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Abstract: The development and application of emerging technologies of Industry 4.0 enable the
realization of digital twins (DT), which facilitates the transformation of the manufacturing sector to a
more agile and intelligent one. DTs are virtual constructs of physical systems that mirror the behavior
and dynamics of such physical systems. A fully developed DT consists of physical components, virtual
components, and information communications between the two. Integrated DTs are being applied in
various processes and product industries. Although the pharmaceutical industry has evolved recently
to adopt Quality-by-Design (QbD) initiatives and is undergoing a paradigm shift of digitalization
to embrace Industry 4.0, there has not been a full DT application in pharmaceutical manufacturing.
Therefore, there is a critical need to examine the progress of the pharmaceutical industry towards
implementing DT solutions. The aim of this narrative literature review is to give an overview of
the current status of DT development and its application in pharmaceutical and biopharmaceutical
manufacturing. State-of-the-art Process Analytical Technology (PAT) developments, process modeling
approaches, and data integration studies are reviewed. Challenges and opportunities for future
research in this field are also discussed.

Keywords: digital twin; Industry 4.0; pharmaceutical manufacturing; biopharmaceutical
manufacturing; process modeling

1. Introduction

Competitive markets today demand the use of new digital technologies to promote innovation,
improve productivity, and increase profitability [1]. The growing interests in digital technologies and
the promotion of them in various aspects of economic activities [2] have led to a wave of applications
of the technologies in manufacturing sectors. Over the years, the advancements of digital technologies
have initiated different levels of changes in manufacturing sectors, including but not limited to the
replacement of paper processing with computers, the nurturing and promotion of Internet and digital
communication [1], the use of programmable logical controller (PLC) and information technology
(IT) for automated production [3], as well as the current movement towards a fully digitalized
manufacturing cycle [4]. The digitalization waves have enabled a broad range of applications from
upstream supply chain management, shop floor control and management, to post-manufacturing
product tracing and tracking.
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Among the new digital advancements, the development of artificial intelligence (AI) [5], Internet
of Things (IoT) devices [3,5] and digital twins (DTs) have received attention from governments,
agencies, academic institutions, and industries [6]. The idea of Industry 4.0 has been put forward by
the community of practice to achieve a higher level of automation for increased operational efficiency
and productivity. Smart technologies under the umbrella of Industry 4.0, such as the development of
the IoT, big data analytics (BDA), cyber-physical systems (CPS), and cloud computing (CC) are playing
critical roles in stimulating the transformation of current manufacturing to smart manufacturing [7–10].
With the development of these Industry 4.0 technologies to assist data flow, a number of manufacturing
activities such as remote sensing [11,12], real-time data acquisition and monitoring [13–15], process
visualization (data, augmented reality, and virtual reality) [16,17], and control of all devices across
a manufacturing network [18,19] is becoming more feasible. The implementation of Industry 4.0
standards by institutions and companies encourages them to implement a more robust, integrated data
framework to connect the physical components to the virtual environment [1], enabling a more accurate
representation of the physical parts in digitized space, leading to the realization and application of DTs.

The concept of creating a “twin” of a process or a product can be traced back to the late 1960s
when NASA ensembled two identical space vehicles for its Apollo project [20–22]. One of the two was
used as a “twin” to mirror all the parts and conditions of the one that was sent to the space. In this
case, the “twin” was used to simulate the real-time behavior of the counterpart.

The first definition of a “digital twin” appeared in 2002 by Michael Grieves in the context
of an industry presentation concerning product lifecycle management (PLM) at the University of
Michigan [23–25]. As described by Grieves, the DT is a digital informational construct of a physical
system, created as an entity on its own and linked with the physical system [24].

Since the first definition of DT, interpretations from different perspectives have been proposed, with
the most popular one given by Glaessegen and Stargel, noting that a DT is an integrated multiphysics,
multiscale, probabilistic simulation of a complex product and uses the best available data, sensors,
and models to mirror the life of its corresponding twin [26]. It is generally accepted that a complete DT
consists of a physical component, a virtual component, and automated data communications between
the physical and virtual components [2]. Ideally, the digital component should include all information
of the system that could be potentially obtained from its physical counterpart. This ideal representation
of the real physical system should be an ultimate goal of a DT, but for practical usage, simplified or
partial DTs are the dominant ones in industry currently, including the employment of a digital model
where the digital representation of a physical system exists without automated data communications
in both ways, and a digital shadow where model exists with one-way data transfer from physical to
virtual component [2].

Together with the US Food and Drug Administration (FDA)’s vision to develop a maximally
efficient, agile, flexible pharmaceutical manufacturing sector that reliably produces high quality
drugs without extensive regulatory oversight [27], the pharmaceutical industry is embracing the
general digitalization trend. Industries, with the help of academic institutions and regulatory agencies,
are starting to adopt Industry 4.0 and DT concepts and apply them to research and development,
supply chain management, as well as manufacturing practice [9,28–31]. The digitalization move that
combines Industry 4.0 with International Council for Harmonisation (ICH) guidelines to develop an
integrated manufacturing control strategy and operating model is referred to as the Pharma 4.0 [32].

However, according to the recent survey conducted by Reinhardt et al. [33], the preparedness of
the industry for this digitalization move is still unsatisfactory. It is noted that most pharmaceutical and
biopharmaceutical processes currently rely on quality control checks, laboratory testing, in-process
control checks, and standard batch records to assure product quality, whereas the process data and
models are of lower impact. Within pharmaceutical companies, there are gaps in knowledge and
familiarization with the new digitalization move, resulting in a roadblock in strategic and shop floor
implementation of such technologies.



Processes 2020, 8, 1088 3 of 33

With the rapid development of DT and its building blocks, state-of-the-art review studies
concerning pharmaceutical and biopharmaceutical manufacturing are limited. This paper aims to
provide a literature review and a discerning summary of the current status of DT development and
its application in the pharmaceutical industry, focusing on small and large molecule drug product
manufacturing for the purpose of identifying current and future research directions in this area.
The remainder of the paper is structured as follows. A description of the general DT framework is
provided in Section 2, followed by a detailed review of DT in pharmaceutical and biopharmaceutical
manufacturing in Sections 3 and 4, respectively. More specifically, we intend to provide readers with
a summary of the critical components of an effective DT and the progress of implementing these
components in pharmaceutical and biopharmaceutical manufacturing. After discussing the current
status, we discuss the challenges associated with the development and application of DT in each
section, with conclusions at the end.

2. Digital Twin Framework

As mentioned in Section 1, a DT has a physical component, a virtual component, and automated
data communication in between, which is realized through an integrated data management system.
This synergy between the physical, virtual space, and the integrated data management platform is
demonstrated in Figure 1. The physical component consists of all manufacturing sources for data,
including different sensors and network equipment (e.g., routers, workstations) [34]. The virtual
component needs to be a comprehensive digital representation of the physical component in all
aspects [8]. The models are built on prior knowledge, historical data, and the data collected in real-time
from the physical components to improve its predictions continuously, thus capturing the fidelity of
the physical space. The data management platform includes databases, data transmission protocols,
operation data, and model data. The platform should also support data visualization tools in addition
to process prediction, dynamic data analysis, and optimization [34]. Sections 2.1–2.3 discuss each
component in more detail.
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2.1. Physical Component

Sourcing data from the physical process and component is one of the most essential elements in
the development of a DT. The critical process parameters (CPPs) for equipment can be obtained either
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manually from the human–machine interface (HMI) generally provided by the equipment manufacturer
or automated using several machine–machine interfaces (MMI). There are several standard MMIs such
as Open Platform Communications (OPC), OPC Data Access (OPC DA), OPC Unified Architecture
(OPC UA), and Modbus [35] for automating the data transfer between equipment software to a control
or historian software. OPC UA is considered to be the current standard as it has added features such
as multiple tags along with their properties [36]. Data can also be transmitted over the network using
message queue telemetry transport (MQTT), Hypertext Transfer Protocol (HTTP), Transmission Control
Protocol/Internet Protocol (TCP/IP), etc. The critical quality attributes (CQAs) for the product are
determined using soft sensors, and they usually employ network protocols for data transmission [37].
Soft sensors are a combination of hardware sensors with their propriety software-enabled models that
help obtain information about the process [38]. Soft sensors have been implemented in several process
industries for process monitoring and control. These sensors have been used to measure cake resistance
in freeze-drying applications [39], measuring temperature from pyrometers [40], estimating product
quality during crude distillation [41], and have also found several other industrial applications [42–45].
Continuous acquisition of large amounts of data requires a systematic framework such as a data
historian to store the historical data. Several studies have employed local data historians [46,47] to
create an information infrastructure enabling the synchronous collection of process and sensor data.
Zidek [48] demonstrated the Industry 4.0 concept for small–medium size enterprises (SMEs) where the
quality of the product was assessed by a DT, and the communication between the OPC server and PLC
system was achieved using OPC-UA. A combination of network and OPC communication protocols
was used by Kabugo [35] to develop the cloud-based analytics platform for a waste-to-energy plant.
Several other studies focusing on smart factories according to Industry 4.0 standard have utilized
similar communication protocols [49–51].

2.2. Virtual Component

The virtual component consists of a collection of models to simulate the physical process and to
analyze the current and future state of the system. With appropriate models, the virtual components
can be used to perform real-time process simulation and system analyses, including but not limited
to sensitivity studies that identify the set of most influential factors [52], design space studies that
yield feasible operating conditions [53], and system optimization [54]. Results from real-time process
simulation can be sent to the data management platform to visualize the process, and the results of
system analyses, together with the preprogrammed expert knowledge, can be used to deliver control
commands to the physical counterpart to ensure process and component conformity.

Different model types exist for use in DT, namely mechanistic models, data-driven models,
and hybrid models. Mechanistic models strongly rely on process knowledge and understanding, as the
development is based on fundamental principles and process mechanisms [55]. The resulting models
are highly generalizable with physically interpretable variables and parameters, with a relatively low
requirement from process data. Often, however, this comes with high development and computation
costs [54,56]. In contrast, data-driven models depend only on process data, and no prior knowledge is
needed [55]. The advantages include more straightforward implementation, relatively low development
and computational expenses, and convenient online usage and maintenance. However, the poor
interpretability, poor generalizability, and the need for large amounts of data present limitations of this
modeling method [55,57,58]. A hybrid modeling strategy is then introduced to balance the advantages
and disadvantages of the other two model types [57,59–61]. With different hybrid structures, the hybrid
modeling method offers improved predictability and flexibility in process modeling [58,61,62].

In addition to the development of models, the computational cost is also a main concern in
the virtual component of DT. Since a fully developed DT aims to represent the physical counterpart
and perform system analyses, it would require extensive computational power. For a large system,
local desktops and consumer-grade Central Processing Units (CPUs) cannot meet the demand.
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Many computationally intensive models can run in parallel using high-performance computing (HPC)
to enhance the computational speed to achieve real-time or near-real-time simulations [63–65].

To develop models, perform simulations, and conduct system analyses for the virtual component
of the DT framework, appropriate modeling platforms are needed. Various commercial modeling
platforms and software packages have been developed and have become available. Among all the
available ones, MATLAB and Simulink (MathWorks) [66], COMSOL Multiphysics (COMSOL) [67],
gPROMS FormulatedProducts (Process Systems Enterprise/Siemens) [68], aspenONE products
(AspenTech) [69], and STAR-CCM+ (Siemens) [70] are commonly seen in process industries.
These platforms offer a large collection of models and/or tools that enable users to create or incorporate
unit operations and flowsheet models based on the actual process. Some of these companies have
also been developing local and cloud platforms (e.g., gPROMS Digital Applications Platform [71]
from Process System Enterprise/Siemens, Siemens Mindsphere [72]) for hosting and computing
models, for integrating physical component, and for providing data management functions, providing
end-to-end DT solutions. Others have focused on improving compatibility with common data
management and Internet of Things (IoT) integration platforms, which are described next in Section 2.3.

2.3. Data Management

In addition to model management and simulation platforms, several commercial IoT Platforms
as a Service (PaaS), such as Predix (General Electric) [73], Mindsphere (Siemens) [72], SEEQ [74],
TrendMiner [75], TIBCO Cloud [76], etc. have been developed. These platforms offer a large collection
of tools that enable users to develop, visualize, analyze, and manage data on cloud servers. Some cloud
service companies, such as Amazon Web Services (AWS) [77], Microsoft Azure [78], Google Cloud [79],
IBM Watson [80], offer multipurpose platforms which are more versatile [81]. These platforms
also offer distributed computing, data analysis tools, interaction protocols, and data and device
management tools. Several of the interface protocols mentioned in Section 2.1 are also applicable to
data transfer in the cloud. These platforms also provide large data storage capacities at affordable prices.
Industrial grade IoT platforms are developed with a higher emphasis on secure device connectivity
and cyber-security [82].

Seamless data integration in most cases is mainly hindered by a large amount of heterogeneity
between manufacturers and services based on the software used and data formats supported [83].
Some cloud services provide their solutions as optional application program interfaces to integrate
with other software, but several are left out due to the large number of software present. Thus, there is
a need for a standard file format that needs to be employed to encourage cross-platform integration.
The World Wide Web Consortium (W3C) has proposed Extensible Markup Language (XML), Resource
Description Framework (RDF), among other markup languages to model information explicitly [84].
XML [85] provides the user with the freedom to define tags and data structures which are both readable
by machines and humans. This syntax is further developed to incorporate the graph structure of the
information within the RDF framework. The W3C also proposed Web Ontology Language (OWL) for
information modeling. OWL is a vocabulary extension of RDF and is currently in use with XML and
RDF. Unfortunately, these files become cumbersome when large databases need to be stored [86]; thus,
new standard language Structured Query Language (SQL) for relational databases was recommended
by the American National Standards Institute (ANSI) [87]. SQL databases are commonly found on
cloud servers; however, their difficulty in horizontal scalability has led to the development of Non-SQL
(NoSQL) databases, which are easily scalable vertically and horizontally [88] and can be hosted on
cloud servers. Cloud servers are not limited to storage, but they offer large and scalable compute
capabilities that can be leveraged for quick data analysis and simulations. A web service can also be
hosted on a cloud server to create an online dashboard to visualize both the real-time physical data
and the data from the simulation/data analysis.
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2.4. Applications of Digital Twin

DT frameworks, as presented in Sections 2.1–2.3, are implemented across various industries [2,4,89]
for simulation, real-time monitoring, control, and optimization to handle “what-if” or risk-prone [89]
scenarios for improving process efficiency, safety analysis, maintenance, and decision-making [24].
This section provides a brief overview of such applications [4] within various industries such as
aerospace, energy, manufacturing, automobile, chemical, healthcare, semiconductor, and city planning,
as shown in Table 1.

Table 1. Applications of digital twin in various industries.

Areas of
Application

Specific
Application Purpose

Component of DT
Framework with

Software
References

Energy production

Steam turbines

Integrates historical data with
real-time process to forecast

process wear/tear and
suggest modifications

Virtual component
using Predix [4,90–92]

Wind farm
Integrates historical data to

enhance process efficiency and
predict maintenance strategies

Virtual component based
on General Electric (GE)

fleet using Predix
[92]

Smart product
manufacturing

Factory smart
floor map

Redesign manufacturing
platforms

Virtual replica of
manufacturing floor to

optimize location of
machinery and sensors

[2,18,93–96]

Digitization of
manufacturing of

packaging
machines

Redesigning product to improve
production efficiency and

digitize overall process design

Virtual model using
Siemens mechatronics

concept designer
[96,97]

Aviation industry

DT of
next-generation

aircrafts

Aircraft structural health
management and assessment of

potential damage analysis

Virtual replica of
airplanes using GE’s

Predix software platform
[98,99]

Airframe DT
simulator (ADT)

Training and
engineering solutions

Virtual simulator using
GE’s Predix software [100]

Aerospace industry DT of outer-space
vehicles

Replication of health
maintenance problems and

monitoring for safety
and reliability

Virtual replica of the
vehicle’s on-board
integrated system

[26,101]

Automotive
transportation

DT of cars

Prediction and assessment of
maintenance issues for

improvement of durability of
automobile parts

Virtual replica of
automobiles [102]

Automated
transport vehicles

Vehicle simulations for safe,
automated long-distance

transportations

Dassault systems using
digital control systems [102]

Healthcare
industry

Virtual replica of
patients

Surgical operation training and
health monitoring using sensors

Virtual component
developed using a

simulated environment
[4]

Living Heart
project

3D model of human heart for
analysis of blood circulation and
pharmacokinetic/pharmacodynamic

(PKPD) testing of medicines

Virtual model using
finite element-based

modeling environment
[4]

Infrastructure
planning City planning Construction of smart,

sustainable city infrastructure

Virtual digital replica
using information

communication
technology

[103]

A commercial application of fully integrated DT was first demonstrated by General Electric
(GE) at the Minds + Machines event in 2017 for the GE90 engine [104], with 300 engines integrated
together to supply historical and real-time process information for predicting process failure, mitigating
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risks, and optimizing maintenance costs. Similar applications in the aviation industry include DT
of airplanes used for training simulations [100] and aircraft health management [98,99,105,106] for
damage assessment and rectification. The aerospace industry focuses on DT applications for the
development of next-generation outer-space vehicles, following a successful demonstration of Apollo 13
by NASA [26,101] rectifying maintenance problems. DT applications in the energy sector include GE’s
wind farm [92] and steam turbines [4,90–92]. These DTs are capable of integrating historical data in
terms of process, fuel costs, electricity, process wear and tear, and weather forecasts to suggest possible
real-time modifications for reducing operating costs. Smart manufacturing is another sector benefitting
from DT applications through digitization of product manufacturing [96,97] and development of
digital shop floor (DTS) [2,18,93–96], incorporating real-time information of manufacturing plant,
state of production machinery, environmental conditions, and its effects on manufactured products.
DT applications in the area of automobile and transportation focus on automation of vehicles [107]
and long-distance transportations [102] along with analysis of maintenance [22] and risk-prone
issues [108]. The healthcare industry includes applications such as virtual replica of patients used
for surgical operation training [4], sensors for health monitoring [109], the study of health of a
country’s population [110], and the “The Living Heart” [111] project developed for the analysis of
blood circulations. Furthermore, city planning is another domain where virtual replica of cities,
known as “smart cities” [103] are used for urban city planning and optimal resource allocation [112].
Such efforts promote the construction of smart, sustainable cities [113] while providing a holistic view
of cross-vertical optimization of overall city infrastructure [114].

From the applications reviewed, it is clear that the concept of DT is rapidly being employed across
various domains, given its advantages. However, it is important to identify the challenges associated
with the development and application of integrated frameworks for the systematic utilization of DTs.

2.5. Challenges

Many research and review articles have discussed challenges in the implementation of DTs, and the
issues can be categorized as time-, safety-, and mission-critical [115–120]. In this section, issues that are
more relevant to the manufacturing sector and modeling community are presented, including data
communication, model development and maintenance, cyber-physical security, and real-time capability.

One of the challenges in achieving a DT framework is to establish a stable two-way connection
between the physical and virtual components to support real-time integration. Heterogeneity in
equipment manufacturers and their software [116] is a major hurdle that needs to be addressed
using a common interface or file format that could make interactions between several software easier.
Several prominent manufacturers are already making strides by supporting commonly used OPC
UA/DA interfaces. The creation of a database system that is not only vertically and horizontally
scalable but also structured would also be important in such a framework. Thus, migrating to a NoSQL
database would be recommended, but in this case, the manufacturing industry lags since several
software currently only save data in SQL databases. Additionally, the resolution of sensor data, latency
within the data communication channel, increased volume and variety of data, and the requirement of
fast storage and retrieval are all challenges within this context.

The development of virtual models is often costly and challenging due to the lack of a complete
understanding of the physical process [93]. This deficiency sometimes leads to inconsistences between
models and the physical system. These inconsistencies need to be appropriately identified and handled,
which can impose challenges to the modeling and operation teams. To resolve the issue, systematic
model development approaches, along with appropriate model maintenance strategies are needed.
Moreover, since the models need to perform simulation and system analyses in real-time, efficient and
accurate algorithms that can utilize available information in real-time and continuously are crucial,
presenting a challenge to both the modelers and allocation of computing resources.

In addition to the modeling aspects, cyber-physical security is another area of concern to ensure
the normal operation of physical and virtual components against malicious attacks [121]. In a fully



Processes 2020, 8, 1088 8 of 33

integrated DT, large data sets with important and potentially confidential information are exchanged,
which require secure communication and processing among all systems [122].

3. Digital Twin in Pharmaceutical Manufacturing

In pharmaceutical manufacturing, the potential of using DTs to facilitate smart manufacturing
can be seen in different phases of process development and production. In the process design stage,
the use of a DT can significantly accelerate the selection process of a manufacturing route and its unit
operations as it is able to represent physical parts with various models. The understanding of process
variations can be obtained from DT simulations, which allows for the prediction of product quality,
productivity, and process attributes, reducing the time and costs for physical experiments [123]. In the
operation phase, real-time process performance can be monitored and visualized at any time, and the
DT can analyze the system in a continuous manner to provide control and optimization insights of
the process [123]. The DT can also be used as a training platform for operators and engineers, as the
real-time scenario simulation and on-the-job feedback can be realized through DT. With regards to
pre- and post-manufacturing tasks, the DT platform can assist with tasks including but not limited to
material tracking, serialization, and quality assurance.

Some key requirements for achieving smart manufacturing with DT include real-time system
monitoring and control using Process Analytical Technology (PAT), continuous data acquisition
from equipment, intermediate and final products, and a continuous global modeling and data
analysis platform [29]. The pharmaceutical industry has taken several steps towards this by using
techniques such as Quality-by-Design (QbD) [124], Continuous Manufacturing (CM) [124], flowsheet
modeling [125], and PAT implementations [126]. Some of the tools have been investigated extensively,
but the overall integration and development of DTs are still under infancy.

This section reviews the progress of current research and industry applications towards DTs in
pharmaceutical manufacturing from aspects of PAT sensing, model building, and data integration,
which corresponds to the physical component, virtual component, and data management parts in the
general DT framework. Challenges and opportunities are discussed at the end of this section.

3.1. PAT Methods

A key component in the development of a DT is data collection. In addition to readings from
equipment, (critical) quality attributes also need to be collected from physical plants in a timely
manner for use in the virtual component. The models and analyses are reliant on good data.
Several traditional technologies exist to determine CQAs such as sieve analysis and High-Performance
Liquid Chromatography (HPLC), but these cannot provide real-time data and are performed away from
the production line rather than in-line or at-line. Thus, PAT tools have been explored and developed to
address these issues [127].

PAT tools in the pharmaceutical industry have a wide range of applications, including measuring
particle size of crystals [128], blend uniformity [129], testing tablet content uniformity [130], etc.
Spectroscopy tools (Nuclear Magnetic Resonance (NMR), Ultraviolet (UV), Raman, near-infrared,
mid-infrared, online mass spectrometry) constitute one of the major techniques used to measure the
CQAs of pharmaceutical processes. Raman and Near-Infrared Spectroscopy (NIRS) are commonly
used in the industry. Raman Spectroscopy has been employed for the on-line monitoring of powder
blending processes [131]. Since acquisition times for Raman can be higher, NIRS is preferred for
real-time measurements. NIRS has been used for real-time monitoring of powder density [15] and
blend uniformity of processes [129]. NIRS has also been integrated with control platforms for process
monitoring and control [132]. Baranwal et al. [133] employed NIRS to replace HPLC methods to predict
API concentration in bi-layer tablets. PAT tools have also been used by the pharmaceutical industry to
determine the particle size distribution of the product [134]. Several available optical tools such as
Focused Beam Reflectance Measurement (FBRM) [135], a high-resolution camera system [136] have
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also been employed in the industry for particle size analysis. Some studies have utilized a network of
PAT tools to achieve a monitoring system to help monitor and control a unit process [127,137].

The US FDA has also taken steps in promoting the use of PAT tools in pharmaceutical
manufacturing with the goal of ensuring final product quality [138]. The pharmaceutical industry
has adopted PAT in various applications throughout the drug-substance manufacturing process [139].
Although this has certainly led to an increase in the usage of PAT tools, their applications still remain
focused on research and development rather than in full-scale manufacturing [126]. In the limited
number of cases where they were employed in manufacturing, they have been successful in reducing
manufacturing costs and improving the monitoring of product quality [140]. The development of
different PAT methods, with their compelling application as an integral part of a monitoring and
control strategy [141], has established a building block in gathering essential data from the physical
component, enabling the further development of process model and DT.

3.2. Process Modeling

DTs highly depend on the use of data and models, and in the pharmaceutical industry, there is a
growing interest in the development and application of methods and tools that facilitate that [142].
Different types of models have been developed for batch and continuous process simulations, material
property identification and prediction, system analyses, and advanced control. Papadakis et al. recently
proposed a framework for selecting efficient reaction pathways for pharmaceutical manufacturing [143],
which includes a series of modeling workflows for reaction pathway identification, reaction and
separation analysis, process simulation, evaluation, optimization, and operation [142]. The overall
framework would yield an optimized reaction process with identified design space and process
analytical technology information. The models developed under this framework can all be used as the
virtual component within a DT framework to provide further process understanding and control of
the manufacturing plant.

As mentioned in Section 2.2, the modeling approaches can be classified as mechanistic modeling,
data-driven modeling, and hybrid modeling. For mechanistic modeling approaches in pharmaceutical
manufacturing, the discrete-element method (DEM), finite-element method (FEM), and computational
fluid dynamics (CFD) are often used [144]. To simulate the particle-level or bulk behavior of the
material flow in different pharmaceutical unit operations, DEM is a powerful tool and has been applied
widely [145–147], though its high computational cost limits its practical use when running locally.
With HPC and cloud computing, it is possible to integrate DEM simulations with the overall process,
resulting in a near-real-time model. For model fluid flow in pharmaceutical processes, including API
drying and fluidized beds, CFD and FEM are popularly implemented [144]. These two methods are
also heavily utilized in biopharmaceutical manufacturing (see Section 4.2).

Data-driven modeling methods involve the collection and usage of a large amount of experimental
data to generate models, and the resulting models are based on the provided datasets only.
Commonly implemented approaches in pharmaceutical manufacturing include the artificial neural
network (ANN) [148,149], multivariate statistical analysis, Monte Carlo [150], etc. These methods are
less computationally intensive, but due to the lack of underlying physical understanding in the trained
models, the prediction outside of the space of the dataset is often unsatisfactory.

There is also a recent trend in developing various types of hybrid modeling techniques to model
complex pharmaceutical manufacturing processes, while lowering the demand of computational cost
and data availability. Population balance modeling (PBM), with a comparatively lower computational
cost, has been extensively used to model blending and granulation processes [64,151], and a
PBM–DEM hybrid model has also been used to improve model accuracy while maintaining reasonable
computational costs [152]. Other semi-empirical hybrid models, such as the ones that incorporate
material properties into process models [153], and to investigate the effect of material properties in
residence time distribution (RTD) and process parameters [146,154–157], have also been developed for
different powder processing unit operations [52,158]. These models, when incorporated with a full DT



Processes 2020, 8, 1088 10 of 33

framework, will facilitate the overall product and process design and development, accelerating the
drug-to-market timeline.

Table 2 provides a feature-based comparison of various models used in pharmaceutical manufacturing
applications. The characterization of computational complexity is based on the typical computational
cost for a single unit operation. The feature of real-time capability emphasizes the ability for a model to
produce simulation or prediction results in real-time and optimally, in-sync with the equipment. This
feature highly depends on computational complexity. Even though mathematical and semi-empirical
modeling approaches have this capability, they are mostly trained and implemented offline. Real-time
applications are rarely seen in the context of pharmaceutical manufacturing. For adaptive modeling
capability, the modeling approaches that are able to incorporate data are advantageous as new data can be
used to update the models. The online usage of these models in adaptive mode can hardly be found.

Table 2. Feature-based comparison of various models.

Features

Discrete-Element
Method (DEM)/
Computational
Fluid Dynamics

(CFD)/
Finite-Element
Method (FEM)

Population
Balance

Modeling
(PBM)

Mechanistic/
Mathematical

Semi-Empirical/
Hybrid Data-Driven

Advanced
Process
Control

Computational
complexity High Medium Medium Low Low Low

Real-time
capability No No Yes Yes Yes Yes

Adaptive
modeling No No No Yes Yes Yes

In addition to developing models for single pharmaceutical unit operations, a flowsheet model
integrating the entire manufacturing process can be used to predict the process dynamics affected by
material properties and operating conditions of different unit operations. More importantly, systematic
process analysis of the flowsheet model, such as sensitivity analysis, design space identification,
and optimization, can all be performed with the flowsheet model. This provides insight into
the characteristics and bottlenecks of the process and thus facilitates the development of control
strategies [125]. Throughout the years of development, many researchers and pharmaceutical
companies have developed mature approaches in conducting these analyses offline during the process
design phase [52,56,125,159,160]. Flowsheet models are needed for the development of DTs. However,
flowsheet models are stand-alone, so they cannot automatically update adapting to the physical plant.
In current research, there is limited communication between the flowsheet model and the plant, which
is a challenge in the development of a DT.

3.3. Data Integration

The implementation of IoT devices in pharmaceutical manufacturing lines leads to the acquisition
of vast amounts of data. This collection of process data and CQAs needs to be transmitted to the
virtual component in real-time and in an efficient manner. In addition to these, several pharmaceutical
process models also require material properties for accurate prediction. Thus, a central database
location is required for access to all datasets for the virtual component [46]. All data transfer protocols
discussed in Section 2.3 are applicable here as well. In addition to these, the applications and databases
should also be compliant with 21 CFR Part 11 data integrity requirements in accordance with US FDA’s
guidance [161]. The database not only serves as a warehouse for real product data but can also be
used to store results from simulations performed in the virtual component and optimized process
parameters. It would also serve the purpose of relaying back these optimized process parameters to
the real product.
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Several studies have attempted to achieve an integrated data framework in downstream
pharmaceutical manufacturing [46,84,132,162–165]. Some of these studies were focused on implementing
a control system for the direct compression line [132,157,165]. Cao et al. [46] presented an ISA-88 compliant
manufacturing execution system (MES) where the batch data were stored on a cloud database as well
as on a local data historian. The communications between the equipment and the control platform
were performed in a similar manner for all the studies. The process control system (PCS) created a
database based on the input recipe, and the database was replicated directly into the local data historian.
The communication between the historian and PCS can be achieved using TCP/IP and OPC since each
software is hosted on different computer systems on the same network. The historian database can in
turn be duplicated onto the cloud using network protocols such as MQTT, HTTPS, etc. Some authors
have also presented ontologies for efficient data flow for laboratory experiments performed during
pharmaceutical manufacturing [166–168]. Cao et al. [46] also addressed the collection of laboratory data
in an ISA-88 applicable recipe-based electronic laboratory notebook—many of the presented studies
focused primarily on integrating one component of a completely integrated data management system.
Figure 2 illustrates a sample data integration framework, where data collected from the manufacturing
plant as well as laboratory experiments are uploaded to a cloud database using the mentioned protocols.
The data can then be used in the virtual component for simulations, and corrective actions can be sent
back to the control platform.
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3.4. Challenges and Opportunities

Integrating all building blocks mentioned in Sections 3.1–3.3, the authors are visioning a fully
integrated, model-centric DT framework for pharmaceutical manufacturing, as shown in Figure 3.
The physical plant continuously sends process data to the virtual end, establishing a data inflow
to achieve continuous process monitoring and data storage. Once the real-time data are received,
process visualization and evaluation can be performed in real-time using visualization tools and
process models. Automatic control based on evaluation results can then be executed to modify process
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operations if it is needed. The overall data and information flow become a continuous, real-time,
integrated loop. Models can be updated based on plant measurements and changes by implementing
hybrid or adaptive modeling techniques, and real-time model evaluation results that support the
identification of critical process parameter boundaries, process optimizations, and material/process
characterization can guide the operational updates of the plant. Our review has showcased that the
pharmaceutical industry is on the move towards adopting a full DT. Currently, continuous monitoring
of processes, storage of operation data, process visualization, and model-predictive control have been
implemented in pharmaceutical applications. Building blocks are in place for all three components,
but there still exist some key challenges and gaps.
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In terms of process monitoring and the use of PAT, though the use of spectroscopy to estimate
product compositions has become a routine, the accuracy of measurements in low-dose drug products,
the consideration and handling of outside interferences, and the maintenance of calibration models
(i.e., the robustness of calibration) are all common problems. For low-dose drug measurements, though
there are new tools such as NIRS and in-line UV spectroscopy, the accuracy can be improved by
increasing sampling frequency and spectra analysis. The outside interference issue may be resolved
by implementing various iterative optimization technologies, as recent studies have demonstrated
the capability of such an approach [169,170]. With regard to the calibration model maintenance,
different offline, adaptive methodologies have been well presented by Kadlec et al. [171], but the online,
continuous update with streaming data may be an option moving forward.

At the virtual end, recent research and technology development have shaped the general framework
and applications. Libraries of models and system analysis tools exist to develop a fully connected
virtual model. However, as mentioned in Section 3.2, the computational cost for many complex and
integrated models is high, requiring the use of cloud and/or high-performance computing. The high
computational requirement also hinders the use of models in real-time, which is a key component of the
DT framework [4]. To resolve this issue, efficient computational algorithms and reduced order modeling
approaches need to be implemented, as well as the efficient distribution of computational resources.
Another relevant issue is that most models developed for the pharmaceutical industry are static,
meaning that they only reflect the system at the time that the models are developed. The models do
not update themselves as new data become available. Model maintenance is, therefore, required [172],
and the goal is that this can be performed automatically by the virtual component [171,173,174].
These model maintenance problems can also be viewed as issues caused by a number of drifts (i.e.,
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concept drift, model drift, data drift, sensor drift). Methodologies in handling drifts have been
extensively studied in many electrical and computer engineering papers [175–178], but case studies in
pharmaceutical manufacturing have not yet been reported.

One of the most prominent issues includes the information communication between the two
components. Table 3 illustrates a comparison between previous data integration frameworks that have
been developed for pharmaceutical manufacturing. The limitations of each of these studies highlight
the inability of current software tools and solutions to build a complete DT. Though the integration
capability has been improving, it is noted that most of the current applications in the pharmaceutical
industry only transfer data from the physical plant to the virtual component. The reverse is rarely seen.
To have a fully integrated and automated DT, the information flow from the virtual component to the
physical plant also needs to be established. The virtual plant should be able to change system settings
and control the physical plant to help achieve an optimized process within the design space.

Table 3. A comparison of data integration studies presented for pharmaceutical manufacturing.

Reference Integration Achieved Tools Used Limitation

Hailemariam et al. 2010
[166,167]

Presented a data collection
ontology to for laboratory data

Extensive Markup
Language (XML),

Resource Description
Framework (RDF),

A limited number of
software and processes

were connected to
the ontology

Singh et al. 2014
[132,165]

Physical plant level up to
control platform to implement

model predictive control
(MPC) using sensor data

MATLAB, Process Pulse,
DeltaV, SynTQ

Data integration was
only achieved till the

control platform

Cao et al. 2018 [46]

Presented a cloud-based data
collection strategy for
collecting data from a

continuous pharmaceutical
manufacturing pilot plant as
well as collecting data from

analytical equipment

XML, AWS,
DeltaV, OSI-PI

A complete integration
was presented for data
collection, but it lacked
its integration with any

software for live
data prediction

Barenji et al. 2019 [29]

Presented a cyber-physical
framework for Process

Analytical Technology (PAT)
tools for pharmaceutical

manufacturing

N/A

Data integration was
only performed for PAT

tools without any
integration of analytics

In addition, integrating data inside the physical manufacturing plant faces issues with homogeneity
of the data format used by manufacturers [116]. A full manufacturing cycle requires the collection
of online and offline data from different departments and software. Though an increasing number
of companies are adopting standard data formats and transfer protocols, the coordination among
all different data, software, and platforms is still a challenge. Currently, this coordination is more
of a business and engineering decision within the companies using these systems. Poor integration
and coordination often lead to the burden of using and maintaining multiple platforms and software.
Because of this, many companies now prefer to purchase equipment and systems from a sole vendor,
which is both a challenge and an opportunity for equipment and system providers.

The use of cloud databases and cloud-based data management systems, data availability, stability
of service, storage volume, and information security are all critical issues to be addressed [118]. As data
are stored on the cloud, these data should be available when needed, which demands a high stability
service and a rigorous business continuation plan. Many cloud platforms are using distributed
technologies and cloud backups to resolve this issue, but the validity and reliability of the solutions
need to be carefully studied before implementing them [179]. Moreover, with the implementation
of IoT devices and various types of sensors, the volume of data collected from the manufacturing
cycle can be extremely large. Even though many cloud platforms claim that they can coordinate the



Processes 2020, 8, 1088 14 of 33

demanded storage capacity, it would result in an increasing burden to the company if the storage
cost is high. With regard to information security, the issue is not new to the field of cloud storage,
but it is particularly relevant to the pharmaceutical industry since the majority of the information is
highly confidential, and cases have shown that a vulnerable cyber system in pharmaceutical companies
can cost millions or even billions of dollars. This challenge gives rise to opportunities in research
and employment of cyber-physical security systems to ensure the safety and confidentiality of the
information being transferred. This field has been a hot topic, especially in electrical and computer
engineering disciplines. Methodologies used in securing smart grids, statistical-based authentication
systems, physical and virtual cyber barriers, etc. can be implemented in pharmaceutical manufacturing
to develop a secure DT.

Finally, regulatory perspective is an important consideration in developing and applying DT in
pharmaceutical manufacturing. The US FDA has developed modeling capability and has granted
funding to academic institutions to explore the appropriate application of process models and DTs
in the field. Various guidelines, reports, and presentations have all demonstrated that the regulatory
experience and exposure to the DT concept is currently evolving [27,180]. Though DT development is
not required for regulatory approval, its components can definitely offer pharmaceutical companies
and regulatory bodies more insight into the process and product.

4. Digital Twin in Biopharmaceutical Manufacturing

Biopharmaceutical manufacturing focuses on the production of large molecule-based products
in heterogeneous mixtures, which can be used to treat cancer, inflammatory, and microbiological
diseases [181,182]. To fulfill the FDA regulations and obtain safe products, biopharmaceutical operations
should be strictly controlled and operate under a sterilized process environment.

In recent years, there is an increasing demand for biologic-based drugs that drives the need for
manufacturing efficiency and effectiveness [183]. Thus, many companies are transitioning from batch
to continuous operation mode and employing smart manufacturing systems [182]. DT integrates the
physical plant, data collection, data analysis, and system control [4], which can assist biopharmaceutical
manufacturing in product development, process prediction, decision making, and risk analysis,
as shown in Figure 4. Monoclonal Antibody production is selected as an example to represent the
physical plant, which includes cell inoculation, seed cultivation, production bioreactor, recovery,
primary capture, virus inactivation, polishing, and final formulation. These operations produce and
purify protein products. Quality (majorly protein structure and composition) and impurities need to
be monitored and transported to a virtual plant for analysis and virtual plant updates. Virtual plant
includes plant simulation, analysis, and optimization, which guide the physical plant diagnosis and
update with the help of the process control system. Integrated mAb production flowsheet modeling,
bioreactor analysis and design space and biomass optimization are selected as examples shown in the
three sections in the figure. However, the capabilities of virtual plant are not limited to the examples
list above. To understand the progress of DT development in biopharmaceutical manufacturing, this
section reviews the process monitoring, modeling and data integration (virtual plant, physical plant
communication) in the existed industry and analyzed possibilities and gaps to achieve integrated
biopharma-DT manufacturing.
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4.1. PAT Methods

Biological products are highly sensitive to cell-line and operating conditions, while the fractions
and structures of the product molecules are closely related to drug efficacy [184]. Thus, having a
real-time process diagnostic and control system is essential to maintain consistent product quality.
However, process contamination needs to be strictly controlled in the biopharmaceutical manufacturing;
thus, the monitoring system should not be affected by fouling nor interfere with media to maintain
monitoring accuracy, sensitivity, stability, and reproducibility [185]. In general, among different unit
operations, process parameters and quality attributes need to be captured.

Biechele et al. [185] presented a review of sensing applied in bioprocess monitoring. In general,
process monitoring includes physical, chemical, and biological variables. In the gas phase, the commonly
used sensing system consists of semiconducting, electrochemical, and paramagnetic sensors, which
can be applied to oxygen and carbon dioxide measurements [185,186]. In the liquid phase, dissolved
oxygen, carbon dioxide, and pH values have been monitored by an in-line electrochemical sensor.
However, media composition, protein production, and qualities such as glycan fractions are mostly
measured by online or at-line HPLC or GC/MS [186,187]. The specific product quality monitoring
methods are reviewed by Guerra et al. [188] and Pais et al. [189].

Recently, spectroscopy methods have been developed for accurate and real-time monitoring
for both upstream and downstream operations. The industrial spectroscopy applications mainly
focus on cell growth monitoring and culture fluid components quantifications [190]. UV/Vis and
multiwavelength UV spectroscopy have been used for in-line real-time protein quantification [190].
NIR has been used for off-line raw material and final product testing [190]. Raman spectroscopy has
been used for viable cell density, metabolites, and antibody concentration measurements [191,192].
In addition, spectroscopy methods can also be used for process CQA monitoring, such as host cell
protein and protein post-translational modifications [187,193]. Research shows that in-line Raman
spectroscopy and Mid-IR have capabilities to monitor protein concentration, aggregation, host cell
proteins (HCPs), and charge variants [194,195]. The spectroscopy methods are usually supported with
chemometrics, which require data pretreatments such as background correction, spectral smoothing,
and multivariant analysis for quantitative and qualitative analysis of the attributes. Many different
applications of spectroscopic sensing are reviewed in the literature [187,188,190,193].
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4.2. Process Modeling

The application of DT in biopharmaceutical manufacturing requires a complete virtual description
of physical plant within a simulation platform [4]. This means that the simulation should capture the
important process dynamics in each unit operation within an integrated model. Previous reviews have
focused on the process modeling methods for both upstream and downstream operations [183,196–200].

For upstream bioreactor, extracellular fluid dynamics [201–203], system heterogeneities,
and intracellular biochemical pathways [204–215] can be captured. Process modeling supports early-stage
cell-line development, obtains optimal media formulations, and enables prediction of the overall bioreactor
performance, including cell activities, metabolites’ concentrations, productivity, and product quality under
different process parameters [216,217]. The influence from various parameters such as temperature, pH,
dissolved oxygen, feeding strategies, and amino acid concentrations can be captured and further used to
optimize process operations [218–222].

For downstream operation, modeling strategies have focused on selecting design parameters,
adjusting operating conditions, and buffer usage to achieve high protein productivity and purities
efficiently. The different operating conditions include (1) flowrate, buffer pH, or salt concentration
effects for chromatography operation [223–226]; (2) residence time, buffer concentration, and pH used
for virus inactivation; (3) feed protein concentration, flux, retentate pressure operated for filtration [227].
Thus, the product concentration and various types of impurities can be predicted for each unit operation.
The detailed modeling methods have been reviewed in the literature [228].

In recent years, biopharmaceutical companies are shifting from batch to continuous operations.
It remains an unanswered question if it is feasible to start up a new, fully continuous process plant
or replace specific unit operations with continuous units. Integrated process modeling provides a
virtual platform to test various operating strategies such as batch, continuous, and hybrid operating
modes [229]. These different operating modes can be compared based on life cycle analysis and
economic analysis for different target products under various operation scales [229–233].

For flowsheet modeling, there are two approaches available in the literature, which include
mechanistic and data-driven models. Due to the high computational cost, mechanistic modeling
mostly focuses on the integration of a limited number of units, such as the combination of multiple
chromatography operations [234]. Data-driven/empirical models are generally used to integrate all
the unit operations in a computationally efficient way. Mechanistic models for a single unit can be
integrated with other units that are built by the data-driven model to optimize a specific unit in the
integrated process [235]. Mass flow and RTD models [236] can be included in the model to examine
different scenarios of adding and replacing new unit operations and adjusting process parameters.
Coupling with the control system, flowsheet modeling will be able to achieve real-time decision making
and optimize the overall process operation automatically [237].

The data-driven models can be further integrated with Monte Carlo analysis or linear/nonlinear
programming for risk assessment and process scheduling. Zahel et al. [238] applied Monte Carlo
simulation in the end-to-end data-driven model, which can be used to estimated process capabilities
and provide risk-based decision making following a change in the manufacturing operations.

Table 4 shows examples of capabilities and methods for process modeling, that can be potentially
used in DT virtual plant model building. However, it needs to note that although process modeling
has capabilities to capture all the above operating conditions and critical quality attributes, none of the
modeling work incorporates all the process information within a single model. In recent years, hybrid
models (for example, ANN + mechanistic model) have become more prevalent in both upstream and
downstream model building because they improve the computational speed as well as the broad
applications and model robustness.
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Table 4. Capabilities and methods for process modeling in biopharmaceutical manufacturing. Note that
many studies have used these methods, and the studies cannot be listed one by one. The papers
selected in the table are used to represent the capabilities of the specific methods.

Categories Methods Platforms Comments

Upstream Process

Bioreactor fluid
dynamics, system

heterogeneity

CFD simulation [201]
CFD + PBM simulation [239]
CFD + kinetics model [202]

Ansys Fluent, COMSOL
Multiphysics

Support to understand operations
such as agitation, aeration,

nutrients feeding.
Guide process scale-up.

Computationally expensive.
Can reduce the computational
time by using a compartment
model, hard to be validated.

Cell growth, nutrients,
and metabolism.

Product quality (protein
glycosylation)

Kinetic model [204,240,241]
MATLAB, gPROMS,

Visual Basic for
Applications

Capture and predict the dynamic
profile of the cell culture.
Correlate critical process

parameters (CPPs) and critical
quality attributes (CQAs).

Require a large amount of data for
parameter estimations.

Stoichiometric methods [242] MATLAB, OptFlux etc.

Deal with a large amount of
mechanistic reaction,

genome-scale simulation. Need to
integrate with the kinetic model to

capture the dynamic profiles

Multivariate tools [243] MATLAB

Require a large amount of data.
Represent input–output

correlations. Do not capture the
mechanistic correlations.

Media formulation Multivariate analysis
MFA [211,222] MATLAB

Identify nutrient correlations,
improve productivity and

cell viability

Product impurities Regression model and
Multivariate analysis [244] MATLAB

Capture predict titer, aggregation,
low molecular weight

components, and glycan groups

Downstream Process

Bind-elute/flow-through
chromatography

Mechanistic: Plate model,
mass balance model, general

rate model with their
simplifications models

[245,246]

MATLAB, CADET,
ChromX

Capture moving and stationary
phases, obtain breakthrough

curves, gradient elution curves.
Predict the product concentration

and impurities (charge variant,
aggregates, host cell proteins)Transport dispersive

model—ANN model [225] MATLAB

Filtration/ultrafiltration

Mechanistic: Film theory,
Osmotic Pressure Model,

boundary layer, mass
transfer coefficient) [227]

Aspen Custom Modeler Capture volumetric flow, flux,
and pressure across the filtration

membrane. Can be used for
model predictive control.Hybrid model

(ANN-mechanistic film
theory) [247]

MATLAB

Downstream integration
(precipitation)

Empirical model
(quantitative

structure-activity
relationship) + Mechanistic

model [248]

NA

Physico-chemical process model
supported by design of

experiment (DoE). Capture CPP
and CQA

Downstream integration
and optimization

Mechanistic
model—Artificial Neural
Network-Optimization

algorithm [249]

MATLAB

Optimize overall process yield
and solvent use by adjusting
operation parameters such as
duration. However, only high

molecular weight contamination
was considered.
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Table 4. Cont.

Categories Methods Platforms Comments

Integrated Process

Residence time
distribution

Probability distribution
function for each unit

operation [236]
Python

Correlate input material operating
conditions, design parameters

with outlet profile.
Easy to update.

Activity tracking and
decision making

Discrete Event
Simulation [250] Extend Sim, Simul8

Discrete/dynamic system,
track activity, scheduling,
and resource utilization

Material tracking and
decision making

Mechanistic/Empirical
model [229,251]

SuperPro Designer,
Biosolve

Track material balance and
optimize cost-effectiveness.

Process debottlenecking,
capacity planning

Process risk assessment
Implement process model

with Monte Carlo
analysis [238]

MATLAB

Evaluate parameter sensitivity,
impurity purification, and product

quality. Hard to apply to
computationally expensive model

Overall process
optimization

Integrate flowsheet model
with optimization

solvers [252]

SuperPro
Designer-VB-Matlab

Optimize environment impact and
cost-effectiveness by adjusting

4 operating parameters

4.3. Data Integration

Data obtained in the biopharmaceutical monitoring system are usually heterogeneous in data
types and time scales. They can be collected from different sensors, production lines (laboratory or
manufacturing), and at different time intervals. With the development of real-time PAT sensors, a large
amount of data is obtained during biopharmaceutical manufacturing. Thus, data preprocessing
is essential to handle missing data, perform data visualization, and reduce dimension [253].
Casola et al. [254] presented data mining-based algorithms to stem, classify, filter, and cluster
historical real-time data in batch biopharmaceutical manufacturing. Lee et al. [255] applied data
fusion to combine multiple spectroscopic techniques and predict the composition of raw materials.
These preprocessing algorithms remove noise from the dataset and allow the data to be used in a
virtual component directly.

In DTs, virtual components and physical components should communicate frequently. Thus,
the virtual platforms need to have the flexibility to adjust their model-structure for different products and
operating conditions. Herold and King [256] presented an algorithm that used biological phenomena
to identify fed-batch bioreactor process model structure automatically. Luna and Martinez [257] used
experimental data to train the imperfect mathematical model and corrected model prediction errors.
Although there are no such applications for the integrated process, these works show the possibilities
to achieve physical and virtual component communication.

In biopharmaceutical manufacturing, the integrated database can guide process-wide automatic
monitoring and control [258]. Fahey et al. applied six sigma and CRISP-DM methods and integrated
data collection, data mining, and model predictions for upstream bioreactor operations. Although the
process optimization and control have not been considered in this work, it still shows the capabilities
to handle large amounts of data for predictive process modeling [259]. Feidl et al. [258] used a
supervisory control and data acquisition (SCADA) system to collect and store data from different unit
operations at each sample time and developed a monitoring and control system in MATLAB. The work
shows the integration of supervisory control with a data acquisition system in a fully end-to-end
biopharmaceutical plant. However, process modeling has not been considered during the process
operations, which cannot support process prediction and analysis.
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4.4. Challenges and Opportunities

In terms of process monitoring in the physical plant, the application of real-time CQA monitoring
methods has not been adapted to industrial applications. The use of NIR or Raman spectroscopy
shows potential in real-time multicomponent measurements, although most applications have not yet
been applied to industrial practice. To obtain accurate predicting/measurement results, raw material
calibration and chemometric methods need to be applied, which increases the complexity of the
application of spectroscopy. In addition, the data obtained from biopharmaceutical manufacturing are
high dimensional and heterogeneous, which require advanced data integration and synchronization.
An automated data aggregation, mining, storage, and visualization system is required to achieve DT
automation. The data storage system should have large enough capability, easy accessibility, and high
security as described in Section 3.4 to ensure manufacturing data security, patient data privacy, and the
communication between the physical and virtual plant successfully.

To build a simulation of the physical plant, although different modeling methods have been
developed for both upstream and downstream unit operations, there is no robust model that captures
CPPs and CQAs for all the unit operations in the integrated process. As listed in Table 4, upstream CFD,
stoichiometric and kinetic models can achieve the bioreactor modeling on different scales (from genome
scale to manufacturing scales); however, not all these methods can be implemented within a DT
framework because of the high computational cost. Similarly, downstream processes composed of
different unit operations that integrate and optimize all the mechanistic models altogether are not
realistic. Thus, these can explain the reason why the current integrated process models focus on
mass balance and activity plans based on empirical models or simulators. To deal with this problem,
one possible way is to apply pre-analysis to the system to reduce the dimension and parameters by
evaluating the CPPs and CQAs to ensure productivity and efficacy. Based on the analysis, the system
will select models and use the limited number of parameters to analyze or optimize the process. In this
case, all different modeling methods need to be built on the same platform or have good model–model
communications. An alternative way is to apply hybrid models to reduce the computational burden in
the integrated process. In addition, to capture the major unit operations, the auxiliary equipment such
as buffer preparation, Cleaning-In-Place (CIP), and Sterilization-In-Place (SIP) also need to be integrated
into the process modeling. These operations do affect decision-making, including manufacturing
scheduling and cost analysis. However, there is no such model that captures all the auxiliary equipment.
Moreover, in the risk analysis in biopharmaceutical manufacturing, process contamination will directly
cause batch failure. Lot to lot variations also exist in the bioreactor culture and purification process.
Developing a model-based control system that can diagnose the contamination and process variabilities
at an early stage is essential to improve the process efficiency. It is known that pharmaceutical
or biopharmaceutical industries follow more stringent regulatory pathways; thus, the progress of
accepting new technologies usually takes a longer time than other industries. It must be noticed that
current technologies such as AI DTs do not conform to the QbD regulatory guidelines. The good news
is that regulatory agencies are also seeking the adoption of innovative technologies. If DT can be
developed for process operations and control at the same time, this method might be promising to be
accepted by regulatory [260]. However, the DT approach is closely related to real-time optimization
and operation supports, which are based on already built manufacturing platforms. In this situation,
it might be hard to obtain regulatory approval [235].

The integration of virtual plant and physical plant in biopharmaceutical manufacturing is still
in its infancy. It is promising to show that the application of data–model–control integration can be
achieved for a single unit operation. Additionally, a data acquisition–control system can be achieved
for an integrated process. However, to accomplish the biopharmaceutical DT, the development of
real-time data acquisition, a dedicated data transferring system, an effective control and execution
technique, robust simulation methods, anomaly detection, prediction tools, and easy access to secure
the cloud server platform are still needed.
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5. Conclusions

DTs are a crucial development of the close integration of manufacturing information and physical
resources that raise much attention across industries. The critical parts of a fully developed DT include
the physical and virtual components, and the interlinked data communication channels. Following the
development of IoT technologies, there are many applications of DT in various industries, but the
progress is lagging for pharmaceutical and biopharmaceutical manufacturing. This review paper
summarizes the current state of DT in the two application scenarios, providing insights to stakeholders
and highlighting possible challenges and solutions of implementing a fully integrated DT.

In pharmaceutical manufacturing, building blocks of a DT, including PAT methods, data
management systems, unit operations, and flowsheet models, system analyses methods, and integration
approaches have all been developed in the last few years, but gaps in PAT accuracy, real-time model
computation, model maintenance capabilities, real-time data communication, as well as concerns in
data security and confidentiality, are preventing the full integration of all the components. To solve these
challenges, several insights are provided. The development of new tools such as NIRS and in-line UV
spectroscopy, iterative optimization technologies, and different offline adaptive methodologies can help
to resolve the existing issues in PAT methods. In order to reduce simulation time to achieve real-time
computation, efficient algorithms, and reduced order modeling approaches should be further studied
for process models. In terms of model maintenance, adaptive modeling methods with online streaming
data are to be investigated further. To have a fully integrated and automated DT, the information
flow from the virtual component to the physical plant also needs to be established. The virtual plant
should be able to change system settings and control the physical plant to help to achieve an optimized
process within the design space. Ideally, all these components should be placed under appropriate
physical and virtual security protocols.

In biopharmaceutical manufacturing, similar constituting components of DTs have been discussed,
as well as the implementation challenges in each block. In terms of process monitoring, the development
of NIR or Raman spectroscopy, material calibration, and chemometric methods can help to obtain an
accurate predicting/measurement result. Advanced data integration and synchronization technology
should be in place. For process simulation, there is no robust model that captures CPPs and CQAs for all
the unit operations in the integrated process due to the computational complexity. Pre-analysis to screen
the CPPs and CQAs is a promising approach to reduce the computational burden. Process models to
capture the auxiliary equipment and process contamination need to be further investigated. To achieve
a fully integrated DT, real-time data acquisition methods, data transferring systems, effective control
and execution techniques, robust simulation methods, and anomaly detection are still in need, with
other supporting functions.

It is noted that given the rapid development and publication rate in this area, and that this paper is
merely a narrative literature review, the authors are not able to list and review all studies in these areas
in detail. The papers selected and problems described in the manuscript are only a nonholistic subset
used to represent the capabilities and drawbacks of a method or technology. Since the manuscript
is organized using a conceptual and topical frame, the authors recommend interested readers to
go through cited references to explore additional details. In addition to the summarized research
opportunities, further research directions can include the development of a demonstrative case study
of DT in pharmaceutical and biopharmaceutical manufacturing and a systematic review of the field.
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