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Abstract: As the most mature denitration technology in the cement clinker burning process, selective
non-catalytic reduction (SNCR) has been unable to meet the requirements of ultra-low nitrogen oxide
(NOX) emissions under low ammonia escape, thus a hybrid denitration process based on SNCR
was established. The process had three steps: reducing the NOX background concentration (NBC),
implementing staged combustion, and optimizing the effect of the SNCR. One of the keys to this
process was the real-time acquisition of the NBC. In this paper, a multivariate linear regression model
for the prediction of NBC was constructed and applied to one 12,000 t/d production line and one
5000 t/d production line. For the 12,000 t/d production line, NBC had a positive correlation with
the temperature of the calciner outlet, the pressure, and the temperature of the kiln hood, and it
had a negative correlation with the quantity of the kiln coal, the temperature of the smoke chamber,
and the main motor current of the kiln. The influence degree of each parameter on the NBC is
gradually weakened according to the above order. The determination coefficient (R2) of the model was
0.771, and the mean absolute error and maximum relative error between the predicted and measured
NBC were 6.300 mg/m3 and 18.670 mg/m3 respectively.
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1. Introduction

Most cement enterprises in China use coal as fuel in the cement clinker burning process,
and a large number of pollutants, such as NOX, smoke dust, and sulfur oxide, are released during
coal combustion [1], making the cement industry the third largest source of NOX emissions after
electric power and motor vehicles in China [2]. Cement enterprises generally rely on end-of-pipe
control methods to control NOX pollution, such as the selective non-catalytic reduction (SNCR) process,
the selective catalytic reduction (SCR) process, and staged combustion, of which SNCR is the most
widely used [3,4]. SNCR uses ammonia or urea as the reductant to remove NOX from the flue
gas [4], and the reductant flow is controlled by proportional–integral and derivative control based on
the difference between the measured and target values of NOX. Influenced by factors such as large
consumption of inertia, long delays, and multiple disturbances during the cement clinker burning
process [5–7], the denitration effects of SNCR systems are not stable, and the NOX emission index
may exceed the standard in a short period of time. The target NOX emission value for SNCR in
many enterprises is usually set below the allowable value [7], and the continuous control of NOX

emissions is guaranteed by the excessive use of reducing agents. This results in a significant increase
in the denitration costs, and the excessive reductant discharged with the flue gas will further cause
the “ammonia escape” phenomenon, which triggers new issues, such as the blocking of cloth bags
and preheaters, the corrosion of equipment, and the over-standard discharge of fine particles [8].
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Provinces of China, such as Henan and Shandong, have proposed the concept of ultra-low
emissions, with the emission index of NOX limited to 100 or even 50 mg/m3 [9]. Increasing the amount
of reductant in the SNCR process will only aggravate ammonia escape and will not benefit the ultra-low
emissions. Some scholars proposed to use biomass for NOX denitrification in cement production,
for instance, Shu Yun [10] adopted three biomass samples: rice husk, sawdust and corncob by
reburning to reduce NOX under different conditions in a fixed-bed reactor, and the maximum NOX

reduction efficiency could reach 57.0 ± 2.1%, Wang Yali [11] used bamboo charcoal and the best initial
denitrification rate could reach 98.906 %. However, it should be noted that biomass denitrification
is not widely used in cement production, and the actual application effect is still to be verified.
Using SCR instead of SNCR to improve the denitration efficiency through catalyst intervention can
achieve ultra-low emissions. However, in practical applications, due to the influence of high-dust
and low-temperature conditions, the service life and catalytic effect of the catalyst must be further
improved [9], and the high cost of SCR is also unappealing to most cement enterprises. Thus, in this
paper, a comprehensive measure with optimized working condition parameters is proposed. Staged
combustion technology was adopted, and an SNCR control strategy with a “soft sensor” was optimized
to realize ultra-low emissions. Furthermore, the modeling of NOX emissions is introduced.

2. Cement Clinker Burning Process and NOX Formation Mechanism

The cement clinker burning process starts from raw material entering the preheater and ends
at the grate cooler after the calcined clinker is rapidly cooled. The main equipment includes a preheater,
calciner, rotary kiln, and grate cooler, as shown in Figure 1. The raw material after exchanging heat
with the hot flue gas discharged from the calciner in the preheater enters the calciner to carry out most
of the decomposition of calcium carbonate. The heat needed for the reaction is mainly provided by
the tertiary air from the grate cooler, the hot flue gas discharged from smoke chamber of the rotary
kiln, and the combustion heat of pulverized coal fed into the calciner. The decomposed material enters
the rotary kiln to complete the follow-up solid-phase reaction and form clinker under the heat released
by the combustion of pulverized coal in the kiln and the continuous rotation of the rotary kiln. Finally,
the clinker enters the subsequent unit after rapid cooling in the grade cooler. The chemical reactions
needed for the formation of the cement clinker mainly occur in the calciner and rotary kiln, as does
the formation of NOX.

The nitrogen oxide generated in the cement clinker burning process is mainly divided into
thermal-NOX and fuel-NOX [12], wherein thermal-NOX refers to the NOX generated by the oxidation
of N2 in the air at high temperatures, and fuel-NOX refers to the NOX generated by the oxidation of
nitrogen compounds contained in the fuel entering the cement clinker burning system after thermal
decomposition in the combustion process [3]. Thermal-NOX is mainly generated in the rotary kiln,
and its generation is mainly affected by the calcination temperature, followed by the concentrations
of O2 and N2 and their residence time in the kiln, according to the Zeldovich theory. In contrast,
fuel-NOX can be generated in both the calciner and rotary kiln. Its generation is mainly affected
by the consumption and properties [13–18] of the fuel, such as the volatile matter, nitrogen content,
calorific value, and fixed carbon. Fuel-NOX generation is closely related to the combustion conditions,
such as the temperature and oxygen concentration [3]. It should also be noted that incomplete
combustion of the fuel will occur when the air volume into the system is less than the required volume
or the properties of the fuel are poor. In this case, reductive CO gas will be generated, and the following
chemical reaction will occur to cause the reduction of NOX:

NO + CO =
1
2

N2 + CO2 (1)
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Figure 1. Flow chart of cement clinker burning system.

3. Technology Route of NOX Ultra-Low Emission

The NOX emission index is an environmental protection ordinance (CNOXp ), and the actual NOX

content in flue gas (CNOXs ) can be converted as follows:

CNOXp = CNOXs(21− 10)/(21−O2) (2)

where O2 represents the actual oxygen content (%) in the exhaust flue gas of the burning system;
its value is mostly controlled at about 1% in actual production. According to Equation (2), when
only SNCR is adopted and its denitration efficiency reaches 60% (its actual efficiency is 40–60% [9]),
the NOX background concentration (NBC) during the burning process should be controlled to within
454.4 mg/m3. At this NBC, the NOX content in the exhaust flue gas of a burning system after denitration
can be lower than 181.8 mg/m3, and an ultra-low emission index of 100 mg/Nm3 can be achieved.
Unfortunately, field measurements of several domestic production lines show that the mean value
of the NBC can reach about 1200 mg/m3. Therefore, measures must be taken to reduce the NOX

background concentration.
The realization of ultra-low emissions cannot be achieved at the cost of increasing the ammonia

escape. Ammonia escape is caused by an excess amount of reductant, and the reductant flow is
theoretically determined by the NBC. Thus, ammonia escape can be reduced by precise control of
the reductant based on the real-time acquisition of the NBC.

The following implementation routes of ultra-low emissions based on SNCR are formulated in
this paper:

3.1. Reduction of NOX Background Concentration

Coal properties and clinker production capacity are relatively stable in most cement enterprises,
and the approaches for reducing the NOX background concentration include reducing the unit coal
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consumption and optimizing the burning parameters that affect the NBC. Heat consumption can
be reduced by means of a technological transformation, such as equipment upgrading and process
modifications. Heat consumption can also be slightly improved by the optimization of the burning
parameters, which refers to determining and optimizing the key parameters affecting the background
concentration of NOX based on the NOX generation mechanism. For specific enterprises, whether
to carry out technical modifications and which modification mode to use should be determined by
the existing process and the configuration of the main equipment.

The first prerequisite of the optimization of the burning parameters is to find the key parameters,
which can be divided into the following four categories according to NOX generation mechanism
and the distribution of the distributed control system (DCS) signals in cement enterprises.

1. Fuel consumption

Fuel consumption refers to the sum of the kiln and calciner coal, which can be obtained from
the flow metering equipment ( 1O and 2O in Figure 1).

2. Calcination temperature

The calcination temperature includes the calcination temperature in the rotary kiln and calciner.
The temperature of the calciner refers to the outlet temperature of the calciner ( 3O in Figure 1),
and the temperature of the rotary kiln can be calculated [19] based on the volume of the secondary
air, the temperature of the secondary air (refers to the temperature of the kiln hood, 6O in Figure 1),
the temperature of the smoke chamber ( 4O in Figure 1), the temperature of the raw material fed into
the kiln (same value as the outlet temperature of the calciner), in which the volume of the secondary
air can be indirectly determined from the pressure of the kiln hood ( 8O in Figure 1), and the pressure of
the smoke chamber ( 7O in Figure 1).

An experienced operator in a cement plant also evaluates the temperature of the rotary kiln based
on the temperature of the secondary and tertiary air ( 5O in Figure 1), as well as the current of the kiln
motor ( 9O in Figure 1): larger values of the current and temperatures of the secondary and tertiary air
usually correspond to higher rotary kiln temperatures.

3. Gas concentration

The gas concentration in the rotary kiln can be calculated based on the volume of secondary air
and the consumption of kiln coal. The gas concentration in the calciner can be calculated based on
the sum of the consumption of the kiln coal and calciner coal and the volume of the system air, among
which the volume of the system air can be determined based on the speed of the high temperature fan
( 11 in Figure 1).

4. Combustion efficiency of coal

The combustion efficiency of the coal can be obtained by the CO concentration detected by
the gas analyzer at the outlet of the preheater ( 10 in Figure 1). The key burning parameters affecting
the background concentration of NOX and their corresponding DCS signal are summarized in Table 1.

Being affected by differences in the process, the production scale, and the equipment in
the production lines, the parameter values vary. Even for two identical production lines, key
parameters affecting the NBC would be different due to the distinct nature of the raw materials and fuel.
For a specific production line, the key parameters can be identified by secondary screening based on
the Pearson correlation coefficient after obtaining the signals of the parameters in Table 1. Details of
the secondary screening are presented in Section 6.3 in this article.
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Table 1. Summary of key burning parameters.

Parameters
Quantity of Coal Temperature Pressure

Current of Kiln
Motor

CO at Preheater
Outlet

Speed of High
Temperature FanCalciner Coal Kiln Coal Outlet of

Calciner
Smoke

Chamber Tertiary Air Secondary Air Smoke
Chamber Kiln Hood

Unit t/h t/h ◦C ◦C ◦C ◦C Pa Pa A % rpm
Symbol x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11



Processes 2020, 8, 1104 6 of 17

3.2. Implementation of Staged Combustion

Staged combustion is usually implemented at the bottom of the calciner, where the evolution of
fuel nitrogen from the coal under oxygen-starved conditions leads to N2 formation without NO as
an intermediate thus to reduce the NBC. The denitration efficiency of staged combustion can reach
30–50%. Staged combustion can be realized by the classification of both coal and air, and the specific
scheme must be designed based on the specific circumstances of the production line.

3.3. Optimization of Selective Non-Catalytic Reduction (SNCR)

The optimization of the SNCR includes the optimization of the hardware and the software.
Hardware optimization refers to the improvement of the structure and the installation location of
the reductant spray gun. Optimization is conducted using advanced instruments and theoretical
analysis to improve the reaction efficiency between the reductant and NOX. Software optimization in
this paper refers to the precise online control strategy based on the real-time acquisition of the NBC.
Before the implementation of a precise online control strategy based on the NBC, the actual denitration
efficiency of the current SNCR should be accurately determined, which can be obtained by the NOX

concentration of the flue gas before and after denitration.

4. Previous Models of NOX Background Concentration (NBC)

As measures to reduce the heat consumption of the clinker burning, staged combustion
and the optimization of the SNCR hardware have been widely used in practice. For instance, taking
advantage of high solid–gas ratio suspension-preheating decomposition technology [20], the NBC
could be reduced to below 600 mg/Nm3. In contrast, limited by severe conditions, such as the high
temperatures and high dust content in the calciner, the feasibility of real-time measurements of the NBC
with existing instruments is quite low. Accordingly, determining how to obtain the background
concentration of NOX in real time becomes the primary problem to be solved.

Drawing support from soft sensor technology [21,22], a prediction model of the NBC can be
established to obtain the real-time NBC from the process parameters obtained online. Prior to this study,
scholars such as Lv [23], Zheng [24], Zhou [25], Jin [26], and Zhang [27] predicted NOX concentrations
with soft sensor models based on support vector machine (SVM) and neural network methods. This
also suggests that the prediction effect of the soft sensor is directly related to the selected model.
For example, Wang [28] adopted two soft sensor models to predict the NOX concentration in a cement
kiln, and the prediction effect of the neural network model was slightly better than that of the linear
regression model. The key parameters affecting the NOX concentration obtained by the two models
were different. Li [29] drew the conclusion that the performance of a support vector machine was better
than that of a back-propagation neural network when predicting the NOX concentration in a power
plant boiler.

5. Model Structure and Evaluation Index

5.1. Model Structure

A multiple linear regression model was adopted in this study to establish a predictive model for
the NBC due to its simple structure and high calculation speed. A multiple linear regression model
expresses the quantitative linear relationship between two or more independent variables x and one
dependent variable y. In this paper, the dependent variable y refers to the NBC, which can be detected
by an instrument. It was affected by non-random factors x1, x2,..., xm and a random factor ε, as follows:

y = β0 + β1x1 + β2x2 + L + βmxm + ε (3)
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non-random factors refer to the process parameters that affect the NBC, such as the temperature,
current, and consumption of coal. N independent measurements were carried out, and n groups of
samples were obtained, which can be expressed as follows:

y1 = β0 + β1x11 + β2x12 + L + βnx1m + ε1

y2 = β0 + β1x21 + β2x22 + L + βnx2m + ε2

. . .
yn = β0 + β1xn1 + β2xn2 + L + βnxnm + εn

(4)

parameters ε1, ε2,..., εn were independent of each other, and β0, β1,..., βm in Equation (3) were unknown
parameters, which were estimated by the classical least squares method. The resulting linear model
can be expressed in matrix form:  Y = Xβ+ ε

ε ∼ N
(
1, δ2IN

) (5)

5.2. Evaluation Index

1. Pearson correlation coefficient

Multicollinearity between the process parameters must be guaranteed to be weak to avoid
the distortion of the model caused by the high correlation between process parameters. The Pearson
correlation coefficient r between two process parameters was used to measure the correlation degree
between process parameter xa and process parameter xb [30,31] in this study. The formula for r is
as follows:

Qxaxb =
n∑

i = 1

(xai − xa)(xbi − xb)/

√√ n∑
i = 1

(xai − xa)
2

n∑
i = 1

(xbi − xb)
2 (6)

where xa and xb are the mean values of the parameters xa and xb, respectively. The correlation degree
between the process parameters can be divided into five categories based on the absolute value of r
(|r|), as shown in Table 2.

Table 2. Correlation degree between process parameters.

|r| 0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1

Correlation degree Irrelevant weak Weak Moderate Strong Extremely strong

2. Determination coefficient R2

The determination coefficient of the linear regression results (R2) reflects how much of the variation
of the dependent variable y can be described by the fluctuations of the independent variable x. The closer
R2 is to 1, the better the effect of linear regression is. The determination coefficient R2 can be calculated
as follows:

R2 =

∑
i (ŷi − y)2∑
i (yi − y)2 , (7)

y =
1
n

n∑
i = 1

yi, (8)

in Equation (7), yi is the measured value of dependent variable and ŷi is the predicted value.
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3. Mean absolute error

The mean absolute error (MAE) was used to measure the prediction effect of the model, and it can
be calculated as follows:

MAE =
1
n

n∑
i = 1

∣∣∣yi − ŷi
∣∣∣, (9)

a smaller MAE indicates that the predicted NOX value is closer to the measured NOX value
and the prediction effect is relatively better.

6. Model Development

A soft sensor model of the NOX was developed based on the actual data of a 12,000 t/d cement
clinker production line. The production line is located in Anhui Province. Its actual output is 12,300 t/d,
and the annual heat consumption of per clinker is 2959 kJ/kg. The production line only uses SNCR for
denitration, and an aqueous ammonia solution is used as the reductant. Its injection position is near
the outlet of the calciner. The local NOX index is 400 mg/m3, and the internal index of the enterprise is
below 320 mg/m3.

6.1. Collection of Original Data

6.1.1. Collection of NBC

The NBC data was measured by portable flue gas analyzer (model: Testo 350), and the data
collection frequency was 0.1 Hz. The measurement point was 2 m from injection position of the reductant.
In consideration of the large dust content in the flue gas, a dust filter device (4 in Figure 2) was added
in the middle of the gas intake pipe to prevent blocking of the analyzer.

Figure 2. Schematic diagram of NOX background concentration (NBC) acquisition device. 1: reducing
agent spray gun; 2: measuring point; 3: gas pipeline; 4: dust filter; 5: portable flue gas analyzer; 6: data
transmission line; 7: computer.

6.1.2. Collection of Process Parameters

The data of the required process parameters was obtained through the DCS server, and its
acquisition frequency was 0.1 Hz.

6.2. Data Preprocessing

Measurement of the NBC was carried out when the production line operated properly,
and the collection of the process parameters was carried out synchronously. A total of 1000 sets
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of original data were obtained, and each set contained 11 values of the process parameters and 1
simultaneous value of the NBC. The original data were preprocessed as follows.

1. Elimination of abnormal data

The filter element at the front of the analyzer needed to be cleaned or replaced regularly due
to the influence of the dust in the flue gas, which required about 3 min each time. Correspondingly,
the NBC and process parameter values collected in this period were eliminated as abnormal data,
and 690 sets of effective data were obtained after elimination.

2. Mean filter

Influenced by the working principles and operating conditions of the equipment, the collected
signals fluctuated regularly with certain periods. For instance, the range of current of the kiln motor
is 700–850 A, and its fluctuation period was 400 s (Figure 3). The characteristics of the parameters
would not be reflected accurately if an instantaneous value at one particular time was used for analysis,
and the resulting model would not be representative.

Figure 3. Current trend of kiln main motor.

Therefore, a mean filter was adopted. The window length of the mean filter was determined by
the maximum fluctuation period of all the parameters, which was 40. Thus, the mean matrix A was
obtained. Its first row contained the mean values of the parameters from 0 to 400 s, the second row
contained the mean values of the parameters from 10 to 410 s, and so on.

6.3. Selection of Key Process Parameters

The key process parameters were mainly determined based on the Pearson coefficient.
The reliability of the parameters was also considered, and main results are shown in Table 3.

Table 3. Part of Pearson correlation coefficient between process parameters.

Parameters
|r| Retained Parameters

Parameter 1 Parameter 2

x1 x3 0.787 x3
x5 x9 0.776 x9
x11 x9 0.923 x9
x7 x9 0.869 x9
x10 x4 0.862 x4

(1) The quantity of the calciner coal was strongly related to the temperature of the calciner outlet
and, thus, one of the two parameters needed to be eliminated. Considering that the signal reliability
of the calciner coal quantity was lower than that for the temperature data, as the coal quantity often
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exhibited certain deviations due to the low accuracy of the metering instrument and the poor operating
environment, the temperature of the calciner outlet x3 was retained.

(2) The current of the kiln motor had a strong correlation with the temperature of the tertiary air,
the speed of the high temperature fan, and the pressure of the smoke chamber. Only the current of
the kiln motor was reserved for subsequent analysis, because it is one of the most important parameters
in the clinker firing process. Furthermore, its reliability and accuracy were much higher than those of
parameters such as the temperature and pressure.

(3) There was a strong correlation between the CO concentration at the preheater outlet
and temperature of the smoke chamber. The CO concentration at the outlet of the preheater was
obtained by an on-line gas analyzer, which required blowback regularly. The detection value was
abnormal during blowback. Furthermore, to reduce the cost, most cement enterprises opt to use
gas analyzers with low accuracies or to not use on-line analyzers. Thus, the CO concentration
at the preheater outlet was eliminated as a parameter.

Based on the above analysis, the key parameters affecting the NBC of 12,000 t/d production line
were finally determined to be the quantity of the head coal x2, the temperature of the calciner outlet x3,
the temperature of the smoke chamber x4, the temperature of the kiln hood x6, the pressure of the kiln
hood x8, and the current of the kiln motor x9.

6.4. Development of NBC Model

Taking x2, x3, x4, x6, x8, and x9 as the independent variables and the NBC as the dependent
variable, a matrix B with 695 rows and 4 columns was obtained. B was normalized as follows:

xnorm = (x− xmin)/(xmax − xmin) (10)

where xnorm is the normalized data, x is the original data, and xmin and xmax are the minimum
and maximum values of the original data, respectively.

Considering the possible fluctuations of the working conditions, the values of xmin and xmax were
adjusted based on the actual maximum (xrmax) and actual minimum (xrmin) of the collected data, which
are shown in Table 4.

The normalized matrix C was obtained, and the first 400 rows of matrix C were selected as training
data. A predictive model of the NBC was developed based on the multiple linear regression method;
the main parameters are shown in Tables 5 and 6.

Table 4. Extreme values of parameters.

Parameters x2 x3 x4 x6 x8 x9 y

xrmax 22.8 875.6 1197.6 799.3 −61.8 1301.5 662.0
xrmin 22.7 872.5 1188.8 764.3 −75.9 1266.9 616.0
xmin 23.0 880.0 1210.0 810.0 −50.0 1310.0 680.0
xmax 22.0 865.0 1170.0 750.0 −85.0 1250.0 600.0

Table 5. Regression statistics.

Item Multiple R R2 Adjusted R Square Standard Error Observation Value

Value 0.878 0.771 0.768 0.080 400

Table 6. Analysis of variance (ANOVA) table.

df SS MS F Significance F

Regression analysis 6 8.496 1.416 220.926 1.4 × 10−122

Residual 393 2.519 0.006
Total 399 11.015



Processes 2020, 8, 1104 11 of 17

The R2 of the linear regression was 0.771, and the significance F was far less than 0.001. Therefore,
conclusions can be drawn that the developed model was statistically significant. According to
the regression coefficient in Table 7, the regression equation for NBC in the 12,000 t/d cement clinker
burning system was as follows:

ynorm = −2.98x2 + 1.44x3 − 0.99x4 + 0.44x6 + 0.77x8 − 0.67x9 − 0.76 (11)

y = 80ynorm + 600 (12)

Table 7. Regression coefficient.

Coefficients Standard Error t Stat p-Value

Intercept 2.232 0.335 6.663 9.073 × 10−11

x2 −2.982 0.416 −7.170 3.75 × 10−12

x3 1.441 0.168 8.562 2.55 × 10−16

x4 −0.995 0.186 −5.334 1.62 × 10−7

x6 0.439 0.079 5.575 4.62 × 10−8

x8 0.772 0.048 16.127 2.88 × 10−45

x9 −0.666 0.044 −15.266 1.21 × 10−41

The comparison of the predicted NOX values using training data and the actual NOX values is
shown in Figure 4.

Figure 4. Trend of actual and predicted NOX value of 12,000 t/d production line.

Based on the theory of cement technology operation, the obtained model is explained as follows:
(1) The NBC was positively related with the temperature of the calciner outlet (x3), which was

highly related to the amount of calciner coal. A high temperature at the calciner outlet indicated
that there was a large amount of calciner coal, and thus, the NBC will increase with the increase in
the fuel-NOX.

(2) Based on production experience, when the operation parameters of the grate cooler are fixed,
the higher the temperature of the kiln hood, the higher the calcination temperature of the rotary kiln.
Consequently, the NBC will increase due to the increase in thermal-NOX. The model showed that
the NBC was positively correlated with the temperature of the kiln hood (x6).

(3) A higher pressure kiln hood indicated that a higher volume of air was in the kiln, and more
thermal-NOX could be generated in the kiln according to the Zeldovich theory. Therefore, there was
also a positive correlation between the pressure of the kiln hood (x8) and the NBC.

(4) A spot investigation of the production line showed that more kiln coal than the theoretical
demand was provided to ensure that the content of free CaO in the clinker could be controlled stably
below 0.8%. More than 3000 ppm of CO could be detected in the smoke chamber. A series of problems
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was introduced by the excess amount of head coal. First, the viscosity of the material in the kiln
increased with the increase in the calcination temperature. Thus, the material could rise to a greater
height along the inner wall of the kiln, and the rotary torque of the kiln increased, which resulted
in an increase in the current of the kiln motor. Second, reductive CO produced by the incomplete
combustion of the kiln coal caused the reduction of NOX generated in the kiln. Finally, the remaining
CO after the denitration reaction with NOX entered the smoke chamber with hot flue gas, which also
contained O2 due to the air leakage from the gap between the smoke chamber and rotary kiln. Thus,
the exothermic oxidation reaction between CO and O2 could be carried out to cause the temperature of
the smoke chamber to rise. The above phenomena were consistent with the conclusions from the model,
i.e., the amount of kiln coal (x2), the temperature of the smoke chamber (x4), and the current of the kiln
motor (x9) had negative correlations with the NBC.

The obtained model was highly consistent with the process theory and has strong interpretability.
Using the last 290 sets of matrix C as test data, the values of the NBC predicted by the model
and the measured values are shown in Figure 5.

Figure 5. Trend of actual and predicted NOX value of 12,000 t/d production line.

The trends of the predicted values were basically consistent with those of the measured values,
indicating that the model could cope with the fluctuations of the operating conditions. The MAE
between the predicted and measured values of the NBC was 6.300 mg/m3, and the maximum deviation
was 18.670 mg/m3 (Figure 6). The error between the maximum deviation value and the NBC was less
than 3%; thus, the prediction effect of the model was good.

Figure 6. Deviation between predicted value and measured value of NOX of 12,000 t/d production line.

For different production lines, the production parameters affecting the background concentration
of NOX and their influence rules may be slightly different, which means that the conclusions obtained
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in this paper are not applicable to all production lines. In the popularization and application of
the model, the above analysis process must be repeated to ensure the reliability of the results.

7. Modeling in One 5000 t/d Production Line

NBC prediction modeling was also carried out in one 5000 t/d production line in Guangxi Province
according to the same method and process as in Section 5. The production line adopts “XDL cement
clinker calcination technology”, its actual output is 6351 t/d, and the annual heat consumption of per
clinker is 2828 kJ/kg. Denitration measures and emission control indicators of this 5000 t/d production
line are the same as those of 12,000 t/d production line.

The key nodes in the modeling process of 5000 t/d production line are introduced as follows.

7.1. Determination of Key Process Parameters

The chosen 11 process parameters of 5000t/d production line for subsequent analysis are the same
as those of the 12,000t/d production line, which were numbered with Xi in order to distinguish from
the process parameters of the 12,000 t/d production line, and the sequence of number i is consistent
with that in Table 1.

Pearson coefficients of some key process parameters of 5000 t/d production line are as shown
in Table 8.

Table 8. Pearson coefficients of process parameters of 5000 t/d production line.

Parameters
|r| Retained Parameters

Parameter 1 Parameter 2

X1 X9 0.624 X9
X7 X2 0.572 X7
X7 X5 0.752 X7
X7 X6 0.835 X7
X7 X8 0.840 X7

(1) The quantity of the calciner coal X1 was strongly related to the current of the kiln motor X9,
and the current of the kiln motor X9 was retained because its signal was more reliable.

(2) The pressure of the smoke chamber X7 had a strong correlation with the quantity of the kiln
coal X2, the temperature of tertiary air X5, the temperature of secondary air X6 and the pressure of
the kiln hood X8. Only X7 was reserved to reduce the number of independent variables and improve
the reliability of the model.

Based on the above analysis, the key parameters affecting the NBC of 5000 t/d production line
were finally determined to be the temperature of the calciner outlet X3, the temperature of the smoke
chamber X4, the pressure of smoke chamber X7, the current of the kiln motor X9, the CO at preheater
outlet X10 and the speed of the high-temperature fan X11.

7.2. Development of NBC Model of 5000t/d Production Line

A total of 950 groups of data were obtained after data processing, and the first 500 groups were
selected as training data. The R2 of the linear regression of the 5000 t/d production line was 0.794,
and the P value was far less than 0.001. Therefore, conclusions can be drawn that the developed model
was statistically significant. The regression equation for NBC in the 5000 t/d cement clinker burning
system was as follows:

Ynorm = 0.21X3 − 0.01X4 − 0.19X7 + 0.58X9 + 0.28X10 − 0.12X11 + 0.27 (13)

Y = 208Ynorm + 498 (14)

The obtained model is explained as follows:
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(1) The same conclusion as the 12,000 t/d model can be obtained that NBC of the 5000 t/d production
line was positively related with the temperature of outlet of calciner X3 and was negatively related
with the temperature of smoke chamber X4.

(2) Gas components measurement showed that the air excess coefficient of smoke chamber is
consistently higher than 1.05 and the quantity of kiln coal is basically unchanged during production.
Under the above premise, the increase of pressure of smoke chamber means that the air volume in
the kiln is increased, thus the calcination temperature in the high-temperature section of the kiln will
be relatively reduced, and the formation rate of thermal nitrogen oxides will be reduced; on the other
hand, residence time of air in the kiln would be shortened with the increase of air volume in the kiln.
Therefore, NBC would decrease with the increase in pressure of the smoke chamber.

(3) In this 5000 t/d production line, NBC increases with the increase of the current of kiln motor X9.
Increase of X9 indicates that the raw material in the kiln is fully calcined and the height of the material
taken up with the rotation of the rotary kiln could be increased, which will increase the load of the kiln
and the kiln current. More thermal NOX will be generated when the calcination is sufficient, resulting
in the increase of NBC value.

It should be noted that for the 12,000 t/d production line, current of kiln motor X9 has a negative
correlation with NBC, it is inconsistent with 5000 t/d production line. The reason lies in the fact that
calorific value of the incoming coal in the 12,000 t/d production line is low and the flammability is
poor due to the influence of coal supply. Excessive kiln coal is adopted to force calcination in kiln
consciously thus to stabilize the quality of clinker. The insufficient combustion of excessive kiln coal
ensures the high temperature required by the sintering zone in the kiln, improves the calcination
effect of the clinker and increases the current of the kiln motor. However, the unburned kiln coal will
continue to enter the transition section of kiln with flue gas and burns under weak oxygen atmosphere,
where the reductive CO gas can be generated, thus the thermal NOX generated in the kiln would be
reduced and NBC value would be decreased. The above conclusion is contrary to the conventional
knowledge, but it exists objectively in this 12,000 t/d production line.

(4) There is a positive correlation between the CO at preheater outlet X10 and NBC. The reason lies
in the fact that the thickness of the castable for the tertiary air duct in the production line is increased,
the effective inner diameter of tertiary air duct is reduced and the tertiary air velocity is as high as
32 m/s, and the volume of tertiary air is lower than the design value for a long time due to the large
resistance loss of the tertiary air duct. Excess air coefficient at the middle of the calciner is only 0.96
and the combustion of calciner coal is not sufficient due to the insufficient supply of tertiary air; part of
the calciner coal enters the C5 cyclone, where the reductive CO can be formed.

NOX is mostly generated at the calciner and kiln, which means that the CO generated in C5
cyclone would not reduce NOX and therefore has no impact on NBC; however, when the CO detected
at the outlet of preheating system increases, it indicates that the combustion efficiency of calciner
coal becomes worse. In this case, measures such as increasing calciner coal and increasing calciner
temperature to stabilize production will be adopted, more fuel-NOX will be generated to increase NBC
value. That explains why NBC increases with the increase of CO at preheater outlet in this 5000 t/d
production line.

(5) Due to the limitation of the inner diameter of the tertiary air duct, combustion of the calciner
coal is not sufficient. Tertiary air volume can be relatively increased and the combustion efficiency
of calciner coal is improved with the increase of high-temperature fan speed, thus the fuel-NOX will
decrease with the decrease of calciner coal quantity; although the NOX generated in the kiln might be
increased at the same time, for this 5000 t/d production line, its NBC decreases with the increase of
high-temperature fan speed after the combination of the these two effects.

The obtained model was highly consistent with the process theory and has strong interpretability.
The comparison of the predicted NOX values using training data and the actual NOX values is shown
in Figure 7, and the values of the NBC predicted by the model and the measured values are shown
in Figure 8.
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Figure 7. Trend of actual and predicted NOX value of 5000 t/d production line.

Figure 8. Trend of actual and predicted NOX value of 5000 t/d production line.

The MAE between the predicted and measured values of the NBC was 14.817 mg/m3, the error
between the maximum deviation value and the NBC was less than 5%, and the prediction effect of
the model was good.

8. Conclusions

In this paper, the use of SNCR to realize the ultra-low emissions of NOX in the process of cement
burning was proposed, and it contains three steps: reduction of NOX background concentration (NBC),
implementation of staged combustion, and the optimization of SNCR. The key parameters effects on
NBC were studied using soft-sensor technology. The real-time acquisition of NBC in one 12,000 t/d
production line and one 5000 t/d production line was realized by building a multiple linear regression
model of the key process parameters and NBC. The conclusions were as follows.

(1) According to the mechanism of NOX formation, the parameters affecting the background
concentration of NOX were mainly the fuel consumption, calcination temperature, and gas concentration,
and specific parameters will be slightly different with the equipment and operation of different
production lines.

(2) For the 12,000 t/d production line, its NOX background concentration had positive correlations
with the temperature of the calciner outlet, the pressure of the kiln hood, and the temperature of
the kiln hood; and negative correlations with the quantity of head coal, the temperature of the smoke
chamber, and the current of the kiln motor. The MAE between the predicted and measured values of
the NBC was 6.300 mg/m3, and the maximum deviation was 18.670 mg/m3.

(3) For the 5000 t/d production line, its NOX background concentration had positive correlations
with the temperature of the calciner outlet, the current of the kiln motor and CO at the preheater outlet
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and negative correlations with the temperature of the smoke chamber, the pressure of smoke chamber,
and the speed of the high-temperature fan. MAE between the predicted and measured values of
the NBC was 14.817 mg/m3, and the error between the maximum deviation value and the NBC was
less than 5%.
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