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Abstract: A two-patch epidemic model is considered in order to assess the impact of virtual dispersal
on disease transmission dynamics. The two-patch system models the movement of individuals
between the two-patches using a residence-time matrix P, where P depends on both residence times
and state variables (infected classes). In this work, we employ this approach to a general two-patch
SIR model in order to investigate the effect of state dependent dispersal behaviors on the disease
dynamics. Furthermore, optimal control theory is employed to identify and evaluate patch-specific
control measures aimed at reducing disease prevalence at a minimal cost. Optimal policies are
computed under various dispersal scenarios (depending on the different residence-time matrix
configurations). Our results suggest there is a reduction of the outbreak and the proportion of time
spent by individuals in a patch exhibits less fluctuations in the presence of patch-specific optimal
controls. Furthermore, the optimal strategies for each patch differ depending on the type of dispersal
behavior and the different infection rate in a patch. In all of our results, we obtain that the optimal
strategies reduce the number of infections per patch.

Keywords: two-patch model with virtual dispersal; the basic reproduction number; final epidemic
size; optimal control interventions

1. Introduction

Modeling the transmission of diseases has been studied over the past decades in a variety of
forms, see [1–14]. The mathematical formulation of these cases is determined by a combination
of the real-world situation at hand and mathematical tools deemed suitable. Some previous work,
such as [15–17], serve as a guide in this paper. The mathematical modeling of the spread of diseases
is important as the movement of people and other living organisms increases due to globalization.
Real-world examples of public health concerns included the potential threat of the spread of the Zika
virus following the Rio 2016 Olympics in Brazil, when thousands of humans worldwide traveled to
Brazil and then returned to their home countries [18]. A commonly posed question was: whether
the visitors became infected with Zika during their time in Brazil, would their return home spread
Zika outside of Brazil? A worldwide Zika spread did not happen, of course. On the other hand,
in January 2020, the coronavirus, COVID-19, with origins in Wuhan, China did spread to 214 countries.
COVID-19 has resulted in 1,689,724,318 confirmed cases and 663,470 fatalities as of 30 July 2020 and
its impact ranged from countries’ public health systems to their economies. However, this scenario
raises a general question about the potential worldwide spread of diseases, as humans and other living
organisms are no longer restricted by man-made and natural boundaries. To address this question,
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mathematical models that involve multiple patches have been developed representing disconnected
geographical locations and the consequences of infectious organisms traveling between these patches.

We use a simple case involving only two populations each residing in physically separate locations,
for instance, rural versus urban. For simplicity, we assume travel for both populations is restricted
between their two home locations only. Supposing a disease outbreak occurs, we now pose the
following questions:

• How does the disease spread in the different locations with intermixing populations?
• How does the disease outbreak affect the behavior of residents and visitors in both locations?
• How should preventive resources be optimally allocated in different locations to reduce the

number infections?

The mathematical study and analysis of multi-patch models can be found in [3,15,16]. The authors
investigated the impact of travel between patches for spatial spread of disease in the Eulerian
framework (a mobility-matrix approach) [3]. They obtained the relation between the global R0

and the local R0 in their multi-patch model with different level of disease prevalence. In [15],
the authors present and analyze multi-patch models with their basic reproductive numbers in the
Lagrangian framework (a residence-matrix approach). In [16], optimal strategies for two-patch dengue
transmission is numerically studied via optimal control problems. As this is a theoretical model where
we approximate solutions computationally, we refer to the travel of populations between two locations,
as virtual dispersal in the Lagrangian framework based on [15]. In our report, we present an optimal
control formulation for two-patch SIR models under virtual dispersal where the control function
represents interventions or policy for personal protection (such as face masks, disinfectants, sanitizers,
and etc.). As we are not considering space in our mathematical model, we interpret the amount of time
spent in either location as a representation of time physically spent this location (similar to contact
tracing using GPS in smart phones).

This paper is organized, as follows. In Section 2, we present a two-patch SIR model with virtual
dispersal, discuss the basic reproduction number and formulate the associated optimal control problem.
Section 3 will show numerical results from approximating solutions to the optimal control problem.
The paper concludes with a discussion of results in Section 4. Following Section 4, we include an
Appendix A containing the mathematical work and proofs showing the existence of the adjoint
variables and the characterization of the optimal control functions.

2. A Two-Patch Sir Model with Virtual Dispersal

The motivation for the two-patch model is rooted in the SIR model without demographic dynamics
proposed by Kermack and McKendrick in 1927 [4], and is given by

Ṡ(t) = −βS(t) I(t)

İ(t) = βS(t) I(t)− αI(t) (1)

Ṙ(t) = αI(t).

where S(t) represents the susceptible, I(t) the infected, and R(t) the recovered populations at time t
with constant population N = S(t) + I(t) + R(t).

An underlying assumption in (1) is that the epidemiological dynamics are restricted to one
physical location. This location is called a patch. The two-patch model considers the scenario where two
populations reside in two physically disjoint locations; each patch with its own set of epidemiological
dynamics also governed by their own version of (1), but restricted to their own patch. The two-patch
model further assumes that members from each patch will spend portions of their time in only two
locations: their own patch or the other patch. This information is incorporated into the mathematical
model using a residence-time matrix. This interaction introduces its own set of epidemiological
dynamics: being infected by or infecting members of their own patch or the other patch and how much
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time members will spend in their own patch or the other patch. The two-patch model in this report
was previously studied for SIS and SIR models in [15]. Figure 1 presents a compartmental model that
depicts the two-patch model and Section 2.1 discusses the mathematical model in more detail.

Figure 1. Basic two-patch SIR compartmental model with virtual dispersal and no demographic
dynamics. This compartmental model is mathematically described in (3). For visual simplicity,
the patches are juxtaposed. We note that patches 1 and 2 may not share a border.

2.1. A Two-Patch Model with Virtual Dispersal

The two-patch SIR mathematical model applies (1) to a patch i with i = 1, 2. Each patch i consists
of three epidemiological classes; Si(t) for the susceptible class, Ii(t) for the infected class and Ri(t)
for the recovered class with the constant population Ni = Si(t) + Ii(t) + Ri(t). For convenience,
we write Si = Si(t), Ii = Ii(t) and Ri = Ri(t). Both patches are coupled via a residence-time matrix,
P = (pij) ∈ R2×2, where the pij = pij(I1, I2) represent the proportion of time that a person residing in
patch i spends in patch j with ∑2

j=1 pij = 1, i = 1, 2. Note that this residence-time matrix, pij(I1, I2) is
a function of I1(t) and I2(t). This residence-time matrix captures behavioral responses by modeling
that the proportion of time spent in a particular patch depends on the numbers of infected individuals
on that particular patch; that is P = P(I1, I2).

The mathematical construction of pij(I1, I2), summarized in [15], satisfies the following conditions:

∂p11(I1, I2)

∂I1
≤ 0 and

∂p22(I1, I2)

∂I2
≤ 0. (2)

This suggests that as the population of Ii increases, then the proportion of time spent by members
Si and Ii in their respective patch i decreases. In short, the conditions (2) mathematically describe
a behavior response to an increase in the infected population Ii in patch i. Below, we present the
functions pij that satisfy (2):

p11(I1, I2) =
σ11+σ11 I1+I2

1+I1+I2
, p12(I1, I2) = σ12

(
1+I1

1+I1+I2

)
,

p21(I1, I2) = σ21

(
1+I2

1+I1+I2

)
, p22(I1, I2) =

σ22+I1+σ22 I2
1+I1+I2

with ∑2
j=1 σij = 1, i = 1, 2 and σij values are summarized in Table 1.
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Table 1. Baseline parameter values σij in residence-time matrix P, i, j = 1, 2.

Dispersal Scenarios Residence-Time Proportions

Polar σ11 = σ22 = 1, σ12 = σ21 = 0
Symmetric σij = 0.5, ∀i, j
Asymmetric σ11 = 0.6, σ22 = 0.9, σ12 = 0.4, σ21 = 0.1
High-mobility σ11 = σ22 = 0, σ12 = σ21 = 1
Uni-directional 1 σ11 = 1, σ22 = 0, σ12 = 0, σ21 = 1
Uni-directional 2 σ11 = 0, σ22 = 1, σ12 = 1, σ21 = 0

A susceptible individual from patch i can be infected by infected individuals from patch i or j in
proportion to the total number of individuals from both patches while all are residing in either patchi
or j. Hence, the incidence rate at which individuals from patch i get infected by an infected individual
also from patch i is described next (over and under braces included for emphasis):

• For S1 :
(

β1 p11 ×

proportion of I1︷ ︸︸ ︷
p11 I1

p11N1 + p21N2︸ ︷︷ ︸
while in patch 1

+ β2 p12 ×

proportion of I1︷ ︸︸ ︷
p12 I1

p12N1 + p22N2︸ ︷︷ ︸
while in patch 2

)
× S1, and

• For S2 :
(

β1 p21 × p21 I2
p11 N1+p21 N2

+ β2 p22 × p22 I2
p12 N1+p22 N2

)
× S2.

A susceptible individual from patch i may also be infected by a proportion of individuals
from patch j, while both are in either patch i or j. This yields (again, using over and under braces
for emphasis):

• For S1 :
(

β1 p11 ×

proportion of I2︷ ︸︸ ︷
p21 I2

p11N1 + p21N2︸ ︷︷ ︸
while in patch 1

+ β2 p12 ×

proportion of I2︷ ︸︸ ︷
p22 I2

p12N1 + p22N2︸ ︷︷ ︸
while in patch 2

)
× S1, and

• For S2 :
(

β1 p22 × p12 I1
p11 N1+p21 N2

+ β2 p21 × p11 I1
p12 N1+p22 N2

)
× S2.

The two-patch dynamics are captured by the following ordinary differential equations

Ṡi = −
[

βi p2
ii

pii Ni+pji Nj
+

β j p2
ij

pij Ni+pjj Nj

]
Si Ii −

[
βi pii pji

pii Ni+pji Nj
+

β j pij pjj
pij Ni+pjj Nj

]
Si Ij

İi =

[
βi p2

ii
pii Ni+pji Nj

+
β j p2

ij
pij Ni+pjj Nj

]
Si Ii +

[
βi pii pji

pii Ni+pji Nj
+

β j pij pjj
pij Ni+pjj Nj

]
Si Ij − αi Ii

Ṙi = αi Ii

(3)

where i = 1, 2. It suffices to solve for Si and Ii using only the first two equations of (3) and then solve
for Ri. For simplicity, in Section 2.3, the reduced state equations only involving the first two equations
of (5) will be referred to as the state equations.

We explore the effects of virtual dispersal scenarios on the basic reproduction numberR0 and the
final epidemic size. Different virtual dispersal scenarios certainly changeR0 and the final epidemic
size, but determining whether the six different assumptions can change them substantially or not, is
nontrivial. The level of transmissibility measured by R0 is varied to highlight the differences and
similarities for the results under several virtual dispersal scenarios. We consider the following distinct
virtual dispersal scenarios, as given in Table 1.

2.2. Basic Reproduction Number and Final Epidemic Size

One of the most important factors in mathematical epidemiology is the basic reproduction number.
The basic reproductive number, R0, is the average number of secondary infectious cases when one
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infectious individual is introduced in a wholly susceptible population. The next generation method
is used to compute the basic reproduction number, R0 [19]. The basic reproduction number R0,
mathematically, is the largest eigenvalue of the next generation matrix K ∈ R2×2 obtained below,

K = −FV−1 =

 (
β1 p2

11
p11 N1+p21 N2

+
β2 p2

12
p12 N1+p22 N2

)N1
α1

( β1 p11 p21
p11 N1+p21 N2

+ β2 p12 p22
p12 N1+p22 N2

)N1
α2

( β1 p11 p21
p11 N1+p21 N2

+ β2 p12 p22
p12 N1+p22 N2

)N2
α1

(
β1 p2

21
p11 N1+p21 N2

+
β2 p2

22
p12 N1+p22 N2

)N2
α2

 .

Upon evaluation at the disease-free equilibrium, we obtain the global basic reproduction number

R0 = max {eigenvalue(K)} (4)

In [15], the authors reported that not everybody is infected during an outbreak, and so
estimating the size of the total infected population (the final epidemic size in the absence of deaths
or departures) is tied in the solutions of the final size relationship. The residence time matrix P plays
an important role, as evidenced by the dependence of the final epidemic size relation. We compute
the cumulative number of new infected cases (or the final epidemic size) numerically by solving
the equation

Ċi =

[
βi p2

ii
pii Ni + pji Nj

+
β j p2

ij

pijNi + pjjNj

]
Si Ii +

[
βi pii pji

pii Ni + pji Nj
+

β j pij pjj

pijNi + pjjNj

]
Si Ij.

The quantity Ci(t f ) is used to compute the patch-specific final epidemic size for i = 1, 2.

2.3. Optimal Control Formulation

The optimal control problem of interest is formulated through the incorporation of the control
functions (1− ui) in the transmission rates for patch i (i = 1, 2). The effect of these interventions
implicitly reduces the transmission rates βi, i = 1, 2. The two-patch model in this report was previously
studied for SIS and SIR models in [15]. We extend the two-patch SIR model by incorporating control
functions 0 ≤ ui(t) ≤ 1, where, for simplicity, we write ui = ui(t), for i = 1, 2. The two-patch dynamics
with patch-specific controls are captured by the following ordinary differential equations

Ṡi = −
[

βi(1−ui)p2
ii

pii Ni+pji Nj
+

β j(1−uj)p2
ij

pij Ni+pjj Nj

]
Si Ii −

[
βi(1−ui)pii pji

pii Ni+pji Nj
+

β j(1−uj)pij pjj
pij Ni+pjj Nj

]
Si Ij

İi =

[
βi(1−ui)p2

ii
pii Ni+pji Nj

+
β j(1−uj)p2

ij
pij Ni+pjj Nj

]
Si Ii +

[
βi(1−ui)pii pji

pii Ni+pji Nj
+

β j(1−uj)pij pjj
pij Ni+pjj Nj

]
Si Ij − αi Ii

Ṙi = αi Ii

(5)

Via an optimal control formulation, the terms (1− ui) in (5) can effect the transmission rates in
the ith patch. Accordingly, if ui = 0, then there is no control and the transmission rate remains the
same. As ui → 1, then we approach an “ideal efforts” situation thereby reducing the transmission rate
to 0. Again, the preventive control efforts may involve face masks, disinfectants, social distancing,
education campaigns, and so forth with the intention of increasing personal protection. Our goal is to
minimize the infected individuals in both patches at a minimal cost of implementation over a finite
time horizon via optimal control. The objective functional to be minimized is

J(u1, u2) =
∫ t f

0
I1 + I2 +

1
2
(W1 u2

1 + W2 u2
2) dt

and subject to the state equations in (5). The constants W1 and W2 are the weights for the prevention
effort or the relative cost of the implementation of the preventive control for patch 1 and patch 2,
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respectively. The objective function will both minimize the number of infective people and the levels
of cost of prevention. We seek an optimal pair (U∗, X∗), such that

J(U∗) = min
U∈Ω

J(U), (6)

with U = (u1, u2), and where Ω = {U ∈ (L1(0, t f ))
2| 0 ≤ ui(t) ≤ 1, t ∈ [0, t f ], i = 1, 2} subject to the

state system (5) with X = (S1, I1, R1, S2, I2, R2). The existence of optimal controls is guaranteed from
standard results on optimal control theory [20]. Pontryagin’s Maximum Principle is used to establish
necessary conditions that must be satisfied by an optimal solution [21]. Derivations of the necessary
conditions are shown in the Appendix A. Additionally, we compute the cumulative number of new
infected cases in the presence of controls by solving the equation

Ċi =

[
βi(1− ui)p2

ii
pii Ni + pji Nj

+
β j(1− uj)p2

ij

pijNi + pjjNj

]
Si Ii +

[
βi(1− ui)pii pji

pii Ni + pji Nj
+

β j(1− uj)pij pjj

pijNi + pjjNj

]
Si Ij.

The quantity Ci(t f ) is used to compute the patch-specific controlled final epidemic size for i = 1, 2.

3. Numerical Results

Numerical solutions to (A1) were obtained using the standard scheme (a two point boundary
method [22]), which is employed, as follows. First, the state system (5) is solved forward in time with
initial conditions and an initial guess for the control. Second, the adjoint system (A9) with transversality
conditions (see Theorem A1 in Appendix A) is solved backward in time. Third, the optimality condition
is updated using the characterization formula (A10), see Theorem A1 in Appendix A. These three steps
are iterated until convergence is achieved. Parameter values are given in Tables 1 and 2.

Table 2. Baseline parameter values for each patch.

Parameter Description Value

β1 Transmission rate in patch 1 (days−1) 0.3–0.4
β2 Transmission rate in patch 2 (days−1) 0.5–0.6
α1 Recovery rate in patch 1 (days−1) 0.25
α2 Recovery rate in patch 2 (days−1) 0.25
N1 Population size in patch 1 1000
N2 Population size in patch 2 1000
S1(0) The initial value of susceptible in patch 1 999
S2(0) The initial value of susceptible in patch 2 999
I1(0) The initial value of infected in patch 1 1
I2(0) The initial value of infected in patch 2 1
t f The simulated duration (days) 60
b The upper bound of control 0.5
W1 Weight constant corresponding to control u1 100–300
W2 Weight constant corresponding to control u2 100–300

Table 1 shows the σij values when the model does not incorporate state dependence [15].
In particular, we note that σij = pij(0, 0), ∀i, j [15]. The numerical values for the polar, symmetric,
asymmetric, and high-mobility dispersal scenarios were obtained from [15]. In this paper, we also
introduce the Uni-directional 1 and Uni-directional 2 scenarios, which were determined by inspection
from the surface plot ofR0 as a function of (σ11, σ22).The Uni-directional 1 dispersal scenario represents
all of the members of patch 1 remaining in and all members of patch 2 traveling to patch 1 during an
epidemic outbreak. Similarly, the Uni-directional 2 dispersal scenario represents all members of patch
1 traveling to and all members of patch 2 remaining in patch 2 during an epidemic outbreak.

We assume the population sizes N1 = N2 and that β1 < β2 where β1 and β2 values can be found
in Table 2. The mobility patterns that are described by the residence-time matrix (pij) suggest different
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virtual dispersal between the two patches. We use the σij values in Table 1 to describe the different
types of coupling between patches. The polar case suggests that the populations remain put in their
home patches. In the symmetric scenario, the proportion of humans visiting from patch i to patch j is
the same as the other way around. Asymmetric mobility implies that a larger proportion of humans
remain in their home patch than the other patch, with the second patch residents staying at home the
longest. Finally, in the high mobility scenario, a higher proportion of humans visit the other patch as
opposed to staying in their home patch. In the following Sections 3.1–3.3, we present the results in the
absence of controls and the presence of controls, respectively.

3.1. Results in the Absence of Controls

In this section, we compare the population plots of solutions obtained from solving the two-patch
SIR system (3) in the absence of controls. Figures 2–4 show the prevalence plots for the Polar/High
Mobility, Symmetric/Asymmetric, and Uni-directional1/2 cases, respectively.

Figure 2. Top row: Polar case. Bottom row: High Mobility case. Left column:. Comparison of Patch 1
and 2 prevalence while members from both patches reside in Patch 1. Right column: Comparison of
Patch 1 and 2 prevalence comparisons while from both patches reside in Patch 2. In Patch 1 polar plot,
the graphs of S2, I2 and N2 overlap. In Patch 2 polar plot, the graphs of S1, I1 and N1 overlap. In Patch 1
and 2 high mobility plots , the graphs of I1 and I2 overlap.
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Figure 3. Top row: Symmetric case. Bottom row: Asymmetric case. Left column: Comparison of Patch
1 and 2 prevalence while members from both patches reside in Patch 1. Right column: Comparison of
Patch 1 and 2 prevalence while members from both patches reside in Patch 2.

Figure 4. Top row: Unidirectional case from patch 2 to patch 1. Bottom row: Unidirectional case from
patch 1 to patch 2. Left column:. Comparison of Patch 1 and 2 prevalence while members from both
patches reside in Patch 1. Right column: Comparison of Patch 1 and 2 prevalence while members from
both patches reside in Patch 2. In Patch 2: uni-direction from patch 2 to patch 1 plot, the graphs of S1, I1

and N1 overlap. In Patch 1: uni-direction from patch 1 to patch 2 plot, the graphs of S2, I2 and N2 overlap.

As with Figures 2–4, each row corresponds to a coupling case and all of the graphs show the plots
of the proportions of members from patch 1 and 2 on the patch they are currently situated. For instance,



Processes 2020, 8, 1087 9 of 19

the curve labeled p11 I1 represents the proportion of infected individuals from patch 1 who remain in
patch 1, whereas the curve labeled p21 I2 represents the proportion of infected individuals from patch 2
currently visiting patch 1 and so forth. The populations plotted are the susceptible Si, infected Ii, and
total Ni, i = 1, 2. The set of plots on the left half describe the populations in patch 1 and the set of plots
on the right half describe the populations in patch 2.

In Figure 2, the polar case suggests that the spread of the disease was only confined to home
residents who remained within their home patch; there was no travel between patches and therefore,
no spread of disease from visitors. The total population remained constant throughout the duration
of the epidemic. In the high mobility case, the number of infected individuals from either patch is
the same for both patches, in spite of the number of visiting susceptibles being higher. The visiting
susceptible population drops as low as the resident susceptible population. Additionally, the plots
suggest that the overall number of visitors drops in either patch and possibly return to their home
patch at the onset of epidemic, remain in their home patch and only later on return again to visit the
other patch. In Figure 3, the symmetric case shows what may be interpreted as a small exodus of home
residents and visitors from patch 1 to patch 2. In the asymmetric case, the patch 2 residents stay in
patch 2, while the patch 1 individuals travel to patch 2. As we can notice in Figure 4, the prevalence in
low risk patch 1 is highest in the uni-directional case 2 where as in high risk patch 2, uni-directional
case 1 leads to the lowest prevalence.

Next, we present the impact of dispersal scenarios on the globalR0 and final epidemic size under
three different sets of β1 and β2. Figure 5 shows the surface that corresponds to the R0 values as a
function of σ11 and σ22. We note that the surface is greater than 1 for all values of σ11 and σ22. The plot
also labels the location for R0 values corresponding to the polar, symmetric, asymmetric and high
mobility cases. AsR0 increases, the spread of the epidemic also increases. Based on the locations of
the four coupling cases along the surface, the disease will spread the most in the polar case when there
is no prevention in place.
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Figure 5. The global basic reproduction number, R0 and the final epidemic size is plotted as
a function of σ11 and σ22 under three different sets of β1 and β2. Note that polar, symmetric,
asymmetric, high-mobility, and uni-directional scenarios are labeled (maximum at polar and minimum
at uni-directional case).

Overall values ofR0 and the final epidemic size increase as β1 and β2 increase (three layers), as
shown in Figure 5. Note that polar, high-mobility, symmetric, and uni-directional scenarios are labeled.
The left panel of Figure 5 displays the globalR0 given in (4) as functions of σ11 and σ22. Recall that the
population sizes N1 = N2 and β1 < β2;R0 gets the minimum at the unidirectional case 1 (σ11 = 1 and
σ22 = 0) whileR0 gets the maximum at the polar case when σ11 = 1 and σ22 = 1.

The right panel of Figure 5 illustrates the impact of dispersal scenarios on the final epidemic size,
which is also displayed as a function of σ11 and σ22. It is worth noting that the final epidemic size
gets the minimum at the unidirectional case 1 (σ11 = 1 and σ22 = 0) while it has the largest at the
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unidirectional case 2 (σ11 = 0 and σ22 = 1). For the unidirectional case 1, since dispersal is only from
Patch 2 (higher risk) to Patch 1 (lower risk), the total final epidemic size in Patch 1 and Patch 2 gets
the minimum among different dispersal scenarios. On the other hand, for the unidirectional case 2,
since dispersal is only from Patch 1 (lower risk) to Patch 2 (higher risk), the total final epidemic size
gets the maximum. The minimum is consistent with the results ofR0; however, different results for
the maximum (the polar case was the largest). This implies that R0 is not always the same as the
final epidemic size. Lastly, Figure 6 highlights the final epidemic size as a function of β1 and β2 under
four different dispersal scenarios. For all cases, obviously, the final epidemic size increases as β1 and
β2 increase.
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Figure 6. The final epidemic size is displayed as a function of β1 and β2 under four different cases.
Overall final epidemic size increases as β1 and β2 increase.

3.2. Results in the Presence of Controls

In this section, we compare the population plots of solutions obtained from solving optimal control
problem (A1) to solutions without any control functions. Figures 7–9 show the control and prevalence
plots for the Polar/High Mobility, Symmetric/Asymmetric, and Uni-directional1/2 cases, respectively.

For all dispersal scenarios, the control plots suggest that the preventive measures start at the
maximum level early on and then be reduced. Additionally, these plots suggest that the preventive
measures remain at the maximum level the longest for patch 2 (recall β1 < β2). This becomes
more pronounced in polar and uni-directional case 2 (see Figures 7 and 9). In almost all instances,
the preventive measures remain at the highest level for the duration of the time interval. However,
the polar case is differs the most. In the polar case, the preventive measures in patch 1 remain at the
highest level for less than half the time in patch 2. Additionally, the preventive measures for patch 2
are in place the longest for the polar case. This may be attributed to both populations not traveling
outside their home patch. Therefore, when populations are not traveling upon the onset of the spread
of a disease, the bulk of preventive resources should be devoted to patch 2. In the high mobility case,
the preventive measures are in place at the highest levels for about the same amount of time as the
symmetric and asymmetric cases. This suggests that any travel between patches will need for the
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preventive measures to remain at their highest levels for about the same amount of time, regardless of
the type of movement between patches.

The prevalence plots presented in Figures 7–9 compare the population sizes when preventive
measures are in place or not. When prevention is present, the number of infected individuals drops
significantly in all cases. This suggests that prevention does play a positive role in reducing the spread
of infection. In the polar case, the number of patch 1 infected is the lowest of all cases and the number
of patch 2 infected is the highest. This appears to suggest that since the populations don’t travel
between patches, the spread of the disease remains confined to each patch when recalling that β1 < β2.
Travel between patches, on the other hand, appears to spread the disease more evenly among the
populations from each patch.

We measured the total value of the objective functional and the cumulative incidence as functions
of σ11 and σ22 in order to further see the impact of virtual dispersal. Figures 10 and 11 present the
total value of the objective functional and the final epidemic size in the presence of controls. It is clear
how optimal control strategies reduce the cumulative incidence; compare these with Figure 5 which
corresponds to results without control. Figures 10 and 11 illustrate the results under two weight
constants (low cost using W1 = W2 = 100 and high cost using W1 = W2 = 300). Figure 10 shows the
results under the transmission rates β1 = 0.3 and β2 = 0.5. Figure 11 shows the results under the
transmission rates β1 = 0.4 and β2 = 0.6. If the relative cost of control is higher, then the total value of
the objective function and the cumulative incidence are proportionally higher as well (see the bottom
panels) in both Figures 10 and 11. This implies that, as we increase the relative cost size, we obtain less
controls and, therefore, larger final epidemic sizes. Regardless of the costs of control, having a large
force of transmission makes an outbreak extremely expensive to control, as shown in Figure 11.
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Figure 7. Top row: Polar case. Objective functional value at optimal control is =J(u∗, v∗) = 1401.86
and R0 = 2.4. Bottom row: High Mobility case. Objective functional value at optimal control
is J(u∗, v∗) = 1317.53 and R0 = 2.0099. Patch-specific control functions, prevalence in Patch 1,
and prevalence in Patch 2 are displayed in the left, middle, right panel, respectively. For each dispersal
scenario, the corresponding Patch 1 and Patch 2 panels share the same legend.
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Figure 8. Top row: Symmetric case. Objective functional value at optimal control is J(u∗, v∗) =

1303.25 and R0 = 2.0099. Bottom row: Asymmetric case. Objective functional value at optimal
control is J(u∗, v∗) = 1385.12 andR0 = 2.137. Patch-specific control functions, prevalence in Patch 1,
and prevalence in Patch 2 are displayed in the left, middle, right panel, respectively. For each dispersal
scenario, the corresponding Patch 1 and Patch 2 panels share the same legend.
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Figure 9. Top row: Unidirectional case from patch 2 to patch 1. Objective functional value at
optimal control is J(u∗, v∗) = 776.53 and R0 = 1.7471. Bottom row: Unidirectional case from patch
1 to patch 2. Objective functional value at optimal control is J(u∗, v∗) = 1492.79 and R0 = 2.2759.
Patch-specific control functions, prevalence in Patch 1, and prevalence in Patch 2 are displayed in the
left, middle, right panel, respectively. For each dispersal scenario, the corresponding Patch 1 and Patch
2 panels share the same legend.
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Figure 10. Top row: low cost (W1 = W2 = 100). Bottom row: high cost (W1 = W2 = 400). Objective functional
value (left) and final epidemic size are displayed (right) using lower transmission rates (β1 = 0.3 and β2 = 0.5).
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3.3. Various Control Scenarios

We use the objective functional (6) as a metric to compare the solution to the optimal control
problem (A1) subject to (5), to the following intervention strategies: No control, one optimal control and
maximum control. The ‘No control’ strategy corresponds no intervention implemented at all in both
patches. The objective functional at this scenario is therefore represented by J(0, 0). The ‘One optimal
control’ case represents the case where intervention is implemented in only patch but not the other.
This yields two possibilities: intervention in patch 1, but no intervention in patch 2 or vice-versa;
these are represented by J(ū∗, 0) or J(0, v̄∗), respectively. We note that in the optimal solution (ū∗, 0),
the function ū∗ may not be the same as u∗ from (u∗, v∗). This also holds for v̄∗ and v∗. In the
‘Max. control’ scenario, we consider the maximum possible intervention is in place in both patches
for all t. Because u, v ∈ Ω and 0 ≤ u, v ≤ 0.5 over [0, t f ], we set u = 0.5 and v = 0.5, ∀t. In particular,
our optimal control solutions (u∗, v∗) minimize (6). In all instances, our numerical results yielded the
following relationships:

• No control: J(u∗, v∗) < J(0, 0)
• One optimal control (two possibilities): J(u∗, v∗) < J(ū∗, 0) or J(u∗, v∗) < J(0, v̄∗)
• Maximum control: J(u∗, v∗) < J(0.5, 0.5)

Table 3 summarizes the percentage in reduction between J(u∗, v∗) to evaluation of J(u, v) at the
optimal solutions corresponding to the above intervention strategies.

Table 3. Table of reduction values of objective functional (6) at optimal controls (u∗, v∗) in comparison
to various prevention strategies for the four coupling cases from Table 1.

Objective Functional Value Reduction Percentage

No Control One Optimal Control Max. Control

Dispersal scenarios J(0, 0) J(ū∗, 0) J(0, v̄∗) J(0.5, 0.5)
Polar 315.4% 177.5% 137.9% 29.7%

Symmetric 382.8% 287.0% 149.4% 23.9%
Asymmetric 360.5% 299.7% 117.3% 21.2%

High Mobility 381.0% 311.4% 149.6% 23.4%
Uni-directional 1 626.2% 12.4% 475.3% 99.3%
Uni-directional 2 349.2% 337.4% 32.2% 20.8%

These results suggest, as may be expected, that the largest reduction occurs when no intervention is
in place. In the case, of implementing intervention in only one patch, the largest reduction occurs when
the intervention is implemented in patch 1 only in all cases except for uni-directional 1. This might be so
since β1 < β2. Finally, a strategy implementing maximum prevention for all time, may not be the most
optimal strategy when using (6) as a ‘metric’. For this strategy, the optimal control solution (u∗, v∗)
yields the largest reduction on the polar case and the smallest reduction on the asymmetric case.

The control functions shed light on the allocation of preventive resources (facemasks, disinfectants,
sanitizers, and etc.) for reducing the number of infections, for example. Consider Figure 9. Under the
conditions defined for uni-direction 1 case, most of the the resources should be allocated to Patch 1 as
opposed to Patch 2. In both patches, the amount of resources is reduced as time increases to 60 day
limit. The resources devoted to Patch 1 are allocated at a maximum for close to half of the 60 day
period. The resources will not be devoted at a maximum at any point in the 60 day period to Patch
2, and they will decrease over the entire period. Under the conditions for uni-direction 2, most of
the resources should be allocated to Patch 2, as opposed to Patch 1. Furthermore, the preventive
resources will be allocated at a maximum in Patch 2 for almost the entire duration of the 60 day period.
The resources for Patch 1 will increase at the onset of the epidemic outbreak, but gradually reduce
as the 60 day period comes to an end. The resources in Patch 1 will never be devoted at a maximum
over this period of time. We can make similar conclusions from the results presented in Figures 7 and
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8. In all of these instances, these optimal strategies reduced the number of infections in both patches,
as shown in Figures 7–9.

The results in Figures 7–9 further demonstrate strategic allocations of resources for reducing
infected individuals. Depending on the scenario, the resources are allocated differently in each patch.
Additionally, these strategies results show there is a reduction of the infected population as opposed to
when no preventive resources are allocated. We compute the basic reproductive number using (4) and
obtainR0 > 1 for all results in Figures 7–9. This suggests the optimal control functions, or equivalently
the optimal allocation of resources, averted an epidemic outbreak in each patch.

While Figures 7–9 compared the optimal control solutions to scenarios without control, we also
consider different scenarios for allocating preventive resources. Table 3 summarizes these results.
The table further demonstrates that the controls obtained by solving (A1) are optimal in comparison to
different strategies for the allocation of resources. The table suggests that the optimal control solution
would outperform other strategies represented by different control scenarios, not just when preventive
resources are not allocated.

4. Discussions

We have investigated the transmission dynamics in a two-patch SIR system. It is assumed that
the two patches represent two locations that have a well-defined visiting relationship modeled by a
residence-time matrix. The entries of the residence-time matrix depend on the infected individuals and
model a behavioral response due to risk perception. We have developed an optimal control framework
to identify optimal patch-specific control strategies under various virtual dispersal scenarios. First,
we identify the optimal strategy to prevent or mitigate epidemics and compare with the results in the
absence of controls. Our results indicate that, as expected, controlling the two patches simultaneously
gives the best reduction in the total final epidemic sizes. Additionally, we found that the controlled
two-patchy dynamics are strongly dependent on the following three key factors: virtual dispersal
scenarios, transmission rates, the relative costs. Overall, controlling the outbreaks is more difficult as
the transmission rates and relative cost increase.
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Appendix A

The optimal problem for the two-patch model is formulated to minimize the number of infected
individuals in both patches for a finite time interval at a minimal cost of implementation. We define
our objective functional as follows

J(u1, u2) =
∫ t f

0
I1 + I2 +

1
2
(W1u2

1 + W2u2
2) dt

Then, we seek an optimal pair (U∗, X∗) such that

J(U∗) = min
U∈Ω

J(U), (A1)

where Ω = {(u1, u2) ∈
(

L1(0, t f )
)2
| a ≤ ui ≤ b, i = 1, 2} subject to the state equations in (5)

with X = (S1, I1, R1, S2, I2, R2) and U = (u1, u2). The existence of optimal controls is guaranteed by
standard results of optimal control theory [20]. The necessary conditions of optimal solutions are
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derived from Pontryagin’s Maximum Principle [21]. This principle converts the system (5) into the
problem of minimizing the Hamiltonian H given by

H = I1 + I2 +
1
2
(W1u2

1 + W2u2
2) + λ1[−VS1 I1 −YS1 I2] + λ2[VS1 I1 + YS1 I2 − α1 I1] (A2)

+ λ3[−ZS2 I2 −YS2 I1] + λ4[ZS2 I2 + YS2 I1 − α2 I2]

where

V = V(I1, I2) =
β1(1− u1)p2

11
p11N1 + p21N2

+
β2(1− u2)p2

12
p12N1 + p22N2

,

Y = Y(I1, I2) =
β1(1− u1)p11 p21

p11N1 + p21N2
+

β2(1− u2)p12 p22

p12N1 + p22N2
, (A3)

Z = Z(I1, I2) =
β1(1− u1)p2

21
p11N1 + p21N2

+
β2(1− u2)p2

22
p12N1 + p22N2

are positive functions of I1 and I2. We present the following partial derivatives as they will be used in
the proof of Theorem A1:

∂V
∂I1

= A1 + A2,
∂V
∂I2

= A3 + A4,

∂Y
∂I1

= B1 + B2,
∂Y
∂I2

= B3 + B4, (A4)

∂Z
∂I1

= C1 + C2,
∂Z
∂I2

= C3 + C4,

where

A1 =
β1(1− u1)

[(
p2

11N1 + 2p11 p21N2
) ∂p11

∂I1
− p2

11N2
∂p21
∂I1

]
(p11N1 + p21N2)2 ,

A2 =
β2(1− u2)

[(
p2

12N1 + 2p12 p22N2
) ∂p12

∂I1
− p2

12N2
∂p22
∂I1

]
(p12N1 + p22N2)2 , (A5)

A3 =
β1(1− u1)

[(
p2

11N1 + 2p11 p21N2
) ∂p11

∂I2
− p2

11N2
∂p21
∂I2

]
(p11N1 + p21N2)2 ,

A4 =
β2(1− u2)

[(
p2

12N1 + 2p12 p22N2
) ∂p12

∂I2
− p2

12N2
∂p22
∂I2

]
(p12N1 + p22N2)2 ,

B1 =
β1(1− u1)

[
p2

21N2
∂p11
∂I1

+ p2
11N1

∂p21
∂I1

]
(p11N1 + p21N2)2 ,

B2 =
β2(1− u2)

[
p2

22N2
∂p12
∂I1

+ p2
12N1

∂p22
∂I1

]
(p12N1 + p22N2)2 , (A6)

B3 =
β1(1− u1)

[
p2

21N2
∂p11
∂I2

+ p2
11N1

∂p21
∂I2

]
(p11N1 + p21N2)2 ,

B4 =
β2(1− u2)

[
p2

22N2
∂p12
∂I2

+ p2
12N1

∂p22
∂I2

]
(p12N1 + p22N2)2 ,
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C1 =
β1(1− u1)

[(
2p11 p21N1 + p2

21N2
) ∂p21

∂I1
− p2

21N1
∂p11
∂I1

]
(p11N1 + p21N2)2 ,

C2 =
β2(1− u2)

[(
2p22 p12N1 + p2

22N2
) ∂p22

∂I1
− p2

12N1
∂p21
∂I1

]
(p12N1 + p22N2)2 , (A7)

C3 =
β1(1− u1)

[(
2p11 p21N1 + p2

21N2
) ∂p21

∂I2
− p2

21N1
∂p11
∂I2

]
(p11N1 + p21N2)2 ,

C4 =
β2(1− u2)

[(
2p22 p12N1 + p2

22N2
) ∂p22

∂I2
− p2

22N1
∂p12
∂I2

]
(p12N1 + p22N2)2 ,

with

∂p11

∂I1
=

(σ11 − 1)I2

(1 + I1 + I2)2 ,
∂p22

∂I1
=

(1− σ22)(1 + I2)

(1 + I1 + I2)2

∂p12

∂I1
=

σ12 I2

(1 + I1 + I2)2 ,
∂p21

∂I1
=
−σ21(1 + I2)

(1 + I1 + I2)2 , (A8)

∂p11

∂I2
=

(1− σ11)(1 + I1)

(1 + I1 + I2)2 ,
∂p22

∂I2
=

(σ22 − 1)I1

(1 + I1 + I2)2 ,

∂p12

∂I2
=
−σ12(1 + I1)

(1 + I1 + I2)2 ,
∂p21

∂I2
=

σ21 I1

(1 + I1 + I2)2 .

Using Hamiltonian H in (A2) and Pontryagin’s Maximum Principle [21], we have the theorem:

Theorem A1. There exist optimal controls U∗ and corresponding state solutions X∗ that minimize J(U) over
Ω. In order for the above statement to be true, it is necessary that there exist continuous functions λi = λi(t)
such that

λ
′
1 = − ∂H

∂S1
= (λ1 − λ2)(VI1 + YI2),

λ
′
2 = −∂H

∂I1
= −1 + (λ1 − λ2)

(
∂V
∂I1

S1 I1 + VS1 +
∂Y
∂I1

S1 I2

)
+ α1λ2

+ (λ3 − λ4)

(
∂Z
∂I1

S2 I2 + YS2 +
∂Y
∂I1

S2 I1

)
, (A9)

λ
′
3 = − ∂H

∂S2
= (λ3 − λ4)(ZI2 + YI1),

λ
′
4 = −∂H

∂I2
= −1 + (λ1 − λ2)

(
∂V
∂I2

S1 I1 + YS1 +
∂Y
∂I2

S1 I2

)
+ α2λ4

+ (λ3 − λ4)

(
∂Z
∂I2

S2 I2 + ZS2 +
∂Y
∂I2

S2 I1

)
,

with transversality conditions λi(t f ) = 0, i = 1, . . . 4 and characterization of the optimal controls

u1 =
1

(p11N1 + p21N2)W1

[
−λ1(β1 p2

11S1 I1 + β1 p11 p21S1 I2) + λ2(β1 p2
11S1 I1 + β1 p11 p21S1 I2)

− λ3(β1 p2
21S2 I2 + β1 p11 p21S2 I1) + λ4(β1 p2

21S2 I2 + β1 p11 p21S2 I1)
]

, (A10)

u2 =
1

(p12N1 + p22N2)W2

[
λ1(β2 p2

12S1 I1 + β2 p12 p22S1 I2) + λ2(β2 p2
12S1 I1 + β2 p12 p22S1 I2)

+ λ3(β2 p2
22S2 I2 + β2 p12 p22S2 I1) + λ4(β2 p2

22S2 I2 + β2 p12 p22S2 I1)
]

.
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Proof. The existence of optimal controls follows from Corollary 4.1 of [20] since the integrand of J is a
convex function in U and the the state system satisfies the Lipschitz property with respect to the state
variables. The following can be derived from the Pontryagin’s Maximum Principle [21]:

dλ1

dt
= − ∂H

∂S1
,

dλ2

dt
= −∂H

∂I1
,

dλ3

dt
= − ∂H

∂S2
,

dλ4

dt
= −∂H

∂I2
,

with transversality condition λi(t f ) = 0 for i = 1, ..., 4, evaluated at the optimal controls and
corresponding states. Differentiating H with respect to ui and using (A4)–(A8), we obtain the equations

∂H
∂u1

= W1u1 + λ1S1

(
− ∂V

∂u1
I1 −

∂Y
∂u1

I2

)
+ λ2S1

(
∂V
∂u1

I1 +
∂Y
∂u1

I2

)
+ λ3S2

(
− ∂Z

∂u1
I2 −

∂Y
∂u1

I1

)
+ λ4S2

(
∂Z
∂u1

I2 +
∂Y
∂u1

I1

)
= 0, (A11)

∂H
∂u2

= W2u2 + λ1S1

(
− ∂V

∂u2
I1 −

∂Y
∂u2

I2

)
+ λ2S1

(
∂V
∂u2

I1 +
∂Y
∂u2

I2

)
+ λ3S2

(
− ∂Z

∂u2
I2 −

∂Y
∂u2

I1

)
+ λ4S2

(
∂Z
∂u2

I2 +
∂Y
∂u2

I1

)
= 0,

where

∂V
∂u1

=
−β1 p2

11
p11N1 + p21N2

,
∂V
∂u2

=
−β2 p2

12
p12N1 + p22N2

,

∂Y
∂u1

=
−β1 p11 p21

p11N1 + p21N2
,

∂Y
∂u2

=
−β2 p12 p22

p12N1 + p22N2
,

∂Z
∂u1

=
−β1 p2

21
p11N1 + p21N2

,
∂Z
∂u2

=
−β2 p2

22
p12N1 + p22N2

.

Solving for ui in (A11) yields the characterization for the control functions given in (A10).
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