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Abstract: In response to the high demand of the operation reliability and predictive maintenance,
health monitoring and fault diagnosis and classification have been paramount for complex industrial
systems (e.g., wind turbine energy systems). In this study, data-driven fault diagnosis and
fault classification strategies are addressed for wind turbine energy systems under various faulty
scenarios. A novel algorithm is addressed by integrating fast Fourier transform and uncorrelated
multi-linear principal component analysis techniques in order to achieve effective three-dimensional
space visualization for fault diagnosis and classification under a variety of actuator and sensor
faulty scenarios in 4.8 MW wind turbine benchmark systems. Moreover, comparison studies are
implemented by using multi-linear principal component analysis with and without fast Fourier
transform, and uncorrelated multi-linear principal component analysis with and without fast Fourier
transformation data pre-processing, respectively. The effectiveness of the proposed algorithm is
demonstrated and validated via the wind turbine benchmark.

Keywords: fault diagnosis; fault classification; fast Fourier transform (FFT); multi-linear principal
component analysis (MPCA); uncorrelated multi-linear principal component analysis (UMPCA);
additive white Gaussian noises (AWGN); wind turbine systems

1. Introduction

With the development of advanced technologies to increase production, modern industrial
systems become more complex and expensive. The components of industrial systems are prone to
malfunction, which could bring unanticipated economic costs due to unscheduled shutdown and
repair/maintenance. Therefore, it is of particular interest to design effective fault diagnosis and fault
classification approaches to automatically monitor the behaviour of industrial systems and prevent
damage caused by unexpected faults. Motivated by environmental considerations and the shortage of
fossil fuels, wind turbines, as one of renewable energy sources, have contributed to a large portion of
the world’s power production [1,2]. As a clean energy, wind energy has been significantly exploited
via the onshore and offshore wind turbines. By the end of 2019, the overall installation capacity
of all wind turbines worldwide reached 651 GW, and European countries contributed to 205 GW.
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Moreover, wind power contributed 15% electricity generation in Europe and 20% electricity production
in the UK in 2019 [3].

Wind farms consisting of hundreds of wind turbine units are being established in many different
locations around the country, for instance, in offshore, arctic, and desert regions. In recent years,
some different topologies of generators, such as doubly fed induction generators (DFIGs) and permanent
magnet synchronous generators (PMSGs), are widely utilized in wind turbine systems. However,
like any other industrial systems, wind turbines are sophisticated and prone to faults. It is observed
that the operation and maintenance costs for onshore and offshore wind turbines make up 10~15%
and 20~35%, respectively, of the total life costs of wind energy conversion systems. Furthermore,
wind turbine systems are complex and expensive; therefore, there is a high demand for improving
the reliability and availability, and reducing unscheduled down time in wind turbine industries [4].
Motivated by the above, monitoring and fault diagnosis for wind turbine systems have received wide
attention in wind turbine industries [5-9].

Fault diagnosis approaches can be classified into model-based, signal-based, and knowledge-based
methods. The model-based fault diagnosis approach requires a well-established model of practical
processes developed by either physical principles or systems identification techniques. By checking the
residual between the model output and the real-time process output, the decision for fault diagnosis
can be made [10,11]. Signal-based fault diagnosis is relying on appropriate sensors, whose locations
are normally installed in plant components. The faults in the process are reflected in the measured
signals, and the time-domain, frequency-domain, or time-frequency-domain techniques are used to
extract features. By checking the consistency between the features of the real-time process and the
prior knowledge on the symptoms of the healthy system, a diagnostic decision can be made [12].
Knowledge-based approaches utilize a large volume of historic data available to train universal
estimations or approximations on behalf of implementing to recognize faulty conditions [13]. Itis worthy
to point out that the knowledge-based approach more depends on the data processing and data-based
learning, including processing historical data and real-time data. Therefore, the knowledge-based fault
diagnosis approach is often called the data-driven approach [14,15].

Machine learning techniques play an important role for data-driven fault diagnosis. Generally
speaking, machine learning techniques can mainly be classified into three categories, which are
unsupervised, semi-supervised, and supervised learning algorithms, respectively [16]. Unsupervised
machine learning aims to learn structure in the data, such as sparse or low-dimensional feature
representation [17-20]. According to the tasks of the supervised machine learning, such as prediction
and classification, the aim is to learn a knowledge base, on the basis of the known or labelled examples
of the target pattern [21,22]. Semi-supervised machine learning represents a class of algorithms that
include both supervised and unsupervised tasks [23-25].

It is noted that the dataset generally has a great volume of data with existence in high-dimensional
space. Feature extractions thus play an important role in data-driven fault diagnosis [26-29] as well as
dimensionality reduction for the samples/datasets. The geometric distribution of the datasets in
high-dimensional space can be analyzed in order to effectively extract significant features. There are
several methods to solve this problem and one of the most popular techniques is the principal
component analysis (PCA) algorithm [30-34]. The PCA, as an unsupervised learning technique,
is a statistical procedure that utilizes an orthogonal transformation to convert a set of correlated
variables into linearly uncorrelated variables, namely principal components [35]. The number of
principal components should be generally less than the number of the original variables [36-38].
The transformation in the PCA is carried out in a way so that the first principal component has the
largest possible variance, and each succeeding component in turns has the highest variance possible
under the constraint that it is orthogonal to the preceding components [39]. As a result, the PCA has
become a popular tool for fault detection and fault classification on the basis of a large volume of
high-dimensional experimental samples/datasets [40-42].
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A wind turbine system is a complex industrial system, and the operation condition is harsh.
Therefore, the conventional PCA technique may become invalid for fault diagnosis and fault
classification in wind turbine systems subjected to multiple faults. As a result, there is a strong
motivation to develop advanced PCA-based fault diagnosis and classification techniques for wind
turbine systems. In this study, uncorrelated multi-linear principal component analysis (UMPCA) is
integrated with FFT data preprocessing to form an algorithm, which is applied to a 4.8 MW wind
turbine benchmark system for fault diagnosis and classification. Furthermore, comparison studies
are carried out to demonstrate the effectiveness of the proposed algorithm by comparing with the
known algorithms.

The rest of this paper is organized as follows: In Section 2, the fundamentals of the 4.8 MW
wind turbine benchmark model are introduced, and actuator and sensor faults of wind turbines are
explained. In Section 3, An algorithm integrated with FFT and UMPCA techniques is addressed for
dimensionality reduction and feature extraction. Experimentation designs are proposed in terms of
different topologies of the actuator and sensor faults of wind turbines in Section 4. Simulation studies
are illustrated in Section 5. In order to demonstrate the effectiveness of the addressed FFT plus UMPCA
method, the simulated studies of the fault diagnosis and classification for wind turbines respectively
by using MPCA, FFT plus MPCA, and UMPCA are also discussed. Finally, this paper is ended by
summarizing the conclusions in Section 6.

2. Wind Turbine Benchmark Systems

A wind turbine is a complex electro-mechanical system that converts wind energy to electrical energy.
Most wind turbines are horizontal three-bladed unites, which are composed of blades, low-speed and
high-speed shafts, gearbox, generator, yaw, tower, brake, and controller, and so forth. A typical structure
of the wind turbine is depicted by Figure 1. The wind flow in the nature drives the blades and rotor to
rotate, converting wind energy to mechanical energy. The rotor drives the generator via the high-speed
shaft so that the mechanical energy is converted into electric energy. The pitch angle is controlled to adapt
to the varying wind speed to achieve the desired output power. The functionality of the yaw system
contributes to align the turbine with the direction of the wind detected by the anemometer.

Low-Speed

Shaft Anemometer
Gear Box

Generator Controller

Wind
Direction

Pitch

Rotor

Wind
Direction

Figure 1. A schematic diagram of the wind turbine system.
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A benchmark model of a 4.8 MW wind turbine system was developed in [43,44], which has
been widely used for the algorithm validation in control and fault diagnosis. The definitions of the
parameters of the benchmark model are shown in Table 1.

Table 1. Parameters of the 4.8 MW wind turbine benchmark system [43,44].

Symbol Definition Symbol Definition

Br Pitch angle Reference Oa Torsion Angle
Tor Generator Torque Reference C Damping Ratio

B Pitch Angle By Torsion Damping Coefficient
wWg Generator Rotating Speed Bg Generator External Damping
Wy Rotor Angular Speed B, Rotor External Damping
Tg Generator Torque Gy Torque Coefficient
Qge Generator and Converter Parameter J¢ Generator Moment of Inertia
Nt Efficiency of Drive Train Jr Rotor Moment of Inertia

A Tip-Speed-Ratio K Torsion Stiffness

Wy Natural Frequency Ng Gear Ratio

p Air Density R Rotor Radius

The diagram of the 4.8 MW wind turbine benchmark system is shown by Figure 2, which is
composed of the blade and pitch subsystem, drive train subsystem, generator and convertor subsystem,
and controller, respectively.

G
VW Blade & L’ 4 G tor &
. - enerator
Pitch System Dke, Taln Converter
Cz)r Q) s
r.m Tg,m T
p p 2.
¥ Fed a) P
g.m oz
Controller

I

7

Figure 2. Block diagram of the 4.8 MW benchmark wind turbine model.

The wind turbine benchmark system has an external input (e.g., varying wind speed), two control
reference inputs composed of the reference pitch angle (8,) and generator torque reference (tg,).

The wind speed is shown in Figure 3, from which one can see the wind speed ranges from 5 to
20 m/s, with the peak spike over 25 m/s, showing a good coverage of the operation conditions under
a healthy situation.
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Figure 3. Wind speed sequence used in the benchmark wind turbine under fault-free condition.

In this study, we focus on the actuator faults and sensor faults of the wind turbines. Suppose that
u(t) is the control input, f4(t) is the actuator fault, and ug(t) is the actuation signal applied to the
system; y(t) is the measured output, fs(t) is the sensor fault, and yg(t) is the output from the system.
It is clear that ug(t) = u(t) + fa(t), and y(t) = yr(t) + fs(t). As a result, the faults f4(t) and fs(t)
will divert the performance of the system states and outputs from the normal. The topologies of the
actuator faults and sensor faults are depicted by Figure 4.

Actuglas Faults FAULT TOPOLOGIES FOR
¢ S0 4.8 MW WIND TURBINE
BENCHMARK SYSTEMS
input Actuators Actuation
u(?) B T, 1 (1)
@ Actuator Faults in Wind Turbines
Sensor Faults
l' £
Output Sensors Measured
va(2) ﬁ wg a)r Tg Output y(f)

& Sensor Faults in Wind Turbines

Figure 4. Topologies of the faults in the 4.8 MW wind turbine benchmark system: (a). Actuator faults,
and (b). Sensor faults, respectively.

3. Methodology
3.1. Data Set Construction

The 4.8 MW wind turbine benchmark system has four measurement outputs, namely the pitch
angle 8, the generator rotating speed wg, the rotor angular speed w,, and generator torque 7. By using
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the measurement outputs above, the data set recorded from each measurement, denoted by s, Wgs, Wrs,
and 7gs, can be obtained as follows:

,lel ,3512 e ,ley [ Wes11  Wgsl2 "+ Wesly
Bs21 Psz o PBs2y Wesp1  Wgsd2  **+  Wesdy
Bs = . . . € RNXy/ Wgs = . . e RNy
ﬁle ﬁsN2 Tt ,BsNy L WgsN1 @WgsN2  **°  WgesNy (1)
Wrs11  Wrs12 "+ Wrsly [ Tgs1l  Tgs12  *°  Tgsly
Wrs21  Wrs22 1+ Wrs2y Tgs21  Tgs22 "t Tgs2y
Wrs = . . . € RNX)/’ Tgs = . . . € RNy
. . ° . . g
WrsN1  @WrsN2 " WrsNy L TgsN1 TgsN2  **  TgsNy

where N is the number of the measurement points recorded, and y is the number of the measurement
scenarios. Specifically, for each measurement output, the dataset is recorded under y operation
scenarios (including the fault-free condition, and various faulty conditions), and N measurement
points are documented at each scenario. As a result, the original data set can be described by:

X=| & | RN, @)

where N = 4N.

3.2. Data Set Pre-Processing

In order to enhance the feature extraction capability, the time-domain data is pre-proceeded to
generate frequency-domain data with a reshaping expression.
According to the original data-set model X defined in (2), we can rewrite it as:

X111 X112 ot X1y
Xp1 X2 o Xy
X=[X X - X |=| . . . | ®)
N1 N2 Ny
T
where X; = [ Xy Xoi v Xy ] ,i=1,2,---,y,and []T represents the transpose of the vector [].

The Fourier transform of X; can be calculated as follows:
N B g(t-1)
Xi(k) = thie N , 4)
t=1

wherek=0,1,2, ---, N-1.
In terms of (4), the discrete-time Fourier transform can transform a sequence of N numbers
X1j Xy -+ Xy intoasequence of complex numbers X;(0), X;(1), -+, Xi(N - 1), which can also
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be denoted by the symbols fl.(l), fi(z), e, fi(N) . By arranging the sequence of the complex numbers as
a vector, we have:

X1 1
Xi(O) 1i fz( )
Xl(].) x2i f(2)
. =q| W |= | )
X(N-1 (N)
( ) N Ji
where:
1 1 1 1
—j2n —jAn —2(N-1)m
1 e N e N . e N
-2(N-1)m —j4(N-1)m —jz(ﬁ—l)zn
| 1 e N e N -« e N

and Q) is called the Fourier transform base. It is clear thati =1, 2, ---, yin (5).

The Fourier transform above can be calculated by using the fast Fourier transform algorithm [45,46].
The fast Fourier transform algorithm treats the columns of a matrix as vectors and returns the Fourier
transform vector for each column, leading to a Fourier transform matrix.

Taking magnitude and reshaping the vector in (5), one can obtain the matrix expression as follows:

f'(r—&-l)‘ 'f'((l—l)r+1)|'

1 1

[ fz(l) ‘

. fi(.Z) |fi(r'+2)' |fi((l—l)r+2)| R 12y, -

(r) (2r)
|

where r indicates the number of rows, [ stands for the number of columns, ()) represents the absolute
value or magnitude of the complex number (-), and N = Ir. By determining two parameters r and /,

the frequency-domain data of the wind turbine can be described as follows:
{F | F=IFy, Fs,e.. Fi,..., Fyl} € PP 8)

Therefore, the dataset has been reformatted as a tensor data expression. From (8), one can see the
dataset has y samples, and the size of each sample is r X I.
The reshaping process of the obtained data set above can be described by the flowchart in Figure 5.

T
From this figure, one can see the data vector (e.g., X; = [ X1 Xoi vt Xy ] ,i=1,2,--,9)
is projected into a frequency-domain space relying on the Fourier transform base, and the tensor
representation is further generated in terms of (7) and (8).
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Figure 5. Reprocessing and reshaping of the experimental data.

3.3. Dimensionality Reduction and Feature Extraction for Wind Turbines by Using the Uncorrelated
Multi-Linear Principal Component Analysis Method

The multi-linear principal component analysis (MPCA) technique [47], which belongs to one of
the unsupervised machine learning algorithms, is usually to cope with the tensor expression dataset.
However, some of the correlations of the principal components amongst the projected directions are
neglected to some extent, which means the final features obtained by MPCA would be redundant.
In contrast to other multilinear PCA techniques, such as MPCA, two-dimensional PCA, and so
forth, UMPCA seeks a tensor-to-vector projection, which can capture the maximum number of the
uncorrelated multilinear features [39,48]. In this paper, UMPCA is thus used to extract the significant
features of the 4.8 MW benchmark wind turbines.

The n-mode product of a tensor ¥ by a matrix U is denoted by F x,, U [39,48].

Suppose the dataset {z(p),i=1,2,..., ¥} represents the pth principal components
(e.g., low-dimensional features), where z;(p) is the projection of the ith data sample F; by the p-th

T
elementary multi-linear projection (EMP) U, = {(ur(,”)) ,n=1,2,..., Q}, where Q represents the

number of projection directions. As a result, the formula of z;(p) can be described as follows [39,48]:

T
zi(p) = Fix2 {(u;”)) n=1,2..., Q}, i=1,2,..., 7. )

The objective of the UMPCA methodology is to seek U, that projects F; into a feature subspace to
determine a tensor-to-vector projection, whose functionality will guarantee the implementation for the
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maximum direction of the original data sets, and the significant features extracted are uncorrelated.
Based on the above, the variance can be calculated by [39,48]:

Y
_ 12
S‘;p = Z[zi(p) - zp] , (10)
i=1
Vo
wherez, = } # Let i, denote the pth coordinate vector, describing the training sample in the pth
i=1

EMP space. The ith component of 1, equals the p-th component of z;, that is, 11,(i) = z;(p).

(m\"
p ) ,n=1,2,..., Q}tomaximize

the variance and generate uncorrelated features, the cost function can be given as follows [39,48]:

In order to determine a set of projection directions U, = {(u

(11)

where P is the dimensionality of the projected space, and:

_ L ifp=q
Opy { 0, otherwise. (12)

In terms of the background of the benchmark wind turbine in Section 2 and the fundamental
principle of the UMPCA [39,48] mentioned above, the specific procedures of the significant feature
extraction for wind turbines can be illustrated as follows.

Step 1: Explore the first projection direction U; = {( ,n=1,2,..., Q} by maximizing Sle.

T
ugn) ) n
. _— m)\! o
Step2: Compute the second project direction up = |u, ' | , n =1, 2,..., Q¢ by maximizing ST2
subjected to hg hy = 0.
T
Step3: Determine the third project direction uz = {(ué")) ,n=1,2,..., Q} by maximizing

.SZT3 subjected to hg hy = 0.

T
Step 4: Calculate the p-th project direction 1, = {(u;")) ,n=1,2,..., Q}, p =4, --, P,bymaximizing
SZT,, subjected to hghq =0,wheng=1,2,---,p-1

Step 5: Based on all the obtained project directions from the steps above, the final features can be

obtained by:
P

o [(,m\ ,
Zi:Fanzl (up ),nzl,Z,...,Q ,i=1,2,..., 7. (13)
p=1
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3.4. FFT Plus UMPCA Algorithm

The specific procedures of the dimensionality reduction and feature extraction based on FFT plus
the UMPCA technique for wind turbines can be described as follows:

Algorithm 1

Input: Date set {7" ‘ F = [Fl, E,...,F,..., Py]}.

Output: Significant features
P

z=Fx2 {(u;"))T, n=1,2,.., Q} =12,y
p=1
(i)  Step 1: Collect the original data set X by (2)
(ii) Step 2: Pre-process the data set by using Fourier transform base to construct the tensor dataset by (7)
and (8).
(iii) Step 3: Calculate the projection directions Uy, Uy, ---, Up;
(iv) Step 4: Project the FFT data space into a vector subspace by using

T P
z; =F; Xr?:l {(u;,m) ,n=1,2,..., Q} ,i=1,2,..., y. As aresult, for the tensor dataset 7,
p=1
T P
the resultant UMPCA feature vector z can be given as z = ¥ ngl {(u;,m) ,n=1,2,..., Q} .
p=1

4. Experimentation Designs

4.1. Brief Description and Definition

In this section, in order to validate the applicability of the proposed methodology for fault
diagnosis and fault classification in wind turbine systems, five different topologies of experimentation
are addressed subsequently. Furthermore, actuator and sensor faults are simultaneously considered in
each group of experiment. The size of each data set is 1000 x 440,001.

For the simplicity of the description for the subsequent experimentations, we define some
abbreviations for different types of faulty conditions in two actuators and four sensors. ‘A1’ represents
the first actuator relevant to the pitch angle reference (8,); ‘A2 stands for the second actuator relevant to
the generator torque reference (7 ,); ‘51’ is the first sensor to measure the pitch angle (), ‘S2” indicates
the second sensor to measure the generator rotating speed (wg), ‘S3” stands for the third sensor to
measure the rotor angular speed (w;), and ‘S4’ defines as the fourth sensor to measure the generator
torque (7¢). The detailed information is shown in Table 2.

Table 2. Symbols and acronyms of the actuator and sensor for 4.8 MW wind turbines.

Actuator Sensor

Symbol Br Tor B wg wy Tg
Acronym Al A2 S1 52 S3 S4

In addition, ‘FF’ indicates fault free. ‘EL’, ‘'SWD’, and ‘RN’ represent effectiveness losses, sinusoidal
wave disturbances, and random numbers, respectively. Their combination, including ‘EL + SWD’,
‘EL + RN, ‘'SWD + RN, and “EL + SWD + RN, are also taken into consideration.

The other abbreviations of the parameters for faulty signals are defined as follows,
whose specifications are explained in Table 3:

(1) ‘EL": Percentage (P);

(2) 'SWD’: Amplitude (A) and Bias (B), namely A/B
(3) 'RN’": Mean (M), and Variance (V), namely M/V;
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(4) ‘EL + SWD’: Percentage (P), Amplitude (A), and Bias (B), namely P/A/B;

(5) “EL + RN": Percentage (P), Mean (M), and Variance (V), namely P/M/V;

(6) ‘SWD + RN": Amplitude (A), Bias (B), Mean (M), and Variance (V), namely A/B/M/V;

(7) “EL + SWD + RN": Percentage (P), Amplitude (A), Bias (B), Mean (M), and Variance (V),
namely P/A/B/M/V.

Table 3. Operation Conditions, Parameters, and Acronyms for 4.8 MW Wind Turbine Systems.

Operation Conditions Abbreviations Parameters Acronyms
Fault Free FF - -
Effectiveness Losses EL Percentage P
Sinusoidal Wave . .
Disturbances SWD Amplitude & Bias A/B
Random Numbers RN Mean & Variance M/V
Effectiveness Losses + Percentage +
Sinusoidal Wave EL + SWD centage P/A/B
. Amplitude + Bias
Disturbances
Effectiveness Losses + Percentage + Mean +
Random Numbers EL + RN Variance PIMIV
Sinusoidal Wave . .
Disturbances + Random SWD + RN Amplitude +.Bla5 * A/B/M/V
Mean + Variance
Numbers
Effectiveness Losses +
Sinusoidal Wave EL + SWD + RN Amplitude + Bias + P/A/B/M/V

Disturbances + Random Mean + Variance

Numbers

4.2. Experimental Statement

In the experiment, the fault signals are shown in Table 4. For instance, the effective loss (EL)
of every single actuator or sensor is selected as 1%, 2%, 3%, ... , 19% and 20% of the normal value,
respectively, which means there are 20 faulty cases for the typical fault EL. More detailed information
on other faults can refer to Table 4.

Table 4. Actuator and sensor fault signals: Experimentation design.

Actuator and Sensor Faults

Faulty Name of
Conditions Parameters Actuator Sensor
,Br Tg,r ﬁ (l)g Wy Tg
EL P 1.00-20.00%
SWD A 0.01-0.20 5.20-9.00 0.01-0.20 5.20-9.00 0.01-0.20 5.20-9.00
B 0.10-2.00 501-520 0.10-2.00  50.10-52.00  0.01-0.20 501-520
RN M 0.10-2.00 1.00-20.00 0.10-2.00 1.00-20.00 0.01-0.20 1.00-20.00
\ 0.20-2.10 91.00-110.00 0.20-2.10 1.10-2.05 0.01-0.20 91.00-110.00

Br: P/A/B—From 1.00%/0.01/0.10 to 20.00%/0.20/2.00;
Tg,r: P/A/B—From 1.00%/5.20/501 to 20.00%/9.00/520;

B: P/A/B—From 1.00%/0.01/0.10 to 20.00%/0.20/2.00;
wg: P/A/B—From 1.00%/5.20/50.10 to 20.00%/9.00/52.00;
wy: P/A/B—From 1.00%/0.01/0.01 to 20.00%/0.20/0.20;
Tg: P/A/B—From 1.00%/5.20/501 to 20.00%/9.00/520.

Br: P/M/V—From 1.00%;/0.10/0.20 to 20.00%;/2.00/2.10;
Tg,r: P/M/V—From 1.00%;/1.00/91 to 20.00%/20.00/110;
B: P/M/V—From 1.00%/0.10/0.20 to 20.00%/2.00/2.10;
wg: P/M/V—From 1.00%/1.00/1.10 to 20.00%/20.00/2.05;
wy: PIM/V—From 1.00%/0.01/0.01 to 20.00%/0.20/0.20;
Tgt P/M/V—From 1.00%/1.00/91 to 20.00%/20.00/110.

EL + SWD P/A/B

EL + RN P/M/V
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(i)
(i)
(iii)
(iv)
(v)

Table 4. Cont.

12 of 32

Actuator and Sensor Faults

Faulty Name of

o Actuator Sensor
Conditions Parameters

Br Tor p wg wy

Tg

Br: A/B/M/V—From 0.01/0.10/0.10/0.20 to 0.20/2.00/2.00/2.10;

Tg,r: A/B/M/V—From 5.20/501/1.00/91 to 9.00/520/20.00/110;

B: A/B/M/V—From 0.01/0.10/0.10/0.20 to 0.20/2.00/2.00/2.10;
SWD+RN  A/BM/V wg: A/B/M/V—From 5.20/50.10/1.00/1.10 to 9.00/52.00/20.00/2.05;

wy: A/B/M/V—From 0.01/0.01/0.01/0.01 to 0.20/0.20/0.20/0.20;

Tg: A/B/M/V—From 5.20/501/1.00/91 to 9.00/520/20.00/110.

Br: P/A/B/M/V—From 1.00%/0.01/0.10/0.10/0.20
to 20.00%/0.20/2.00/2.00/2.10;
Tg,r: P/A/B/M/V—From 1.00%/5.20/501/1.00/91
to 20.00%/9.00/520/20.00/110;
B: P/A/B/M/V—From 1.00%/0.01/0.10/0.10/0.20
EL + SWD to 20.00%/0.20/2.00/2.00/2.10;
+ RN FIAMBMV wg: P/A/B/M/V—From 1.00%/5.20/501/1.00/1.10
to 20.00%/9.00/52.00/20.00/2.05;
wy: P/A/B/M/V—From 1.00%/0.01/0.01/0.01/0.01
to 20.00%/0.20/0.20/0.20/0.20;
Tg: P/A/B/M/V—From 1.00%;/5.20/501/1.00/91
to 20.00%/9.00/520/20.00/110.

Supplementary Explanations: (i). AWGN signals are introduced to each faulty condition, and the number of
AWGN signals is equal to 50; (ii). For g, the EL is increased from 1.00 to 20.00% with an increase of 1.00%, and the
Amplitude of the SWD increases from 0.01 to 0.20 with an increase by 0.01, and the Bias varies between 0.10 and
2.00 with the interval of 0.10, gradually, as well as the Mean of RN increases from 0.01 to 0.20 with an increase by

0.01, and the Variance increases between 0.20 and 2.10 with the interval of 0.10.

In this section, five groups of experiments of multiple actuator and sensor faults are discussed:

Scenario I: single actuator and three sensor faults, “1AF + 3SFs’; Types of fault: C%
Scenario II: single actuator and four sensor faults, ‘1AF + 4SFs’; Types of fault: C%

Scenario III: two actuators and two sensor faults, 2AFs + 2SFs’; Types of fault: C%

3 _ Q.
=8
4 _ .
Ch=2;
2 _ 4.
C2=¢;

Scenario IV: two actuators and three sensor faults, 2AFs + 3SFs’; Types of fault: C% . Ci =4,

Scenario V: two actuators and four sensor faults, 2AFs + 4SFs’; Types of fault: C% . Ci =1

These scenarios are further illustrated by Figures 6-8. From Figure 6, one can see there are eight
combinations of actuator and sensor faults under Scenario I, and two combinations in Scenario II.
Figure 7 describes Scenario III and Figure 8 explains Scenarios IV and V, respectively.

Actuator & Sensor Fault Classification

Actuator Sensor
A1 A2 81 S2 S3 sS4
ﬂ I Tg s ﬁ a)g a)I' Tg

Fault Classification --- Combination With
Single Actuator & { Three / Four Sensors }

A1+ {S1+52+8S3} : A2 + {51+ 52 +53}

A1+({S1+S2+84) | A2+{S1+S52+S4}
1AF + 3SFs A1+ {S1+83+S4} | A2+{S1+831+54}
A1+{S2+53+S84} | A2 +{52+53+54)

Scenario |

Scenario Il —|[ A1 +{S1+S2+S3+S84} |
1AF + 4SFs [ A2 +{S1+S2+83+84} |

Figure 6. Experimentation design for actuator and sensor fault classification, under Scenario I

(1AF + 3SFs) and Scenario II (1AF + 4SFs).
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Actuator & Sensor Fault Classification

Actuator Sensor
A1 A2 L | s2 83 $4
ﬁlf Tg . 72 ﬁ a)g a)}” Tg

Fault Classification --- Combination With
Two Actuators & Two Sensors

{A1+A2)}+{S1+852)}
{A1+A2}+{S1+83}
Scenario 111 {A1+A2}+{S1+84)}
2AFs + 25Fs {A1+A2}+{S2+S3}
{A1+A2}+{S2+54}
{A1+A2}+{S3+S4}

Figure 7. Experimentation design for actuator and sensor fault classification, under Scenario III (2AFs + 2SFs).

Actuator & Sensor Fault Classification

Actuator Sensor
A1 A2 81 S2 S3 sS4
ﬂ/" z—g g T ﬁ a)g a)}’ Tg

Fault Classification --- Combination With
Two Actuators & { Three / Four Sensors }

{A1+A2}+({S1+8S2+83}
Scenario IV {A1+A2}+({S1+852+84}
2AFs + 3SFs {A1+A2}+{S1+8S3+34}

{A1+A2}+{S2+S3+8S4}
Scenario V
2AFs + 4SFs {A1+A2}+{S1+S2+S3+S54})

Figure 8. Experimentation design for actuator and sensor fault classification, under Scenario IV
(2AFs + 3SFs) and Scenario V (2AFs + 4SFs).

In order to evaluate the feasibility and capability of the proposed FFT + UMPCA algorithm,
the MPCA, UMPCA, and FFT + MPCA techniques are also discussed and analyzed. The datasets of
the experiments using the algorithms MPCA, UMPCA, FFT + MPCA, and FFT + UMPCA, respectively,

are shown in Tables 5 and 6. In Table 5, XiVIP CA X?IAP cA X{\I’{P cA XKI,P CA and XMPCA are the tensor

datasets for the MPCA algorithm under scenarios I, II, III, IV and V, respectively. XIUMP ca XILIIMP cA

XUMPCA XIL\I/MP cA X\L,IMP CA denote the tensor datasets for the UMPCA algorithm under scenarios I, II, 111,

I
IV,and V, respectively. In Table 6, XIFPT+MPCA, XIFIFT+MPCA/ XIFIII:T+MPCA/ XIF\I;"T-&-MPCA, and X€FT+MPCA

represent the tensor datasets for the FFT + MPCA algorithm under scenarios I, II, III, IV, and V,

respectively. XfFTwLUMPCA, XfIFTJrUMPCA, Xﬁl;T+UMPCA’ XIF\I;TJrUMPCA’ and XSFTwLUMPCA are the tensor

datasets for the FFT + UMPCA algorithm under scenarios I, II, III, IV, and V, respectively.
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Table 5. Datasets of experimentations with AWGN noises based on different topologies of the
data-driven methodologies: MPCA and UMPCA.

Data Sets with AWGN Noises Based on Different Topologies of

Expgfnl:zen(::tion Types Data-Driven Methodologies

MPCA UMPCA
FF + 1AF + 3SFs 9 X?APCA ¢ RI440,000x4x9000} X%IMPCA € R{22,000x80x9000}
EF + 1AF + 4SFs 3 X{‘I/IPC A ¢ RI440,000x4x3000) X%{MPCA € R22,000x80x3000}
FF + 2AFs + 2SFs 7 XMPCA ¢ RI440000x4x7000) X" € RIZ000:E0:7000
FF + 2AFs + 3SFs 5 XMPCA ¢ RI440,000x4x5000) Xpy 1A € RIZZ000E06000
EF + 2AFs + 4SFs ) XMPCA ¢ RI440,000x4x2000) XUMPCA ¢ Ri22,000x50x2000)

Table 6. Datasets of experimentations with AWGN noises based on different topologies of the
data-driven methodologies: FFT + MPCA and FFT + UMPCA.

Data Sets with AWGN Noises Based on Different Topologies of

N.ame of . Types Data-Driven Methodologies
Experimentation
FFT + MPCA FFT + UMPCA
EF + 1AF + 3SFs 9 XFFTMPCA ¢ RIss0x500xEx9000) XFFT+UMPCA ¢ Ri100x220x50x5000}
FF 4 1AF + 4SFs 3