extents of transesterification and
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different amounts of fatty acid methyl esters, all the biodiesel produced were composed of almost
carbon-chained compounds from C16 to C18. Hence, the biodiesel products are adequate alternative
fuel to petro-diesel due to similar carbon-chain chemical structure. Moreover, palm oil is a competitive
and abundant feedstock oil source for biodiesel production.

Free fatty acids might be produced through the hydrolysis of fatty acids with water [35].
Excessive water content in reactant mixture of esterification reaction might cause frequent attack of
lipids by water. Fatty acids of longer carbon chain lengths would be hydrolyzed, resulting in the
formation of free fatty acids and shorter carbon-chain fatty acids [36]. The chemical composition of
the biofuel is changed accordingly, resulting in worsened fuel properties. The significant phenomena
arising are the occurrence of odor, viscosity increase, and color change, which is the so-called rancidity
of the lipid [37].

3.2. Heating Value

The heating value is defined as the amount of heat released from the complete burning of fuel.
Fuel with a higher heating value requires only lower fuel consumption to attain the same power output.
The heating value of biodiesel is lower than petro-diesel by around 10% [38]. The heating values of
biodiesels made from palm oil were in the range of 39.5 MJ/kg to 40.9 MJ/kg and were shown to increase
with the increase in added water content to the palm oil, as seen in Figure 3. Biodiesel produced from
palm oil with 0.12 wt.% water added was found to have the highest heating value, while that with
0.02 wt.% water added had the lowest heating value among those biodiesels, as shown in Figure 3.
Shi et al. [10] found that water content that was too low might cause a low extent of hydrolysis of lipid
towards reformation of fatty acid methyl esters during transesterification, resulting in a low conversion
rate from raw oil and thus, a reduced heating value. In contrast, high water content might render
continuous hydrolysis of lipid to form H+ and OH− radicals and in turn biodiesel, as observed by He
et al. [39]. Caetano et al. [40] inferred that water presence might lead to the enhancement of catalytic
activity of lipase because the alcohol removed the hydration layer of the enzyme. Adequate water
existence thus facilitates both transesterification and hydrolysis. Therefore, higher water content in the
raw palm oil appeared to have a higher heating value in the biodiesel product.
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Elsanusi et al. [41] investigated the effects of water concentrations in biodiesel emulsions on fuel
characteristics and engine performance. They found that the brake thermal efficiency (BTE) increased
with the increase of water content in the biodiesel emulsions. This implies that a larger amount of heat
was released from burning the biodiesel emulsion with larger water content to result in higher BTE.

3.3. Specific Gravity

Specific gravity is defined as the ratio of density of some liquid to that of water at 4 ◦C. The specific
gravity of biodiesel is in the range of 0.86 to 0.9 based on the EN 14,214 standard. The highest and
lowest specific gravities were observed for the biodiesel made from palm oil with 0.09 and 0.02 wt.%
water added, as shown in Figure 4. The curve trend of specific gravity shown in Figure 4 almost



Processes 2020, 8, 1130 8 of 14

totally agrees with that of the fatty acid methyl esters of the biodiesel product shown in Figure 2.
Hence, a lower specific gravity corresponds to a lower total FAME content of the biodiesel. In addition,
the type of fatty acid compositions influences the specific gravity of the biodiesel. For example, a larger
content of longer carbon-chain fatty acids appeared to create a larger specific gravity of the biodiesel,
as found by Hajilar and Shafei [42].Processes 2020, 8, x FOR PEER REVIEW 8 of 14 
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Ramírez-Verduzco et al. [43] presented characterization of two biodiesel samples through their
FAME profiles and derived empirical equations to correlate biodiesel properties with their fatty acid
structures. They found that the specific gravity of biodiesel increased as molecular weight decreased
and degree of unsaturation increased. The larger specific gravity of the biodiesel made from palm oil
added with 0.09 wt.% might thus be ascribed to its larger content of unsaturated fatty acids, as shown
in Table 2. Refaat [44] and Folayan et al. [45] also confirmed that specific gravity of biodiesel increases
with the increase of unsaturated fatty acids and the decrease of chain length.

3.4. Flash Point and Ignition Point

The flash point is one major safety indicator during storage and transportation of liquid fuel.
The temperature at which liquid fuel is heated to form and accumulate fuel vapor to a certain
concentration, where an instantaneous spark is flashed after a flame crosses over the fuel vapor,
is defined as the flash point. The temperature at which the fuel vapor is formed to cause the spark and
further continuous burning is denoted as the ignition point of liquid fuel. The flash points of biodiesel
were found to range from 160 to 176 ◦C and peaked corresponding to the 0.05 wt.% water content
added to the palm oil, as shown in Figure 5. The curve trend of the flash point shown in Figure 5
conformed to that of FAME profile in Figure 2. The highest FAME content in biodiesel rendered the
highest flash point when 0.05 wt.% water was added to raw palm oil. The peak flash point could also
be observed from Table 2, where the total carbon-chain fatty acids for the biodiesel produced from
palm oil with 0.05 wt.% water content added reached the highest 97.3 wt.% among all the cases of
added water contents. Marlina et al. [46] also found that biodiesel composed of a greater content of
longer carbon-chain fatty acids tended to have a higher flash point. Too high or low added water to
raw oil caused a slower nucleophilic substitution reaction, as proposed by Paula et al. [47]. A lower
conversion rate thus occurred, resulting in a lower FAME and in turn a lower flash point in those cases.
The flash point was decreased with the increase of the content of unsaturated fatty acid methyl esters
in Figure 5—a result that agreed with that of Ayoola [48]. Su et al. [49] proposed a correlation equation
of flash point with chain length and unsaturation of biodiesel. Rao et al. [50] also derived a correlation
equation to relate flash point of biodiesel linearly with its specific gravity. Hence, similar curve trends
between those of specific gravity and flash point could be observed in Figures 4 and 5. Flash point was
also observed to influence higher heating values of biodiesel [51].
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Figure 5. Effects of added water content in palm oil on the flash point of the biodiesel product.

The highest ignition point of biodiesel was found to be made from palm oil with 0.05 wt.%
water content added, as shown in Figure 6. This can probably be ascribed to the highest FAME
formation among the biodiesels from palm oil with various water contents added, shown in Figure 2.
In comparison with Figure 2, the curve trend of the ignition points of the biodiesel with respect to the
added water content in Figure 6 was observed to agree with that of FAME contents in the biodiesel
products. This implies that higher FAME content in the biodiesel product increased the ignition point.
In addition, the higher specific gravity of the biodiesel was shown to have a higher ignition point in
comparison to Figures 4 and 6; this inference agrees well with the findings of Kumar and Bansal [52]
and Rao et al. [50]. The increase of ignition point might also be ascribed to the increase of saturated
fatty acid methyl esters, as observed by Ayoola [48]. Bukkarapu et al. [53] found that the increase of
kinematic viscosity caused the increase of ignition point of the biodiesel.
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3.5. Distillation Temperature and Cetane Index

Distillation temperature is one of the significant indicators of volatility and combustion
characteristics of liquid fuel. The tendency of forming smoke and soot can be indicated by distillation
temperature as well. In contrast to the distillation temperatures of petro-diesel, biodiesel has much
narrower range of boiling points due to mostly alkyl esters in biodiesel [54]. A distillation temperature
curve based on ASTM D86 is prepared to reveal the range of boiling points of various compounds
in liquid fuel. The curve of the distillation temperatures can be used to determine the distribution
from light to heavy compounds. The temperature at which a liquid drop is vaporized, condensed,
and collected is referred to as TIBP. Similarly, T50 is the temperature for a 50 vol.% liquid fuel, and TEP

is the highest temperature corresponding to the final liquid drop that is vaporized, condensed,
and collected.

The ASTM D86 distillation temperature curve for biodiesel made from palm oil with various
water contents added, ranging from 0.03 wt.% to 0.12 wt.%, is shown in Figure 7. Biodiesel made from
palm oil with 0.05 wt.% water added was found to have the highest distillation temperature, while that
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with 0.12 wt.% water added had the lowest distillation temperatures among those three biodiesels.
For example, the TEP of the biodiesel made from palm oil added with 0.05 wt.% and 0.12 wt.% water
contents were 354 and 342 ◦C, respectively. This is ascribed to the fact that the addition of 0.05 wt.%
water content caused the highest formation of fatty acid methyl esters (FAME), while that of 0.12 wt.%
water formed the lowest FAME, as shown in Figure 2. In addition, Yao et al. [55] considered that T90

is an indicator for the content of heavier compounds in liquid fuel. A higher T90 implies a larger
amount of heavier compounds and greater viscosity of a liquid fuel, which might result in deteriorated
atomization, slower vaporization, and in turn, incomplete burning. The biodiesel made from palm
oil with 0.05 wt.% water added was shown to have the highest T90, which thus implies production
of a higher extent of pollutants from burning such biodiesel. Distillation temperature influences the
combustion and emission characteristics of biodiesel. Lower distillation temperature results in higher
volatility and enhances homogeneity of reactant mixture [56].
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The cetane number (CN) is used to indicate the compression-ignition quality of liquid fuel
in a diesel engine. Fuel bearing a higher cetane number would shorten the period of ignition delay
in a diesel engine and thus reduce the burning time and residence period of the peak flame within the
engine cylinder, resulting in a lower occurrence of engine knocking and NOx formation. The cetane
index, which is an alternative to the cetane number, is obtained by calculations using the data from
T50 and API gravity based on Equation (3). The lowest cetane index is found for biodiesel made from
palm oil with 0.09 wt.% water added, shown in Figure 8. This is probably due to its larger T50 and
the specific gravity of the biodiesel, as shown in Figure 4. A higher cetane index existed when water
content that was either lower or higher than 0.09 wt.% was added to palm oil for manufacturing the
biodiesel. Cetane number of biodiesel was determined by its fatty acid composition, number of double
bonds, degree of unsaturation, chain length, and molecular weight [57]. A few correlation equations
which relate cetane number with those physicochemical properties of biodiesel have been proposed
for CN prediction [58,59]. In addition, Mishra et al. [60] and Moser [61] found that the cetane number
of the biodiesel increased with the increased amount of long carbon-chain fatty acids or saturated fatty
acids. It was found that the increase of number of double bonds leads to the decrease of cetane number
of biodiesel [62]. Higher or lower water content than 0.09 wt.% might cause an increase in saturated
fatty acids and heating value in turn. Hence, those two curve trends between the cetane index and
heating value agree well with each other in comparison with Figures 3 and 8.
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4. Conclusions

Various water contents were added to palm oil to undergo strong alkaline-catalyst
transesterification for biodiesel production. The burning characteristics of those fatty acid methyl esters,
such as flash point and heating value, were analyzed. Major experimental results are summarized below.

A rather even distribution of water droplets with the mean diameter of 0.229 µm within the
palm oil layer was produced when 0.05 wt.% water was added to the raw palm oil and stirred
using a mechanical stirrer. The fatty acid methyl esters produced from the palm oil with the water
added ranging from 0.02 wt.% to 0.12 wt.% were composed of over 70 wt.% of palmitic acid (C16:0),
stearic acid (C18:0), and oleic acid (C18:1). The biodiesel produced from palm oil with 0.05 wt.% water
added through strong alkaline-catalyst transesterification were found to form the highest total fatty
acid methyl esters (FAME) and saturated fatty acids, which amounted to 97.3 wt.% and 46.3 wt.%,
respectively among those seven biodiesel samples. Moreover, the fatty acid methyl esters produced
from palm oil with 0.05 wt.% water added appeared to have the highest flash point, ignition point,
and distillation temperature and thus, the highest safety level during storage and transportation of
the biodiesel. The total carbon-chain fatty acids longer than C16 reached as high as 81.2 wt.% in such
biodiesel. The raw palm oil with 0.05 wt.% water content was found to produce a biodiesel with
superior fatty acid composition and fuel characteristics.

In contrast, the biodiesel produced from palm oil with 0.02 wt.% water added was found to have
the lowest heating value and specific gravity. The lowest distillation temperature and formation of
fatty acid methyl esters were found to be in the biodiesel made from palm oil with 0.12 wt.% water
added. In addition, biodiesel made from palm oil with 0.09 wt.% water added was observed to have
the highest specific gravity along with the lowest cetane index. Hence, added water content higher or
lower than 0.05 wt.%, such as 0.02 wt.% and 0.12 wt.%, caused poorer fatty acids compositions and
deteriorated fuel properties.
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