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Abstract: A coupled surface response optimization method with a three-dimensional finite volume
method is adopted in this study to identify five independent geometric variables of the die interior
that provides a design with the lowest velocity variance at the exit of the coat-hanger extrusion die.
Two of these five geometric variables represent the manifold dimension while the other three variables
represent the die profile. In this method, B-spline fitting with four points was used to represent the
die profile. A comparison of the optimized die obtained in our study and the die with a geometry
derived by a previous theoretical work shows a 20.07% improvement in the velocity distribution at
the exit of the die.

Keywords: polymer processing; sheet die design; response surface method; design optimization;
manufacturing process design

1. Introduction

Extrusion process is one of the important processes deployed for polymer processing. One of the
associated applications of polymer extrusion is extruding a polymer flat sheet. The coat-hanger die is
designed to distribute the polymer melt uniformly through the die lip. Non-uniform thickness across
the width of the extrudate results in low quality yield. To prevent this adverse effect, non-uniform
velocity at the exit and deflection across the lips of the die should be avoided. Coat-hanger die is a
commonly used die in the extrusion industry [1-3]. A complex relationship between the rheological
behavior, flow distribution, and temperature field makes it extremely difficult to develop a universal
die model that can be used easily for every fluid property and process condition. Therefore, industries
are heavily dependent on a trial-and-error approach for designing an effective die. A more prudent
approach is to incorporate an optimization method along with a model that defines and regulates flow
as well as heat transfer in the die flow manifold and in the slit.

Several different manifolds for sheeting die have been developed over time. The most common
ones are the T-manifold [4], the fishtail [5], and the coat-hanger manifold, with the latter being
extensively used in industry. Two major methods are used for dies analysis: analytical and numerical.
Due to their oversimplifications, analytical methods are used for determining the overall geometry
of the die. With the advancement in computational power, numerical methods have become a more
common method for the analysis of dies. Michaeli et al. [5] reviewed most of the analytical methods
developed during the last decades. Most of these methods are developed based on the assumption of a
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power-law model for describing the rheological behavior of the polymer flowing inside the cavity of
the die.

Winter and Fritz [6], based on the pressure gradient at the intersection of the manifold and the slit,
have modelled a coat-hanger die that results in a constant shear rate on the die interior walls and a
uniform velocity at die exit. Although their results have been experimentally tested, these are restricted
to power-law fluids and have not taken into account the effect of temperature and die lip deflections.

Based on the finite element method, Wang et al. [7] studied the flow distribution of power-law fluid
in coat-hanger die. Their study examined different geometries and concluded that dog bone geometry
gives a relatively flatter exit velocity distribution. Huang et al. [8] analyzed flow distribution of polymer
melt in the coat-hanger extrusion die for the purpose of understanding flow behavior, such as dead
spots in the die cavity. Wu et al. [9] also studied the flow and temperature fields of the coat-hanger die.
They concluded that the highest temperature, which is important for temperature-sensitive polymers,
occurs at the center of the manifold. Na and Kim [10] studied the effect of the manifold angle on
the flow rate distribution. They also reported that the power-law index significantly affects the flow
distribution. Catherine [11] studied the flow and temperature fields of polymer melt in the extrusion
die cavity and analyzed rheology, temperature dependency, and residence time distribution.

In all previous studies, the die profile is derived either based on the models with many simplified
assumptions, such as the constant shear rate in the manifold and slit, or based on the simplest
rheological models such as the power-law model. In this paper, the die profile is approximated with a
spline curve. In addition, a more elaborate rheological model with temperature dependency is used.
An optimization algorithm based on the response surface method is utilized for optimizing five distinct
independent variables representing the manifold and the die profile for uniform velocity output along
the die lip. In this way, applicability of die curve relation can be tested.

2. Modelling and Simulation

To optimize the die cavity geometry, the flow field needs to be simulated. For this purpose,
the generalized Newtonian incompressible viscous model is solved by the finite volume method.
Here, the steady-state continuity equation, Navier-Stokes equations, and energy equations are solved.
Simulations are performed on the commercially available software package, Ansys Fluent 19.1. Fluent
is a computational fluid dynamics (CFD) package that numerically solves flow equations via the finite
volume method.

2.1. Governing Equations

In the model presented in this study, polymer melt flow is considered as steady state. Conversion
of mass and momentum equations for a fluid flow of density p with no external body force is given
as follows:

V-(pv) =0 )

V-(pov) =-Vp+ VT @)

where T is the stress tensor and is defined as

T=n()y 3)

y=(NVv+Vy )- %v?z @)
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Since rheological properties of the fluid is temperature dependent, a conversion of energy is
required to solve for the temperature field:

pcp[‘;—f + (?-V)T] = V-(kVT) + @ ®)

where k is the thermal conductivity and ¢y, is the specific heat. Due to temperature rise as a result of
viscous dissipation [12], @ is added as a source term in the energy equation and is given by:

= v-[q(vZ + v?T)] - V-En(v-?)ﬁ] (6)

In 3D Cartesian coordinates, it becomes the following [13]:

du\ (3 (V] (du  do\: (dw  du\ (dv  dw) 2, -2
@:”H(a) (o) ] (55 (G 3]+ (3 5) -§<V‘v>} ?
From the continuity equation, the last term in the equation can be set to zero. The generalized
Newtonian models are widely used in industry and academia for modelling the rheological behavior
of polymers. While in a Newtonian model the shear stress is directly proportional to the strain
rate, generalized Newtonian models give more flexibility. In this paper, a temperature-dependent
Carreau—Yasuda viscosity model was selected:

.a\(n=1)/a

n = noar(1+A%") ®)

Eo(F-7 . . . . . .
o TO), 1o is a near-zero shear rate viscosity, A is the time constant, #n is the

in which ar = e
power-law index, a is the Carreau—Yasuda constant, ot is the Arrhenius expression, Ey is activation
energy, T is temperature, and T is absolute reference temperature. The values of these parameters
for polypropylene are shown in Table 1. Table 2 shows the other thermo-physical properties of
polypropylene. A user-defined function in C code was written for adapting the Carreau—Yasuda

equation into the simulation.

Table 1. Carreau—Yasuda parameters for polypropylene [14].

Table Cont. Value Unit
Mo 22.200 Pas
A 1.7 S
N 0.35 dimensionless
A 0.73 dimensionless
Eg 5546 K1
Ty 473 K

Table 2. Thermo-physical of polypropylene [15,16].

Parameter Value Unit
Density 910 kg/m3
Thermal
conductivity 0.12 W/mK
Heat capacity 1925 J/kgK

2.2. Boundary Conditions

As mentioned above, due to symmetry, only one quarter of the internal cavity of the extrusion
die was considered for the simulation. The computational domain is shown in Figure 1. Boundary
conditions are as follows.
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Figure 1. Schematic of the extrusion die in this analysis.

Inflow boundary condition: The inlet is a fully developed profile with a volumetric flow rate of
5 x 1072 m3/s. Velocity is calculated based on the method given by Kim [17].Velocity and temperature
profiles are adapted from Wei and Michaeli [5,18,19]. In this method, velocity is given as follows:

L{R) I I(R) I
u<r>=[2§Z )_ 27(:)]+[H(R3 —%] o)
where: ()
30 de
I(r) = 7::_1; fo Wzédy (10)
202 (YU) 1 dr
B =22 [ Sy (1)

In these equations, shear rate and shear stress are substituted by the Carreau—Yasuda viscosity in
Equation (8) as mentioned in the study by Kim [17]. Integrations of Equations (10) and (11) are solved
numerically by the trapezoidal method. Temperature profile is calculated by solving the following
energy equation:

T  kdT  du?

Kz e tG) =0 (2
T=Ty@r=rg (13)
dT
—=0@r=0 (14)

where 1 is the entrance radius, Ty, is the wall temperature, and k is the thermal conductivity of the
medium. Wall temperature Ty, is considered to be 220 °C. A user-defined function (UDF) program in C
was written for the velocity and temperature profiles at the inlet of the die.

A numerical method of the Runge—Kutta 4th order is used to solve this equation. Due to the
dependency of velocity on temperature in Equation (8), velocity and temperature are calculated
iteratively until convergence is achieved.
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Pressure outflow boundary condition: Gauge pressure at the exit of the die equals to zero.

Non-slip boundary condition: At the internal boundaries of die where the fluid meets the solid,
a no-slip boundary condition is assumed. In addition, the temperature at the internal surface of the die
is 220 °C.

Symmetry boundary condition: Since the geometry of a die is symmetric in two directions,
symmetry boundary conditions are considered for the boundaries I'4 and I'5.

The velocity and temperature profiles based on the temperature-dependent Carreau—Yasuda
equation at the entrance of the die are shown in Figure 2.

560 0.3
250 0.25
540
= 02
i’ <
o
E 530 £
© 015 2
qélJ_SZO § Temperature
9] .
2 01 = ——\/elocity
510
500 0.05
490 0
0 0.2 0.4 0.6 0.8 1

Non-dimensionalized Radius

Figure 2. Velocity and temperature profiles at the entry of the die.
3. Design Variables and Objective Function of Optimization

In this paper, the surface response method is utilized for optimization purposes. The goal of the
optimization process is to minimize velocity distribution at the exit of the die. As a result, the following
objective function is defined to represent the non-uniformity of velocity at the die exit:

N o7
i=1 7

velociy diparity = N

(15)
where v; is the velocity at node I, v is the average velocity, and N is number of nodes at exit. Five
different independent variables were selected to represent the geometry of the die. These five variables
are shown in Figure 1. H and W are the depth and the width of the die, respectively, while H;, H»,
and Hj are the nodes the spline curve is based on. Under the assumptions given in a study by Winter [6],
the change of y with x is given by the following equation:

y=2W,/(b-x)/W-1 (16)

In this paper, three more variables are assigned to represent this curvature, namely Hy, Hy, and H3.
After a preliminary evaluation, it was found that three nodes are sufficient for accurately representing
the y-x curve.

3.1. Mesh Independency

Due to symmetry, only one quarter of the die cavity geometry was selected. Different meshes
with different numbers of elements were constructed. For every mesh, simulation was performed and
compared. As shown in Figure 3, meshes with 500,000 elements and higher show negligible change in
both velocity disparity and pressure drop. As a result, these mesh elements are selected for the next
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simulations. Figure 4 shows the mesh grid for the independent variables of H =5 mm, W = 36 mm,
H; =216 mm, Hy = 124.6 mm, and Hj; = 48.3 mm. The radius of the pipe that connects from the
extruder to the die is 10 mm.

Velocity disparity

0.35

0.3

0.25

0.2

velcoity disparity (-)

0.0E+00 2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06 1.2E+06 1.4E+06 1.6E+06 1.8E+06 2.0E+06
No of elements

Figure 3. Mesh independency.

0 0.01 0.02(m)
1

L L]
Figure 4. Sample grid used for the simulation.
3.2. Validation

To the knowledge of the authors, there are no experimental data of flat sheeting extrusion die for
validation. Therefore, the data provided by Wei and Leo [18] for the non-isothermal flow of polymer
melt in a pipe were considered for validation. Figure 5 shows the comparison of temperature profiles
for both the simulation and Wei and Leo’s analytical equation. An average error of 1.54 °C suggests
the validity of the computational fluid dynamics model that is used for next sections.
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Figure 5. Temperature profile comparison of simulation and analytical results.

4. Results and Discussion

Fluid Low and Heat Transfer Analysis

The main objective of the optimization process is to reach a global minimum for objective variables,
i.e., velocity variance at the exit of the die. For this purpose, the surface response method with a central
composite design of experiment was adapted. For five independent variables, the central composite
design (CCD) gives 52 experiments or simulations [20]. The default values of these parameters were
based on the theoretical analysis of Winter [6]. A range of 10% was assumed for the variation of these
values. Values of independent variables and their variation around central node in CCD are shown
in Table 3. It is worth noting that the central values were adapted from an equation given by Winter.
Lower and upper values are 10% higher and lower than the central values.

Table 3. Central composite design for five geometrical variables.

Variable Lower (mm) Central (mm) Upper (mm)
H 4.5 5 5.4
w 324 36 39.6
H; 194.4 216 237.6
H, 112.5 125 137.5
Hj 43.47 48.3 53.13

In the surface response method, the dependency of the independent variable variance is usually
approximated by a quadratic function:

S=Po+ Y KB+ Y KB+ YY) KB (17)

When a good fit between the data and the quadratic function is obtained, by minimizing the
quadratic function and the corresponding independent variable, the optimal point where there is least
velocity disparity or in other words maximum uniformity of velocity at the exit of die can be attained.

As mentioned above, the data of 52 simulations, which are needed for the fitting of the quadratic
function, are shown in Table 4. Figure 6 shows the main effects plot for velocity disparity. From these
plots, it is clear that the manifold dimensions (i.e., H and W) have the highest impacts on reduction
in velocity disparity, while Hy, which represents the first point in the spline of the die curve, has the
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lowest effect. A Python program was developed to generate the geometry for each case. The polymer
melt in this study is polypropylene with a flow rate of 5 x 1073 m?/s.

Table 4. Design of experiment and simulation results.

Velocit
A B C D E w H H; H, H; Dispariz’y
1 1 1 1 1 39.6 55 237.6 137.5 53.13 0.686256
-1 1 -1 -1 1 324 55 194.4 1125 58.13 0.699836
-1 1 1 1 1 324 45 237.6 137.5 53.13 0.684043
-1 1 1 1 1 324 55 237.6 137.5 53.13 0.68008
0 0 0 0 2378414 36 5 216 125 59.78774  0.694715
1 -1 1 1 -1 39.6 45 237.6 137.5 43.47 0.683648
-1 -1 1 1 1 324 45 237.6 112.5 53.13 0.707545
0 0 0 0 0 36 5 216 125 483 0.68861
0 0 0 2378414 0 36 5 216 154.7302 483 0.684677
-1 -1 -1 -1 1 324 45 194.4 112.5 53.13 0.715735
-1 -1 -1 1 1 324 45 194.4 137.5 53.13 0.695523
-1 1 -1 1 -1 324 55 194.4 137.5 4347 0.685646
1 1 1 1 1 39.6 45 237.6 137.5 53.13 0.68365
-1 1 -1 -1 -1 324 55 194.4 112.5 43.47 0.697789
1 -1 -1 1 -1 39.6 45 194.4 137.5 4347 0.692615
1 -1 -1 1 1 39.6 45 194.4 137.5 53.13 0.690297
1 1 1 1 -1 39.6 55 237.6 137.5 43.47 0.646787
-1 1 1 -1 1 324 55 237.6 112.5 53.13 0.652742
1 1 -1 -1 1 39.6 55 194.4 112.5 53.13 0.650722
-1 1 1 -1 -1 324 45 237.6 112.5 4347 0.708603
0 0 2.378414 0 0 36 5 240.6364 125 483 0.694632
1 -1 -1 1 -1 39.6 45 194.4 112.5 43.47 0.706601
-23.7841 0 0 0 0 2743772 5 216 125 483 0.697677
0 0 0 0 0 36 5 216 125 483 0.68861
1 1 1 -1 -1 39.6 55 237.6 112.5 4347 0.655174
0 0 0 0 0 36 5 216 125 483 0.68861
0 0 0 0 0 36 5 216 125 483 0.68861
0 -2.37841 0 0 0 36 3.810795 216 125 483 0.708727
1 1 1 -1 1 39.6 55 237.6 1125 53.13 0.664941
1 1 -1 -1 -1 39.6 55 194.4 112.5 43.47 0.659444
-1 -1 -1 1 -1 324 45 194.4 137.5 4347 0.698498
0 0 0 0 0 36 5 216 125 483 0.68861
0 0 0 —23.7841 0 36 5 216 95.26988 483 0.724075
0 0 0 0 0 36 5 216 125 483 0.68861
0 0 0 0 -23.7841 36 5 216 125 36.81228  0.697592
2378414 0 0 0 0 4456229 5 216 125 483 0.685906
1 -1 1 -1 -1 39.6 45 237.6 112.5 43.47 0.703149
-1 1 1 1 -1 324 55 237.6 137.5 4347 0.687609
-1 -1 -1 -1 -1 324 45 194.4 112.5 4347 0.714697
0 0 0 0 0 36 5 216 125 483 0.68861
1 -1 1 -1 1 39.6 45 237.6 1125 53.13 0.698888
0 0 0 0 0 36 5 216 125 483 0.68861
1 1 -1 1 -1 39.6 55 194.4 137.5 4347 0.651371
-1 -1 1 1 -1 324 45 237.6 137.5 4347 0.689383
0 0 0 0 0 36 5 216 125 483 0.68861
-1 1 1 -1 -1 324 55 237.6 112.5 43.47 0.700483
1 -1 -1 -1 1 39.6 45 194.4 112.5 53.13 0.672897
-1 1 -1 1 1 324 55 194.4 137.5 53.13 0.682646
0 0 0 0 0 36 5 216 125 483 0.68861
0 0 —23.7841 0 0 36 5 164.6263 125 483 0.705341
1 1 -1 1 1 39.6 55 194.4 137.5 53.13 0.683811
0 2378414 0 0 0 36 6.189207 216 125 483 0.688616
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H2 H3

Velocity Disparity

Figure 6. Main effects plots for velocity disparity.

After a quadratic regression of the data, an equation that shows the relation between the dependent
variable and independent variables is derived as follows:

velocity disparity = 1.697 — 0.0219 W — 0.1149 H + 0.00268 H1 — 0.00971
H2 + 0.00089 H3 + 0.000055 W=+W + 0.00839 H=+H - 0.000003 H1*H1 +
0.000003 H2 = H2 + 0.000038 H3* H3 — 0.001338 W+H + 0.000015 W+ H1+ (18)
0.000111 W=+ H2 4+ 0.000111 W+H3 - 0.000132 H+H1 + 0.000979 H » H2 —
0.000822 H+H3 — 0.000002 H1*H2 - 0.000024 H1+ H3 + 0.000008 H2 * H3

Based on this equation, W has the highest effect on velocity disparity. Basically, an extrusion die is
a fluid distribution system, and the most important factor in a distribution system is the manifold.
Therefore, clearly the manifold dimensions (i.e., H and W) show the most effect on the velocity
distribution. Among the variables Hi, Hy, and H3, which represent the die profiles, the velocity
disparity depends mostly on H3 and with slightly lower dependence on H;. This can be explained by
considering that H3 and to some extent Hy determine the angle that the manifold reaches at the end of
the die. A higher H3 gives a wider angle, while a greater H, leads to a wider angle.

By minimizing this equation, an optimal point where velocity disparity is minimum is obtained.
At the optimal point, these parameters (H, W, H1, Hy, and Hj) are found to be 6.19, 44.56, 204.63, 95.27,
and 59.7, respectively.

A simulation with the obtained values for the independent variables was performed.

Figures 7 and 8 show the velocity distribution in the cavity and across the die exit, respectively.
The velocity disparity values for the default design (Winter type) and the optimal design are found to
be 0.68861 and 0.55035, respectively. This shows a 20.07% improvement in the velocity distribution at
the exit of the extrusion die compared to the default die. Near the edge of the die, where the manifold
reaches the slit, there is a spike in the velocity before it falls to zero at the wall of the die. As it can be
seen, maximum velocity occurs at a little bit further distance from the entry of die. This demonstrates
the insufficiency of the power law.
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Figure 7. Velocity distribution in (a) the initial die and (b) optimized die.
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Figure 8 shows the velocity distribution at the exit of the die for both the initial and optimized dies.

Velocity magnitude (m/s)
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0.2 0.4 0.6
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0.8

—@— Default

—@— Optimized

Figure 8. Comparison of velocity distribution in the initial and optimized dies.

Figure 9 shows the pressure distribution comparison for the initial and optimized dies. Pressure
drops for the initial and optimized dies appears to be 6.723 and 6.628 MPa, respectively. This shows a
1.4% reduction in the pressure drop. A lower pressure drop leads to a lower energy consumption.
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Figure 9. Pressure distribution for (a) the initial die and (b) optimized die.

Figure 10 shows the temperature distributions for the initial and optimized dies. Both contours look
similar. A comparison of temperature distributions at the outlet of the die for the initial and optimized
dies is depicted in Figure 11. As it is shown, the optimized die has more uniform temperature at the
outlet. As discussed before, the optimized die gives more uniform velocity. Uniform velocity results in
a more uniform temperature profile at the exit of the die. Since polymers are susceptible to degradation
due to the high temperatures, an optimized die with more uniform velocity is more desirable.
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Figure 10. Temperature distribution for (a) the initial die and (b) optimized die.
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Figure 11. Temperature distribution comparison at the outlet.
5. Conclusions

This article presented a geometric optimization algorithm involving an integration with
computational fluid dynamics. Temperature-dependent rheological properties along with viscous
dissipation are considered in the CFD model. A Carreau—Yasuda model with Arrhenius temperature
dependency was used for the viscosity model. Fully developed velocity and temperature profiles
were utilized at the inlet of the die. The die profile was approximated by a spline curve with three
points. Based on the response surface method and the central composite experiment design, a relation
between velocity disparity at the exit of the die and five independent geometric variables was derived.
The obtained optimized geometry shows a 20.07% improvement in the distribution of velocity at
die exit.
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