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Abstract: Alzheimer’s disease is notoriously the most common cause of dementia in the elderly,
affecting an increasing number of people. Although widespread, its causes and progression modalities
are complex and still not fully understood. Through neuroimaging techniques, such as diffusion
Magnetic Resonance (MR), more sophisticated and specific studies of the disease can be performed,
offering a valuable tool for both its diagnosis and early detection. However, processing large quantities
of medical images is not an easy task, and researchers have turned their attention towards machine
learning, a set of computer algorithms that automatically adapt their output towards the intended goal.
In this paper, a systematic review of recent machine learning applications on diffusion tensor imaging
studies of Alzheimer’s disease is presented, highlighting the fundamental aspects of each work and
reporting their performance score. A few examined studies also include mild cognitive impairment
in the classification problem, while others combine diffusion data with other sources, like structural
magnetic resonance imaging (MRI) (multimodal analysis). The findings of the retrieved works suggest
a promising role for machine learning in evaluating effective classification features, like fractional
anisotropy, and in possibly performing on different image modalities with higher accuracy.

Keywords: Alzheimer’s disease; mild cognitive impairment; diffusion tensor imaging; magnetic
resonance imaging; machine learning; support vector machine

1. Introduction

Alzheimer’s disease (AD), or Alzheimer’s, is a neurodegenerative disorder representing the
most common cause of dementia in the elderly population of developed countries. Currently, the
number of people affected by Alzheimer is about fifty million, and this number is expected to triple
by 2050, due to population aging [1]. Alzheimer’s disease is characterized by a progressive and
irreversible neurologic deterioration, leading to the decline of cognitive functions and eventually to
patient death [2]. Mild cognitive impairment (MCI) is an intermediate pathological condition where
patients show heterogeneous symptoms. MCI can represent the prodromal stage of AD, but can also
turn to other types of dementia [3]. AD diagnosis is very complex because of different symptoms that
patients might show, both at the cognitive and behavioral level. Furthermore, the disease progression
modalities are as subjective as the therapeutic responses. Within this framework, the most challenging
goal is to develop innovative diagnostic tools to help detecting the disease from its early stages,
including MCI. In this context, computer aided diagnosis (CAD) systems are desirable, in order to
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improve the prediction accuracy, complementing the neuropsychological assessments performed by
expert clinicians.

Progresses in neuroimaging techniques have been pivotal to the analysis of structural and functional
cerebral modifications connected to Alzheimer’s [4]. However, integrating large quantities of data on a
large scale is becoming increasingly difficult; therefore, there is a high interest in innovative machine
learning (ML) methods that allow for classifying considerable amounts of data following specific
algorithms. ML refers to a set of mathematical models that can learn by self-adjusting their output
through experience and make predictions or decisions based on new data [5]. Since AD is a complex
disease showing heterogenous structural and functional changes at brain level, these techniques can
lead to a deeper understanding of new aspects of AD progression. As a matter of fact, ML approaches
are particularly sensitive to distributed disease-specific changes observed in many human structural
and functional imaging studies. They are designed to identify patterns in data that differentiate
between several classes [5]. ML classification offers powerful prediction methods for the disease state
of an individual. For example, the support vector machine (SVM) classifier has been used to find a
hyperplane for high dimensional training features and to categorize test subjects that were part of a
specific clinical group [6].

So far, many studies in the existing literature have analyzed the potential of ML methods applied
to the field of neurodegenerative disorders, such as Alzheimer’s disease. For this purpose, the use of
data derived from magnetic resonance imaging (MRI) [7,8] or positron emission tomography (PET)
has been widely investigated [9,10]. However, the diffusion tensor imaging (DTI) technique has drawn
researchers’ attention for the last fifteen years.

DTI is a non-invasive technology able to provide information on white matter’s integrity, which is
connected to neuropathological mechanisms. DTI analyzes water diffusion at the microstructural level
of the brain, determining the abnormal diffusion pattern in different neurological/neuropsychiatric
conditions, including AD [11–13]. By tracking the highly anisotropic diffusion of water along axons,
the integrity and trajectory of the major white matter (WM) fiber bundles in the brain can be evaluated
through DTI [14]. Diffusion in WM is highly anisotropic being less restricted along the axon, whereas
in gray matter (GM), it is usually less anisotropic and in the cerebrospinal fluid (CSF) it is unrestricted
in all directions (isotropic) [15]. Based on this assumption, the diffusion process has been modeled by
an ellipsoid in which the length of the three principal axes reflects the diffusion tendency along each
direction (λ1, λ2, λ3; see Figure 1) [15]. DTI is the only neuroimaging technique that can characterize
WM fiber paths and is sensitive to microscopic WM injury in these bundles. It can therefore identify
signs of impairment in anatomical connectivity that are not detectable with standard anatomical
MRI [14].

Two of the most used features to characterize WM integrity are fractional anisotropy (FA) and mean
diffusivity (MD). FA provides useful information about fiber density, axonal diameter, and myelination
in WM, and a decrease in its value suggests a loss of fiber tract integrity, thus, WM damage [15].
MD measures the average diffusivity in the non-colinear directions of free diffusion and an increase
in its value indicates a loss of anisotropy, thus, representing an increase in free water diffusion [15].
More recently, other features are reported in the literature including axial diffusivity (DA), the rate
of water diffusion along the longitudinal axis, and radial diffusivity (DR), or the rate of water
diffusion along the perpendicular axes [16,17]. Importantly, several DTI analysis methods can be
used, including voxel-wise analysis, region-of-interest (ROI) analysis, tract-based spatial statistics
(TBSS; [18]), and tractography. More recently, networks analysis has drawn a great deal of interest [19].
The characterization of global architecture or topological property of anatomical connectivity patterns in
the human brain can provide additional insights into structural disruption related to brain disorders [19].
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Figure 1. General procedure consisting in four steps: taking a dataset of diffusion tensor imaging
(DTI) or multimodal images, features extraction from the dataset, machine learning classification
based on most significant features, automated diagnosis obtained by classifying individual scans in a
specific clinical class. DA: axial diffusivity; DR: radial diffusivity; MD: mean diffusivity; FA: fractional
anisotropy; RA: relative anisotropy.

AD is characterized by a loss of brain barriers that determine a restriction of water motion, thus,
compromising the integrity of WM and leading to abnormal diffusivity patterns, and resulting in a
measurable difference in the diffusion of water molecules [20]. It has been suggested that such changes
precede macroscopic atrophy [21] and, while they are not visible on conventional structural MRI
sequences, they can be detected by DTI. Moreover, the literature suggests that WM integrity alterations
detected by DTI could be complementary to volumetric alterations [22].

Several studies have applied DTI technique for the characterization of WM integrity in AD (for a
review see [23]). In particular, DTI-based studies have shown that AD patients exhibit aberrant FA and
MD values in the white matter of specific cerebral regions [24]. Furthermore, other studies have found
similar, yet less severe, changes of these values in MCI patients [25]. In particular, voxel-based studies
showed that AD and MCI subjects have reduced fractional anisotropy (FA) in multiple posterior WM
regions [26] and increased mean diffusivity (MD) in the posterior occipital–parietal cortex and right
parietal supramarginal gyrus [27]. ROI-based studies demonstrated higher MD and/or lower FA in the
hippocampus [28–30] and posterior cingulate [31,32]. Notably, the results of a previous study showed
that measures of diffusivity extracted from the hippocampus are better predictors of MCI conversion
to AD than its volume [32]. Altogether, these results suggest that the biomarkers obtained from the
DTI technique can be used for AD classification through advanced classification methods [33].

For these reasons, combining DTI data with ML classification algorithms looks promising in
detecting specific AD and MCI biomarkers. In this paper, we present the resulting findings of several
studies in a systematic review regarding models of CAD that integrate DTI data (or the combination of
DTI with other MRI techniques) and ML methods to classify healthy controls and patients affected by
AD or MCI.

The main goal of this review is to examine the benefits and the issues of applying DTI combined
with ML algorithms in the detection of AD/MCI and to suggest future lines of research. To the author’s
knowledge, this is the only review in the existing literature focusing on studies that perform DTI-based
classification to detect AD and its early stage.
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2. Materials and Methods

A systematic literature review covering the period from the year 2010 through to the year 2019 was
conducted in PubMed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines [34]. Articles published before 2010 were not taken into account, due to the
limited knowledge of DTI at their disposal. The search strategy was (“machine learning” OR “artificial
intelligence” OR “classification”) AND “diffusion tensor imaging” AND (“alzheimer’s disease” OR
alzheimer’s OR alzheimer).

To reduce a risk of bias, two authors (L.Bi. and A.B.) independently screened paper abstracts and
titles and analyzed the full papers that met the inclusion criteria, as suggested by the PRISMA guidelines.

Overall, the search was limited to articles pertaining to studies that used supervised machine
learning methods on data derived from DTI or from other neuroimaging techniques combined with
DTI. Moreover, we included only studies that classified AD patients compared to healthy controls,
or that also included a sample of MCI subjects. We decided to exclude articles that did not include a
sample of AD but only included MCI patients and controls, since this review is mainly focused on the
automatic diagnosis of AD, and since we wanted to evaluate the benefits and the issues of using DTI
combined with ML methods, according to the literature so far, in a sample which is more uniquely
characterized and more homogeneous compared with MCI group. This search led to 51 articles, 36 of
which were selected. Among these, 15 articles were excluded: three of them were not focused on
AD or MCI disorders, nine did not consider any AD sample and one systematic review and two
studies did not involve DTI-based classification. From the remaining 21 articles, a consistent set of
information was extracted: the neuroimaging techniques involved, the number of pathologic patients
and healthy controls, the list of features, the classification algorithm(s) and the results (accuracy—ACC,
sensitivity—SEN, specificity—SPE). When multiple classifiers were tested, only the performance of the
one that achieved the best result are reported in Tables 1 and 2. In Figure 1, the general procedure for
data analysis and classification applied in the selected articles is represented.

In Appendix A, a comprehensive list of the acronyms and abbreviations used throughout the
paper can be found, while Appendix B contains a brief description of the ML approaches mentioned in
this paper.
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Table 1. Studies that use machine learning to classify only Alzheimer’s disease (AD) patients (bold classification methods indicate the preferred ones based on highest
performances).

Article
Neuroimaging

Technique
Subjects Measures Classifier

Classification Results

Feature Set/Method ACC% SEN% SPE%

DTI analysis

Graña et al., 2011 [35] DTI 20 AD, 25 HC FA, MD SVM
FA 100.0 100.0 100.0
MD ~99.0 ~97.9 ~98.1

Patil et al., 2013 [36] DTI 34 AD, 58 HC FA AdaBoost
FA (10 features) 84.5 80.2 85.2
FA (all features) 75.3 71.0 76.7

Patil and Ramakrishnan,
2014 [37] DTI 37 AD, 50 HC FA, MD, DR, DA

SVM, decision stumps,
simple logistic

FA (SVM)
MMSE 94.2 94.4 93.0

No MMSE 81.6 81.8 81.4

MD (SVM) MMSE 89.7 88.9 90.1
No MMSE 87.4 88.2 86.7

DR (SVM) MMSE 91.9 96.8 89.0
No MMSE 83.9 89.6 81.0

DA (SVM) MMSE 93.4 95.1 93.2
No MMSE 81.6 86.2 79.3

Schouten et al., 2017 [38] DTI 77 AD, 173 HC FA, MD, DA, DR
Logistic elastic
net regression

FA-TBSS 82.6 83.8 82.1
MD-TBSS 80.8 84.4 79.2
DA-TBSS 81.8 84.9 80.4
DR-TBSS 84.8 79.1 87.3
FA-ICA 85.1 86.8 84.4
MD-ICA 84.3 84.2 84.3
DA-ICA 83.4 89.7 80.6
DR-ICA 84.0 83.2 84.4

Connectivity graph 85.0 80.3 87.1
Degree 75.8 79.9 74.0

Strength 79.6 79.9 80.9
Clustering 75.6 76.6 79.5

Betw.centrality 64.6 66.9 66.8
Path length 69.6 59.5 72.7
Transitivity 64.9 62.5 77.2

Sparse Group Lasso 80.8 37.3 77.4
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Table 1. Cont.

Article
Neuroimaging

Technique
Subjects Measures Classifier

Classification Results

Feature Set/Method ACC% SEN% SPE%

Multimodal analysis

Mesrob et al., 2012 [39] DTI, sMRI 15 AD, 16 HC Diff: FA, MD
sMRI: GMC

Non-linear SVM

MD/GMC (15 multivariate) 99.6 99.2 99.9
MD/GMC (15 univariate) 72.1 53.6 90.6

MD/GMC (73 ROIs) 72.4 62.4 82.4
MD (73 ROIs) 65.2 60.8 69.5

FA/MD (73 ROIs) 68.6 73.4 63.8
GMC (73 ROIs) 76.5 78.7 74.3

Dyrba et al., 2013 [40] DTI, sMRI 137 AD, 143 HC Diff: FA, MD
sMRI: GMD, WMD

Multivariate SVM
NB

GMD (SVM) 89.3 87.4 91.2
FA (SVM) 80.3 78.8 81.9
MD (SVM) 83.3 79.6 86.9

WMD (SVM) 82.7 77.9 87.4

Li et al., 2014 [41] DTI, sMRI 21 AD, 15 HC Diff: FA
sMRI: GMV

SVM

Tract-Based FA + GMV 94.3 95.0 93.3
Tract-based FA ~89.0 90.5 86.7
Voxel-based FA ~83.0 90.5 80.0

GMV ~88.0 85.0 93.0

Dyrba et al., 2015 [42] DTI, sMRI,
rs-fMRI

28 AD, 25 HC

Diff. FA, MD, MO
sMRI: GMV

Rs-fMRI: local
clustering coefficient,
shortest path length

SVM
MK-SVM

DTI measures (SVM) 85.0 86.0 84.0
Rs-fMRI measures (SM) 74.0 82.0 64.0

GMV (SVM) 81.0 82.0 80.0
Rs-fMRI + DTI + GMV (SVM) 79.0 82.0 86.0

DTI + GMV (SVM) 85.0 79.0 92.0

Chen et al., 2017 [43] DTI, DKI 27 AD, 26 HC Diff: FA, MD, DA, DR
Kur: MK, AK, RK SVM

ALL-DKI
RFE 96.2 100 92.8

MMSE 90.6 100 83.9

Diff-DKI
RFE 92.5 100 86.7

MMSE 90.6 100 83.3

Diff-DTI
RFE 81.1 72.9 100

MMSE 86.8 81.3 95.2

Kur-DKI
RFE 86.8 83.3 91.3

MMSE 83.0 79.3 86.9
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Table 1. Cont.

Article
Neuroimaging

Technique
Subjects Measures Classifier

Classification Results

Feature Set/Method ACC% SEN% SPE%

Multimodal analysis

Cai et al., 2019 [44] DTI, sMRI 165 AD, 165 HC
BC, connection

strength LDA

BC (AAI) 84.6 - -
CN (AAI) 73.0 - -

BC + CN (AAI) 79.8 - -
Hippocampal volume (AAI) 68.1 - -

MMSE (AAI) 70.2 - -
Hippocampal volume + MMSE (AAI) 71.1 - -

BC (HOA) 75.0 - -
CN (HOA) 71.1 - -

BC + CN (HOA) 72.2 - -
Hippocampal volume (HOA) 61.5 - -

MMSE (HOA) 70.2 - -
Hippocampal volume + MMSE (HOA) 66.6 - -

Tang et al., 2016 [45] DTI, sMRI 29 AD, 23 HC Volume, deformation,
FA, MD

LDA, SVM

Results reported for
Right hippocampus
with SVM Volume

78.4 63.6 100.0

Shape
original 78.4 72.7 76.7

PCA 70.3 63.6 80.0
PCA + ttest 86.5 81.8 93.3

DTI 83.8 86.4 80.0
Volume + Shape

original 78.4 72.7 86.7
PCA 73.0 68.2 80.0

PCA + ttest 89.2 86.4 93.3
DTI + Shape

original 81.8 72.7 93.3
PCA 83.8 86.4 80.0

PCA + ttest 94.6 95.5 93.3
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Table 2. Studies that use machine learning to classify AD and MCI patients (bold classification methods indicate the preferred ones based on highest performances).

Article
Neuroimaging

Technique
Subjects Measures Classifier

Classification Results

Task Feature Set/Method ACC% SEN% SPE%

Shao et al.,
2012 [46] DTI 17 AD, 21 HC, 23 MCI FA, MD, FD SVM, k-NN, NB

AD/HC
(SVM)

FD 100.0 - -
FA 92.1 - -
MD 100.0 - -

MCI/HC
(SVM)

FD 97.7 - -
FA 84.1 - -
MD 93.2 - -

MCI/AD
(SVM)

FD 85.0 - -
FA 82.5 - -
MD 85.0 - -

Nir et al.,
2015 [47] DTI

37 AD, 50 HC,
113 MCI FA, MD SVM

AD/HC

MD-fdr cva (n = 641) 84.9 84.4 85.7
FA-fdr cva (n = 214) 77.8 78.2 77.3

FA (n = 1080) 74.5 75.0 73.9
MD (n = 1080) 80.6 79..2 82.4

MCI/HC MD-fdr cvl (n = 12) 79.0 76.9 81.5
MD (n = 1080) 68.3 69.8 66.4

Demirhan
et al., 2015 [48]

DTI 43 AD, 70 HC,
114 MCI

FA SVM

AD/HC Whole WM
Relieff1500

80.8
87.8

-
-

-
-

MCI/HC Whole WM
Relieff1500

63.6
78.5

-
-

-
-

AD/MCI Whole WM
ReliefF1500

73.9
85.3

-
-

-
-

Prasad et al.,
2015 [49] DTI

38 AD, 50 HC,
38 lMCI, 74 eMCI

Measures of
connectivity SVM

AD/HC FI(N) + FL(N) 78.2 - -
eMCI/HC FI(N+M) 59.2 - -
lMCI/HC FL(N) 62.8 - -

eMCI/lMCI FI(N)+ FL(N) 63.4 - -

Ebadi et al.,
2017 [50] DTI 15 AD, 15 HC,

15 MCI
FA

Logistic regression,
random forest, NB,

k-NN and SVM,
ensemble

AD/HC No Feat. selection 73.3 - -
(Ensemble) Feat. selection 80.0 - -

MCI/HC No Feat. selection 50.0 - -
(Ensemble) Feat. selection 70.0 - -

AD/MCI No Feat. selection 73.3 - -
(Ensemble) Feat. selection 80.0 - -
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Table 2. Cont.

Article
Neuroimaging

Technique
Subjects Measures Classifier

Classification Results

Task Feature Set/Method ACC% SEN% SPE%

Maggipinto et
al., 2017 [51] DTI 89 AD, 90 HCI, 90

MCI
FA, MD Random forest

AD/HC

FA, non-nested 87.0 - -
FA, nested 75.0 - -

MD, non- nested 83.0 - -
MD, nested 76.0 - -

MCI/HC

FA, non-nested 81.0 - -
FA, nested 59.0 - -

MD, non-nested 79.0 - -
MD, nested 60.0 - -

Eldeeb et al.,
2018 [52] DTI 35 AD, 31 HC,

30 MCI
FA, MD SVM

AD/HC

MD-SIFT 98.3 97.0 100.0
MD-SURF 74.3 100 55.0
FA-SIFT 95.5 98.0 95.0
FA-SURF 62.0 92.0 20.0

MCI/HC

MD-SIFT 93.6 89.0 97.0
MD-SURF 83.0 82.3 92.0
FA-SIFT 92.0 95.0 87.08
FA-SURF 58.0 49.0 77.0

AD/MCI

MD-SIFT 92.0 98.0 91.0
MD-SURF 58.0 94.0 41.0
FA-SIFT 92.0 98.0 87.0
FA-SURF 56.0 100.0 20.0

Multiclass

MD-SIFT 89.0 - -
MD-SURF 55.0 - -
FA-SIFT 87.0 - -
FA-SURF 43.0 - -

Ye et al.,
2019 [53] DTI

40 AD, 27 cMCI, 48
sMCI, 46 HC

Connectivity
strength PLS-DA

AD/HC Whole-brain 78.5 * 71.9 70.1
MDMR selected 81.7 * 67.0 76.2

cMCI/HC Whole-brain 78.3 * 54.7 85.0
MDMR selected 86.2 * 71.3 79.3
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Table 2. Cont.

Article
Neuroimaging

Technique
Subjects Measures Classifier

Classification Results

Task Feature Set/Method ACC% SEN% SPE%

Dalboni da
Rocha et al.,

2020 [54]
DTI 15 AD, 15 MCI, 15 HC FA SVM

AD/HC
Whole-brain 80 - -

Hippocampal Cingulum 87 - -
Parahippocampal Gyrus 83 - -

MCI/HC
Whole-brain 60 - -

Parahippocampal Cingulum 57 - -
Parahippocampal Gyrus 47 - -

AD/MCI
Whole-brain 77 - -

Hippocampal Cingulum 83 - -
Parahippocampal Gyrus 67 - -

Dou et al.,
2020 [55] DTI

89 AD, 71 aMCI,
82 HC

FA, MD,
DR, DA SVM, LDA, XGB

AD/HC
(SVM)

Dataset 1 82.5 85.1 79.4
Dataset 2 82.3 80.9 82.3

aMCI/HC
(SVM)

Dataset 1 52.0 24.7 74.6
Dataset 2 51.2 24.3 74.4

AD/aMCI
(SVM)

Dataset 1 77.7 89.3 61.7
Dataset 2 82.2 83.3 81.0

* Area under Receiver Operating Characteristic (ROC).
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3. Results

The 21 articles selected (Figure 2) are separated in two groups: classification considering only
AD patients and healthy controls (HC) (n = 11) and classification including MCI patients (n = 10).
For each article, when multiple classification approaches were tested, the best performance is reported
in bold. Since some studies did not provide all the exact values of accuracy, sensitivity or specificity,
these values have been deduced from plots.
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Figure 2. The four phases—identification, screening, eligibility and inclusion—of the process for the
selection of the studies in this systematic review.

3.1. AD/HC Classification

The articles included in this review have been further classified depending on the type of
neuroimaging technique used. Information extracted is showed in Table 1. Among the eleven studies of
Table 1, four of them analyzed only DTI scans (DTI analysis), while the remaining seven also involved
other neuroimaging modalities such as sMRI and rs-fMRI (multimodal analysis).

3.1.1. DTI Analysis

Graña et al. [35] trained an SVM using DTI measures to classify AD patients and HC. Images from
DTI scans were preprocessed, in order to extract FA and MD. Different methods of cross-validation
were employed, and the most accurate prediction was obtained by the leave-one-out method: with
FA features, a 100% accuracy, sensitivity and specificity were achieved, while MD features achieved
lower values.
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Patil et al. [36] identified specific white matter regions which might represent AD markers.
Classification between AD and HC was performed by the Adaptive Boosting (AdaBoost) algorithm.
Considering FA measures and a set of 10 features, selected by a genetic algorithm, the accuracy,
sensitivity and specificity scores were, respectively, 84.5%, 80.2% and 85.2%. If the feature set is not
reduced, these values decreased due to overfitting (ACC = 75.3%), thus proving that features’ reduction
improves classification accuracy by removing redundancy. It can be noticed that, considering MD
in place of FA, no significant changes in accuracy were observed, suggesting that FA is an effective
parameter for AD/HC classification.

Patil and Ramakrishnan, in a successive study [37], focused on the correlation between the DTI
indices and the mini-mental state examination (MMSE) score. FA, MD, DR and DA measures were
obtained from DTI images of AD-damaged cerebral areas and then fed singularly or along with
MMSE as inputs of an SVM, decision stumps and a simple logistic. The best results were achieved
by considering the feature combination of FA and MMSE score (ACC = 94.2%) with SVM. Although
there was not a significant correlation between DTI indices and MMSE score, the latter improved
classification accuracy for each parameter.

Schouten et al. [38] differentiated between AD and HC through four DTI measures: FA, MD, DR and
DA. As a first step, voxel-wise measures (FA, MD, DR, DA) were extracted via TBSS; these voxel measures
were then separately clustered with independent component analysis (ICA). Then, probabilistic
tractography applied on the clustering results allowed to determine a structural connectivity network
and graph measures. Using TBSS, best accuracy was reached by RD (ACC = 84.8%), closely followed
by the other DTI measures. ICA reached an accuracy of 85.1% with FA, while other performance
scores were not dissimilar to those of TBSS. The ICA method allowed a significant reduction of
features, while structural connectivity-based classification showed best results on the connectivity
graph (ACC = 85.0) compared to other measures. Lastly, the Sparse Group Lasso (SGL) was used to
assess the performance of parameters’ combination: although reaching good classification accuracy,
the best values were achieved by single parameters. Nevertheless, SGL shows that the most important
contribution is given by TBSS and ICA’s measures, connectivity graph and strength parameters.
This finding suggests that DTI and graph theory provide complementary information.

3.1.2. Multimodal Analysis

Mesrob et al. [39] developed a multimodal method to classify AD and HC based on data from both
DTI and structural MRI (sMRI). The model identified 73 anatomical cerebral regions of interest (ROIs)
and the extraction of different parameters concerning them. Most distinctive regions for discrimination
between subjects were selected using both univariate (t-test) and multivariate (SVM-based recursive
feature elimination (SVM-RFE)) methods and then used to train an SVM for classification. FA and MD
from DTI were considered, while gray matter concentration (GMC) was obtained from sMRI. Moreover,
two multimodal parameters were used: MD/GMC and MD/FA. The best accuracy value (ACC = 99.6%)
was achieved by the multimodal parameter MD/GMC on the 15 regions chosen through the multivariate
feature selection method. Interestingly, the GMC parameter alone obtained higher accuracy value
(76.5%) than any other accuracy obtained by other single parameters. However, classification with the
multimodal parameter in the selected regions outperformed all other parameters combined.

Dyrba et al. [40], combined data originating from different kinds of scanners to classify AD patients
and controls by considering FA and MD from DTI and the densities of white matter and gray matter
(WMD, GMD) from sMRI. Such processed data served as the training set for an SVM and a naïve Bayes
(NB) classifier. Furthermore, two different methods of cross-validation (CV) were employed: pooled
CV and scanner-specific CV. Entropy-based information gain (IG) criterion, which allows to identify
the more useful features for data separation, was used for feature selection. As expected, the SVM was
more accurate than the NB classifier: best results were achieved by SVM using a pooled CV method on
GMD data, with an accuracy of 89.3%. Interestingly, DTI data yielded inferior accuracy compared to
GMD data.
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Li et al. [41], combined DTI and sMRI indices to assess their discriminatory power in AD/HC
classification. FA was measured from both tract- and voxel-based DTI, while gray matter volume (GMV)
was obtained from sMRI. The best classification outcome resulted in the combination of tract-based FA
and GMV (ACC = 94.3%). Considering only DTI indices, it was observed that tract-based FA yielded
better accuracy than voxel-based FA.

Dyrba et al. [42] compared data derived from three different neuroimaging techniques: DTI, sMRI
and resting-state functional MRI (rs-fMRI). The selected diffusion indexes were FA, MD and mode of
anisotropy (MO). GMV was obtained from sMRI, while two parameters were extracted from rs-fMRI:
“local clustering coefficient” and “shortest path length”. Both single and multimodal parameters were
used to train and test an SVM. A multiple kernel SVM (MK-SVM) was also tested, which allows for
the combination of different imaging modalities. High accuracy values were reached using singular
DTI indices (ACC= 85.0%) and GMV alone (ACC= 81.0%) as inputs for SVM, while for multimodal
analysis, accuracy was 85.0% combining DTI measures and GMV. The multimodal results did not
differ significantly from the results of the single modalities. In addition, the MK-SVM did not improve
the results.

Chen et al. [43], assumed that combining DTI and DKI (diffusion kurtosis imaging) data could
improve Alzheimer’s detection compared to single modalities. Diffusion indices (FA, MD, DA, DR) were
measured from both DTI and DKI, while kurtosis indices (mean kurtosis—MK, axial kurtosis—AK,
radial kurtosis—RK) were obtained from DKI. Two different methods of features selection were
employed: SVM-RFE and correlation coefficients with MMSE score (CORR-MMSE). SVM-RFE ranking
led to high scores in the occipital white matter, whereas the scores from CORR-MMSE ranking selected
the splenium of the corpus callosum and the posterior limb of the internal capsule, which were omitted
in the scoring of diffusivity indices. According to these results, different regions are more predictive of
the condition in different parametric maps and this presented a different sensitivity effect of matrices
in pathological detection. The results show that DKI-diffusion indices (Diff-DKI) yielded a better
performance than DTI-diffusion indices (Diff-DTI) (ACC = 92.4% vs. ACC = 81.1%). Moreover, the
highest performance (ACC = 96.2%) resulted from the combination of kurtosis and diffusion indices
from DKI (ALL-DKI), highlighting that kurtosis provided additional information in the detection
of abnormalities.

Cai et al. [44] selected 330 participants from the ADNI (Alzheimer’s Disease Neuroimaging
Initiative) database and developed a classifier based on structural brain network modeling through the
rich-club hierarchical network paradigm. Both the Automated Anatomical Labeling (AAL) and the
Harvard-Oxford Atlas (HOA) were considered for the structural networks’ construction, performed
on DTI and b0 (sMRI) images, aligned with the PANDA pipeline tool, for each individual included
in the study. The classification between AD and HC was performed through linear discriminant
analysis (LDA) on the following topologic parameters extracted from the resulting structural brain
networks: “betweenness centrality (BC)” and “connection strength”. The classification accuracy of both
BC and connections strength was compared with common measures in AD diagnosis: hippocampal
volume and MMSE. The study findings reported significant difference in BC and connection strength
between AD and controls for some brain regions, which were specific to each atlas (AAL or HOA).
These relevant connections were considered as classification features to distinguish AD from controls.
The best results were obtained using the AAL atlas, which achieved the best outcome in particular
(ACC = 84.62%), with BC applied to the left putamen and left precuneus.

Tang et al. [45] closely examined the feasibility of AD/HC classification through volumetric,
morphometric and DTI-based features specifically extracted from hippocampus and amygdala.
T1 sMRI images of the participants were segmented with a two-level diffeomorphic multi-atlas
likelihood-fusion algorithm and the help of an expert neuroanatomist, in order to calculate the volume
of hippocampus and amygdala. The T1 images were also 3D segmented, creating triangulated surfaces
of the regions of interest, and through large deformation diffeomorphic metric mapping (LDDMM),
shrinking or expansion of local surface vertices, in relation to the adequate template, was estimated.
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DTI images were processed and segmented to obtain FA and MD values of hippocampus and amygdala.
The feature set thus included volumetric measures, DTI indices and the deformation degree at each
vertex of the modeled surfaces. Given the high number of vertices (over 1200), feature reduction through
principal component analysis (PCA, selecting 95% of variance) and t-test was explored. Classification
was performed with both LDA and SVM, validated through leave-one-out cross-validation, with SVM
achieving the best results, reaching an accuracy of 94.6% for the best-case scenario with the most
significative feature set, for 37 total subjects. Even though the feature reduction process significantly
improved the performance of the LDA classifier, while not substantially affecting SVM, the SVM
classifier still outperformed the LDA. Given the complexity of results of this study in Table 1, we only
reported the performance for the right hippocampus using SVM, for which the best performance was
obtained, showing how the results change according to the combination of the image modalities used.

3.2. AD/MCI/HC Classification

In Table 2, ten articles that include MCI classification are summarized. All these studies employ
only DTI analysis.

Shao et al. [46] proposed individual structural connectivity networks (ISCNs) to distinguish
predementia and AD from healthy aging, in individual scans. For each connection, three attributes
were calculated: fiber density (FD), the mean value of FA and mean value of MD across all voxels
for all connection fibers. Once the structure of ISCNs was identified, three classifiers, namely, SVM,
k-nearest neighbor (k-NN), NB were trained to classify subjects based on selected connections. Among
the considered ML models, SVM yielded better accuracy. Patients with AD were distinguished from
healthy control subjects with an accuracy of 100% using FD and MD, while patients with MCI were
distinguished from healthy controls with an accuracy higher than 90%. This result is in line with
previous findings of widely distributed FA decreases and MD increases in MCI. Furthermore, groups of
MCI and AD patients were separated with an accuracy of about 85%, suggesting that ISCN alterations
increase during the course of AD. These study findings suggested that ISCNs may have the potential of
providing an imaging- and white matter-based biomarker for distinguishing between healthy subjects,
aging subjects and patients with very early AD.

Nir et al. [47] investigated white matter integrity via a novel tract clustering and registration
method that combines the strengths of voxel-wise and tractography-based methods, offering a compact
representation of fiber bundles. In the proposed method, maximum density paths (MDP) was applied
to whole-brain tractography. Differences in WM microstructure were determined by comparing FA and
MD along each MDP. Significant MD and FA differences between AD patients and HC subjects were
found, as well as MD differences between HC and late MCI subjects. Significant associations between
FA, MD and MDP measures and cognitive deficits, as measured by MMSE scores, were also observed
across all subjects. To discern between HC and AD groups, FA and MD values were tested along all
the mean MDP points (1080 points). The subset of significant FA points (FAFDR CvA = 214 points)
and the subset of significant MD points (MDFDR CvA = 641 points) was further tested: to distinguish
between HC and MCI, all the MD values along all the MDP points (1080 points) were used, as well as
the subset of significant MD points (MDFDR CvL = 12 points). Only MD measures were sensitive
enough to detect MCI differences and revealed more profuse associations than FA in all analyses.
The features interpolated along full mean MDPs were robust enough to reach high classification
accuracies (~80%), so that reducing dimensionality by including only statistically significant MDP
points did not dramatically increase classification accuracy (~85%).

Demirhan et al. [48] combined FA and MD measures from DTI to train an SVM classifier for the
classification of HCs, AD and MCI patients. Good performances were reached by distinguishing AD
from HC (87.8%), and MCI from HC (85.9%), while a lower value (78.4%) was obtained in separating
MCI from AD subjects. Through ReliefF, an algorithm that makes it possible to identify the most
discriminative voxels in white matter’s map, a best feature set consisting of 1500 elements was extracted.
Selecting a subset of these features did not provide a noticeable improvement in classification accuracy
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if the disease was at late stages. On the other hand, the selection of specific cerebral regions considerably
improved the AD/MCI and MCI/HC classification.

Prasad et al. [49] compared an ensemble of different anatomical connectivity measures using
both fiber and flow connectivity methods that may help in detecting AD patients. These features
were fed into a repeated, stratified 10-fold cross-validation design, using SVMs to classify controls vs.
AD, controls vs. early MCI (eMCI), controls vs. late MCI (L-MCI), and eMCI vs. L-MCI. The results
exhibit a significant difference in the accuracy of the various feature sets used to distinguish between
the various diagnostic groups. In each of these classification problems, nine different sets of features
were used: the fiber connectivity matrix, (FI(M)), the flow connectivity matrix (FL(M)), the fiber
network measures (FI(N)), the flow network measures (FL(M)), combinations of these sets as FI (N+M),
FL(N+M), FI(N)+FL(N), FI(M)+FL(M) and FI(N+M)+FL(N+M). All of these connectivity measures
were derived simply from diffusion images. The emphasis of the study was to explore and understand
which diffusion-based network measures are predictive of Alzheimer’s disease, in contrast to the
optimization of classification accuracy, as in previous studies. In this way, the classification accuracy
was adopted as the metric to evaluate different types of brain connectivity features, and to understand
which ones may have an advantage in predicting MCI or AD insurgence.

Ebadi et al. [50] investigated the diagnostic potential of brain connectivity models regarding
AD and MCI, applying graph theory to DTI measures. Graphs represented connections between
different cerebral areas; once the graph measures were extracted, the best features were selected,
in order to optimize the classifier’s performance and reduce overfitting. Classification was conducted
through different classification methods (logistic regression, random forest, NB, k-NN and SVM) and
combining their output, to improve the performance of the whole model (Ensemble). They also tested
a k-best feature selection method where the features are ranked based on their power in performing the
classification, and then the top K features are selected for the given estimator. Ensemble with feature
selection obtained the best performance. AD patients and HC were classified with an accuracy of 80.0%,
while MCI patients were separated from controls with an accuracy of 66.7%; overall, the AD/MCI ratio
reached an accuracy of 76.7%.

Maggipinto et al. [51] proved the effect of feature selection bias (FSB) occurring in DTI-based AD
classification, leading to an overestimation of performance metrics. FA and MD maps were extracted
and registered to the same reference, and the regions corresponding to white matter were isolated
through the TBSS algorithm, extracting the skeleton of white fiber tracts for each patient. Feature
selection was performed via Wilcoxon rank sum test and the ReliefF algorithm both in a “nested”
(unbiased) and “non-nested” way: in the former, feature selection is done after training, while in the
latter it is performed before the training (i.e., only once). The classification task was accomplished
by a random forest with B = 300 learning trees trained with bootstrap aggregating. Performance
was assessed with 100 rounds of 5-fold cross validation. The results showed that the performance
diminished using a nested approach. For example, for FA accuracy, it dropped from a maximum
mean value of 87% (non-nested) to 75% (nested) in AD/HC discrimination, while for MCI/HC accuracy
dropped from 81% to 59%. The same behavior was observed considering MD, where ACC decreased
from 83% to 76%, and from 79% to 66% for the AD/HC and MCI/HC classification, respectively.

Eldeeb et al. [52] proposed a novel method to extract relevant markers associated with FA and
MD. After preprocessing of DTI-data, FA and MD maps of regions of interest were determined using a
“bag-of-words” model. This model has been used to model the hippocampus diffusivity maps patterns,
through clustering the extracted hippocampus features, where the number of features is changing
from one slice to another. Both the speeded up robust features (SURF) and the scale invariant feature
transform (SIFT) features were extracted. With these FA and MD maps, an SVM was then trained to
classify the different groups of subjects. Classification was performed for each pair of groups, and then
between all of the classes, solving a multiclass problem. The best accuracies were obtained with MD
map using a SIFT features descriptor and are reported as follows: 98.3% AD/HC, 93.6% MCI/HC, 92.0%
AD/MCI and 89.0% multiclass.
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Ye et al. [53] conducted a connectome-wide association (CWAS) study on AD, stable MCI (sMCI),
MCI converting to AD (cMCI) and healthy patients selected from the ADNI database to explore the
alterations in structural connectivity networks of white matter without any a priori hypothesis on
pathologic alterations. Whole-brain connectomes were generated through probabilistic fiber tracking
of registered T1 images and DTI scans, separated in 90 regions according to the AAL atlas. Multivariate
distance matrix regression (MDMR) paired with the delta method were applied to assess the variation
of distance in connectivity patterns, highlighting the brain regions that displayed greater differences
between the study groups. The discriminatory power of the connectivity features isolated by the
MDMR analysis was tested by comparing the classification performance obtained with them against
the whole-brain connectivity features, using a partial least squares discrimination analysis (PLS-DA)
classifier with five-fold cross-validation on 161 subjects. For cMCI/HC classification, considering
MDMR-selected features over whole-brain ones, the SEN score increased from 54.7% to 71.3%, while
SPEC decreased from 85.0% to 79.3%; regarding AD/HC classification, SEN went from 71.9% to 67.0%,
while SPEC grew from 70.1% to 76.2%.

Dalboni da Rocha et al. [54] classified AD, MCI and HC through an SVM applied to the patients’
FA maps obtained through DTI, focusing on brain areas frequently associated with AD abnormalities.
The analysis was repeated for the whole-brain and in specific brain areas both with and without a feature
selection stage, based on the Fisher Score. As expected, results obtained without feature selection
were lower. Among all the considered brain areas, two of them showed greater discriminatory power
(consistently lower FA) between AD and HC: the bilateral cingulum in the hippocampal formation and
the parahippocampal gyrus, in accordance with previous studies on AD indicating parahippocampal
white matter modifications. Repeating the analysis of both regions by requiring the voxels to have a
minimum Fisher Score (0.4/0.8) led to a maximum ACC of 93% in AD/HC classification considering the
cingulum in the hippocampal formation and 90% for the parahippocampal gyrus. However, MCI/HC
classification showed lower accuracy, in some cases close to chance level, possibly due to the inability
to assess FA on a submillimeter scale.

Dou et al. [55] evaluated the integrity of whole-brain WM structure using automated fiber
quantification (AFQ) for AD, amnestic MCI and healthy patients. The corrected, b0-aligned DTI images
of the patients were processed with the AFQ toolkit in order to identify 20 major fiber tracts that
have been shown to be relevant in AD progression, first by estimating the fiber tractography and
then by segmenting the fiber tracts of interest. The FA, MD, DR, DA of each point was determined.
Three classifiers were tested on a set of 1440 features per patient: SVM, LDA and extreme gradient
boosting (XGB). Performance was evaluated both with 10-fold cross-validation and leave-one-out
cross-validation. The results of this study summarized in Table 2 refer to SVM with leave-one-out cross
validation for which the best results were obtained. Patients were divided into a discovery dataset and
a replicated dataset and the statistical analysis, model learning and validation was repeated for both
databases, obtaining agreeing results: ACC = 82.56–83.72% for AD/HC classification, 77.78%–82.28%
for AD/aMCI classification and 52.02%–51.25% for aMCI/HC classification.

4. Discussion

In this review article, we identified twenty-two studies applying ML techniques for the classification
of AD based on DTI imaging data, used alone or in combination with other imaging techniques. Some of
the reviewed studies only differentiated between AD patients and healthy controls, while others also
included a group of MCI patients for the identification and differentiation of the prodromal stage of
the disease.

To the best of our knowledge, this is the first study that systematically reviewed classification
approaches in AD with a focus on DTI. The attention to this specific technique is due to the fact that DTI
is sensitive to microstructural white matter changes that are not visible with conventional volumetric
techniques, and thus may contribute to the search for early biomarkers of the disease [56].
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Studies discussed in this review have highlighted the role of DTI data as biomarkers of AD and
MCI. Combining the application of ML approach with features extracted from DTI scans can provide a
customized diagnosis for the early identification of AD, MCI and healthy subjects. Importantly, one of
the great advantages of applying classification algorithms on neuroimaging data is the potential use for
detecting AD at the prodromal stages, even well before clinical manifestation [57], which would have
potential application in routine clinical settings in the future. In particular, the early detection of MCI
is fundamental, since existing AD therapies show better results if the disease is still at earlier stages.

As regards the binary classification between AD and HC, very high performance in terms of
accuracy (>90%) was achieved by several studies ([35,37,39,41,43,46,52]), among which, two even
obtained 100% accuracy ([35,46]) (Figure 3). However, it should be noted that the sample size of these
studies, in particular of the ones obtaining an accuracy of 100%, is quite limited (15–35 subjects per
group), thus, the model could have been overfitted and could lack generalizability.
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Studies reported in this review show evidence that automated DTI-based classifications of both
MCI/HC and MCI/AD provide considerably inferior results than AD/HC separation (accuracy: ~80%).
Only two studies obtained an accuracy higher than 90% [46,52], but also in this case, the limited sample
size needs to be considered as a potential bias (Figure 4). Lower accuracy in these classifications
is probably due to less marked differences between the features extracted. In addition, it is worth
mentioning that, also from a clinical point of view, there is less confidence in the underlying pathology
in MCI patients. Indeed, MCI itself is an heterogenous group, which is not always screened for
primarily amnestic type or amyloid biomarkers that would increase the probability of prodromal AD.

Only one work [52] investigated the ternary problem: AD vs. MCI vs. HC and reached a good
performance (accuracy = 89%). Thus, from this study, it seems that the integration of DTI with ML can
be a variable instrument for the AD vs. MCI vs. HC classification also in clinical practice.

Interestingly, one study [49] also compared early MCI (eMCI) vs. late MCI (L-MCI), obtaining
a quite low accuracy (63.4%). Thus, the problem of detecting subtle differences between subgroups
needs to be further investigated.

Importantly, the reviewed studies differed by several factors including the sample sizes, the imaging
analysis approach (i.e., voxel-based vs. tract-based), different features extracted, different feature
selection methods and classification approaches. For this reason, it is difficult to quantitatively compare
the different studies, while a qualitative analysis of the results can be performed.

Concerning the classification approach, it can be observed that SVM was the most frequently
adopted method both for the classification of only AD [35,37,39–43,45] or also MCI [46–49,52,54,55]
classification (Figures 3 and 4). Linear discriminant analysis [44,45,55] or naïve Bayes [40,46] were
also sometimes used in AD classification. Other less common classification algorithms retrieved used
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AdaBoost [36], extreme gradient boosting [55], Logistic elastic net regression [38], k-NN [46], Ensemble
classification [50], random forest [51] and PLS-DA [53] (Figures 3 and 4).Processes 2020, 8, x FOR PEER REVIEW 18 of 30 
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Few studies have compared different classification approaches [40,45,46,55], all of them finding
that SMV outperformed the other classifiers. However, in future studies, it would be useful to perform
a more extensive comparison of the performance of diverse classification algorithms.

Another important factor that influences the performance concerns the extracted features.
The first important distinction is between studies which computed voxel-based or ROI-based features
(i.e., [35–37]) vs. studies relying on tract-based features (i.e., [38,49]). In the first case, diffusion features
are computed in each voxel, or in specific ROIs, of the whole-brain, while in the second method,
white matter fiber tracts are estimated and for each tract, the mean value of the desired diffusion
feature is calculated. Then, while most of the studies computed quite common and simple diffusion
features like fractional anisotropy, mean diffusivity, betweenness centrality, radial or axial diffusivity
and connectivity strength (i.e., [35,37,44,51]), few studies extracted more complex features [38,49].

Most of these studies showed that FA represents the best diffusion feature for classification models
and provides valuable information to distinguish between AD and healthy subjects [35,37,38,51],
while others obtained better results using other features like MD [47,52]. Concerning MCI vs. HC
classification, some studies [46,47,49,52] reached better performances using mean diffusivity and fiber
density as features.

In one study [41], the performances using voxel- and tract-based features were compared.
According to the result of this study, tract features seem to perform better in differentiating between AD
and HC. This could be due to the fact that the clustering of voxel in the tracts reduces dimensionality
by grouping voxels with similar anatomic and functional characteristics.

In addition, two studies [37,44] found that clinical parameters, such as MMSE score, can also
improve classification performances, meaning that the inclusion of other types of features, like clinical
scores, can improve the performance.

In addition to classification and feature extraction, feature selection is also important for identifying
discriminating features. The selection of appropriate features not only removes the non-informative
signal, but also reduces the computational time involved in classification. The two most adopted
methods for feature selection are biologically informed and automated feature selection methods.
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The former relies on prior biological knowledge about the discriminating ability of certain regions,
generally obtained from existing literature, whereas the latter selects features based on general data
characteristics, without prior knowledge.

The automated methods applied in the reviewed studies included genetic algorithm [36], t-test [39,45],
recursive feature elimination [39,43], PCA [45], Wilcoxon rank sum test [51], ReliefF algorithm [48,51],
multivariate distance matrix regression [53], false discovery rate [47] and k-best method [50]. Although
it is difficult to say which is the best feature selection algorithm, since a comparison study is missing
and several studies differentiate for multiple factors, it is evident from all these studies that selecting
the most discriminant features improves the performance of the classifier by eliminating redundant or
less useful features from the dataset. In particular, [51] shows that a feature selection which is blind to
the t-test, leads to overoptimistic results (10% up to 30% relative increase in area under curve (AUC)).

Some studies applied a biologically informed selection method and focus only on regions, which
are known to be compromised in AD, in particular hippocampus [44,45], parahippocampal gyrus
and hippocampal cingulum [54] or amygdala [45]. Indeed, the hippocampus and the amygdala are
among the anatomical structures of particular interest to the study of AD, mainly because of their
active involvement in memory [58]. Both the global volume and the local shape of the hippocampus
and the amygdala have been found to be compromised in AD [59,60]. The performance obtained by
these studies are comparable to those obtained using automated methods. In particular, diffusion
features from the right hippocampus [38,45] or from the parahippocampal gyrus [54] provided the
best results in discriminating between AD/HC or AD/MCI. Indeed, it has previously been suggested
that automated feature selection will not improve classification accuracy as compared to biologically
informed feature selection, driven by prior biological knowledge of regions typically affected by AD,
such as the hippocampus, amygdala, thalamus and caudate [61]. Notably, in the classification MCI/HC,
whole-brain analysis performed better in [54], possibly due to the more subtle and sparse alterations in
the prodromal stage of the disease.

The last important point to be considered when discussing the reviewed studies concerns the
application of unimodal versus multimodal images. For AD/HC classification, five studies integrated
DTI with sMRI [39–41,44,45], while only one also added fMRI [42]. One study also combined DTI
with a more novel technique, which is DKI [43]. Notably, none of those studies applied a multimodal
approach for the classification of MCI compared with AD.

All but one study [40] found that the results obtained using DTI measures outperformed those
obtained with volumetric images. The contradictory results in [40] could be due to the advanced
stage of the patient included in the study, so that the brain volume was highly compromised with
cortical atrophy. Another possible explanation for this contradictory result could be represented by
the multi-centric nature of the study. Indeed, it has been pointed out that DTI is more affected by
site effects due to differences in acquisition parameters than volume measures [62]. For this reason,
combining images of different sites could have mostly compromised the classification accuracy for
DTI images.

In addition, most of these studies found that the combination of multimodal features outperformed
the results obtained by using one single technique. Indeed, DTI-based features serve as a complementary
tool to volume-based features, as the two imaging techniques reflect tissue changes associated with
AD that correspond to pathological evidences in the gray matter and white matter, respectively.
Thus, from the results of this review, it seems that combining several neuroimaging modalities is
promising for further understanding the underlying disease mechanisms. However, it must be
noted that [42] found that combining parameters from different neuroimaging modalities does not
significantly improve AD/HC separation. Thus, future studies need to assess whether multimodal
imaging, including functional (or metabolic) imaging methods, provides additional diagnostic accuracy
for the classification of AD clinical labels, which could only be obtained from pathology.

In addition to the above-mentioned future lines of research, including the testing and fair
comparison of different classifier and different feature extraction/selection approaches and a more
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systematic evaluation of the benefits of multimodal imaging compared with unimodal one, other future
directions can be suggested. At first, it would be important to include larger samples of subjects since
most of the reviewed study deals with quite low study groups. Larger samples from different sites,
together with better pooling analysis methods, may improve the statistical power of the analysis,
allowing to obtain more reliable information [63].

Then, future works should be more focused on the integration of heterogenous data sources,
since promising results were obtained so far in this direction. Such data should importantly include
physiological and functional parameters that can aid in constructing diagnostic tools with higher
sensitivity and specificity, for more effective analysis of brain diseases [8]. Moreover, other miscellaneous
data than neuroimaging could improve the classification of AD, including cognitive measures,
risk factors associated with AD or cerebrospinal fluid measures [64].

Another important line of future direction consists in the implementation of longitudinal studies,
which include different stages of AD for a better understanding of the progression of the disease,
from the earliest to the most advanced stages. Indeed, a better understanding of the progression of
neuronal deterioration and its correlation with psychological symptoms may help setting up new
tailored treatments, such as real-time neurofeedback [65] and brain-computer interface training [66].

Finally, the application of deep learning methods and in their comparison with ML approaches
should be better investigated in the future. With respect to conventional ML methods, deep
learning algorithms require little or no image pre-processing, and can automatically infer an optimal
representation of the data from the raw images without requiring prior feature selection, thus resulting in
a more objective and less biased process [67]. Few papers on the application of deep learning approaches,
and in particular convolutional neural networks, in the classification or prediction of AD using DTI
imaging data have been recently published achieving good results [68,69]. More comprehensive studies
are needed to evaluate the advantages of these methods compared with more traditional approaches.

5. Conclusions

To summarize, the results of this review showed that ML algorithms can be successfully
applied to DTI or multimodal imaging data to deepen the current understanding of structural
and functional connectivity mechanisms of AD and MCI, representing one of the ultimate goals of
future AD-related research.

According to existing studies, the classification between AD and HC performs better than that
between AD and MCI or MCI and HC, probably due to the less advanced study concerning MCI
and to the heterogeneity of this group. Support vector machine appears to outperform the other
classifiers, although in this domain other approaches (i.e., random forest) are promising. Regarding
selected features, FA provided the most powerful results in AD/HC classification, possibly due to
the high disruption of WM integrity, while in the detection of MCI, other features could be more
reliable, in particular MD. Focusing on specific ROIs, in particular the hippocampus and the amygdala,
which are known to be compromised in AD, might not decrease the performance compared with
a whole-brain analysis, at least in the classification between AD and HC. Multimodal approaches
that look for patterns of neurodegeneration across different kinds of bioimages are gaining increasing
attention and seem to be promising for a better classification of AD or MCI. Multimodal imaging
approaches, MCI-biomarkers, characterization of different stages of the disease, testing and comparing
different types of classifiers, including deep learning algorithms, feature selection algorithms and
bigger sample sizes, are important strategies that are likely to be emphasized in future studies.
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Appendix A

List of Acronyms and Abbreviations

AAL Automated Anatomical Labeling atlas
ACC Accuracy
AD Alzheimer’s disease
ADNI Alzheimer’s Disease Neuroimaging Initiative
AFQ Automated fiber quantification
AK Axial kurtosis
AdaBoost Adaptive boosting
ALL-DKI Combination of kurtosis and diffusion indices from DKI
BC Betweenness centrality
CAD Computer-aided diagnosis
cMCI MCI patients that eventually converts to AD
CORR-MMSE Correlation coefficient with the MMSE score
CSF Cerebrospinal fluid
CV Cross-validation
CWAS Connectome-wide association
DA Axial diffusivity
Diff-DKI DKI diffusion indices
Diff-DTI DTI diffusion indices
DKI Diffusion kurtosis imaging
DR Radial diffusivity
DTI Diffusion tensor imaging
eMCI Early MCI patient
FA Fractional anisotropy
FD Fiber density
GMC Grey matter concentration
GMD Grey matter density
GMV Grey matter volume
HC Healthy control patient
HOA Harvard-Oxford atlas
ICA Independent component analysis
IG Information gain
ISCN Individual structural connectivity network
k-NN k-nearest neighbors algorithm
LDA Linear discriminant analysis
LDDMM Large deformation diffeomorphic metric mapping
L-MCI Late MCI patient
MCI Mild cognitive impairment
MD Mean diffusivity
MDMR Multivariate distance matrix regression
MDP Maximum density path
MK Mean kurtosis
MK-SVM Multiple-kernel SVM
ML Machine learning
MMSE Mini-mental state examination
MO Mode of anisotropy
MRI Magnetic resonance imaging
NB Naïve Bayes classifier
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PCA Principal component analysis
PET Positron mission tomography
PLS-DA Partial least squares discrimination analysis
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RA Relative anisotropy
rs-fMRI Resting-state functional MRI
ROI Region of interest
RK Radial kurtosis
SEN Sensitivity
SGL Sparse group lasso
SIFT Scale invariant feature transform
sMRI Structural MRI
SPE Specificity
SURF Speed up robust features
SVM Support vector machine
SVM-RFE SVM-based feature recursive elimination
TBSS Tract-based special statistics
WM White matter
WMD White matter density
XGB Extreme gradient boosting

Appendix B

Appendix B.1. Machine Learning Overview

Machine learning (ML) is a broad term referring to an ensemble of computer algorithms that
adapt their output through experience to match a desired outcome. Generally, an ML algorithm returns
an output value determined by its input variables, called features, in order to refine the aptness of the
computed output the program first learns on a training dataset, while evaluation of its performance
is done on one or more validation datasets. The size of the data involved in both steps is crucial,
as small samples could lead to unreliable results. ML models are most often grouped into three
categories, depending on the nature of the learning process: in supervised learning, the program
learns on a labelled dataset where the desired outcome is known, adjusting its output to replicate as
best as possible the desired one; in unsupervised learning, the data is not labelled and the algorithm
looks for similarities in the inputs by modeling their probability densities, highlighting the standing
relations between them; in reinforcement learning, the algorithm discovers the desired outcome in
a process of trial and error, and adapts its output to maximize the correct decisions that lead to it.
The machine learning aspects of this review specifically concern one of the four kinds of learning
problems, classification, where the output belongs to a discrete range (AD, HC and/or MCI) and with a
supervised learning process. Consequently, these ML models are classifiers, i.e., objects that assign
each feature vector x (a patient) to one of the c classes or groups. A brief description of each method
mentioned in this paper follows. For additional background, see [70–72].

Appendix B.2. Support Vector Machine

The support vector machine (SVM) is a supervised, non-probabilistic linear classifier, meaning
that it can learn to discriminate data belonging to two classes by searching for the linear boundary
(called hyperplane) that maximizes the margin between the two known classes. If the input is an array
x consisting of n features, meaning it is a point in a n-dimensional space, the SVM method finds a
linear surface of dimension n-1 that divides the two clouds of n-dimensional points belonging to the
two classes. That is, optimizing the hyperplane parameters in order to maximize its distance from the
closest point, which is a problem that can be reduced to minimization of a quadratic error function.
Although in its simplest definition SVM is a linear classifier, by employing the nonlinear kernel trick
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nonlinear classification can be performed. Moreover, the model can be adjusted if the two classes are
not clearly separated in the n-dimensional space by relaxing the hard margin constraint in favor of a
soft margin; SVM can also be adapted to resolve multiclass problems in various ways, generally by
combining a bank of SVM classifiers.

Appendix B.3. Logistic Regression

Logistic regression, even if called “regression”, is actually a classification model where the
relationship between the features and the log-odds (the logarithm of the odds ratio) of the c classes
is assumed to be linear. In other words, the posterior probability of each class is a logistic sigmoid
function acting on a linear combination of the feature vector. The n parameters of the linear function are
estimated for each class, so that for each datapoint x (consisting of n features), a score corresponding
to each class is computed; the observation is then assigned to the class presenting the highest score.
The parameters of the logistic regression can be determined by maximizing the log-likelihood of the data
with a numerical optimization algorithm, typically with regularization of the coefficients (Maximum A
Posteriori (MAP) estimation), such as the ridge regression (L2 penalty), the lasso regression (L1 penalty)
or the elastic net regression (L1+L2 penalty). Regularization helps prevent excessive overfitting,
reducing estimator variance whilst introducing a small bias. This model is usually formulated for a
two-class problem, but can be extended to an arbitrary number of classes.

Appendix B.4. Naïve Bayes Classifier

The naïve Bayes classifier refers to a simple, yet robust family of models based on the assumption
that the features x are independent. This assumption allows the posterior probability distribution
for each class to depend merely on the product of n one-dimensional likelihoods, thus, not requiring
estimation of conditional distributions. Parameters are learned with likelihood maximization,
estimating the one-dimensional densities for each class and feature, which can be done in various ways,
depending on the statistical hypotheses made on the data (the naïve Bayes event model). Usually,
classification of data is done by choosing the most probable outcome, i.e., the class that exhibits the
higher posterior probability for the observation.

Appendix B.5. Linear Discriminant Analysis

Linear discriminant analysis (LDA), derived from Fisher’s discriminant analysis, is a classifier
based on dimensionality reduction. The n-dimensional feature space is projected into one dimension
with the weight array w: y = wTx. Each class is supposed to be distributed as a multivariate Gaussian,
with all the covariance matrixes of the said class densities assumed to be equal (without this last
assumption, the resulting model is the quadratic discriminant analysis). The log-odds of the classes
posterior probability is then a linear function of x, and the decision boundary between any two classes
is linear, resulting in a hyperplane in the feature space separating each pair of groups. Classification
occurs by defining the thresholds over which the new data is assigned to one group instead of the
others, in the projected one-dimensional space. Considering two classes 0 and 1, if wTx > c x will
be assigned to class 1, otherwise to class 0. Thus, learning for this model consists in defining the
direction of projection that maximizes separation between the classes w and the decision threshold c by
estimating the parameters of the multivariate of the classes’ Gaussian distribution. Multiclass tasks
can be performed either by combining several discriminants (one-versus-the-rest, one-versus-one) or
by considering a single classifier with c linear discriminant functions.

Appendix B.6. Partial Least Squares Discriminant Analysis

Partial least squares discriminant analysis (PLS-DA) is a variant of the partial least squares
regression, where the dependent variable y is converted to a categorical field. In a manner not
dissimilar to principal component regression, partial least squares regression finds a set of linear
combination of the inputs, selecting a subset of the components as regressors, but considering both
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y and x for the projection into component space. This algorithm finds the latent variables with the
maximum covariance with the y variable, instead of seeking directions that explain only the most
variance. Considering all available directions would correspond to a conventional least square estimate,
while selecting only a subset of them leads to a reduced regression with lower chances of overfitting.
The conversion of the continuous value of y into its corresponding categorical value (i.e., turning a
regressor into a classifier) can be done by comparing, for each new observation x, the c class values
resulting from the PLS regression: the observation is then assigned to the class that showed the
highest probability.

Appendix B.7. K-Nearest Neighbors

The nearest neighbor family of classifiers process new observations x depending on the outcome
of the closest datapoints. On its most elementary form, the k-nearest neighbors (k-NN) classifier
assigns the data x to the most popular class among its k neighbors, where k is a user-defined parameter.
Distance can be determined with various metrics, the most common one being the Euclidean distance.
Several versions of supervised k-NN exists, where the object of the learning process is usually the
definition of the metric that better sorts the training inputs in their respective groups. This means

finding the matrix M which, placed in d
(
xi, x j

)
=
(
xi − x j

)T
M
(
xi − x j

)
minimizes the classification error.

Appendix B.8. Random Forest

The random forest is a regression and classification technique based on bagging (bootstrap
aggregating), by training a large ensemble of decision trees with low correlation between them, which
are then averaged. A decision tree, often represented in their flowchart structure, is a model consisting
of subsequent binary splits of the input space. A tree consists of its root, the first split; its branches,
the next consecutive splits; the leaves, representing the predicted value (whether continuous or
categorical). Building a tree corresponds to partitioning the input space in squares with lines that are
parallel to coordinate axes. In a decision tree, leaning (growing) means deciding, at each node, the
splitting threshold for the n-th input feature, which can be done by exhaustive research, minimizing
an error function: for classification, two common measures are cross-entropy and the Gini index.
After a sufficiently large tree is built it gets pruned, removing some of its branches by balancing the
error function and a measure of model complexity (cost-complexity pruning). In a random forest,
several trees are built, each time selecting a subset of the input variables. After the desired number of
classification trees has been trained, the output classification is the result of a majority vote. By bagging
the threes, instead of considering a single, larger tree, the overall variance of the model is decreased,
although its bias is unchanged.

Appendix B.9. Boosting Techniques

The term boosting refers to a technique where several weak classifiers, with performance slightly
above chance level, are combined to form a powerful committee, able to get very close to the target
classification performance. Adaptive boosting (AdaBoost) is one of the most popular algorithms for
boosting formulated for the two-class problem, where the weak classifiers are trained consequently,
the performance of each one influencing the training of the next. Every one of the M training data
points x is given a weight wm, initially set to 1/M. The first weak classifier is then trained, using the
data to produce a class prediction y ∈ {−1, 1}. The next weak classifiers are trained after the weights
are updated, giving more relevance to misclassified data. When the desired number of weak classifiers
has been trained, the committee is formed: each one will contribute to the class prediction through
a second set of weights a j, one for each base classifier, determined by minimizing an exponential
loss error function. One of the simplest forms of base learner that can be adopted is the decision
stump, a single-level decision tree: the discrimination between two classes is done by comparing the
features to a single threshold. Gradient boosting is a numerical development of the boosting method,
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often applied to decision trees. Through a differentiable loss function, the successive weak learners
are trained in the gradient direction of minimal loss (gradient descent), fitting them to the negative
gradient values of the chosen function. For classification, such loss function can consist in multinomial
deviance, constructing at each iteration a number of trees equal to the total number of groups c, even
though for binary classification a single tree for each iteration is sufficient.
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