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Abstract: The application of incinerators for the municipal solid waste (MSW) is growing due to
the ability of such instruments to produce energy and, more specifically, reduce waste volume.
In this paper, a numerical simulation of the combustion process with the help of the computational
fluid dynamics (CFD) inside a portable (mobile) incinerator has been proposed. Such work is done
to investigate the most critical parameters for a reliable design of a domestic portable incinerator,
which is suitable for the Iranian food and waste culture. An old design of a simple incinerator has
been used to apply the natural gas (NG), one of the available cheap fossil fuels in Iran. After that,
the waste height, place of the primary burner, and the flow rate of the cooling air inside the incinerator,
as the main parameters of the design, are investigated. A validation is also performed for the mesh
quality test and the occurrence of the chemical reactions near the burner of the incinerator. Results
proved that the numerical results have less than 5% error compared to the previous experimental
and numerical approaches. In addition, results show that by moving the primary burner into the
secondary chamber of the incinerator, the temperature and the heating ability of the incinerator
could be affected dramatically. Moreover, it has been found that by increasing the flow rate of the
cooling air inside the incinerator to some extent, the combustion process is improved and, on the
other hand, by introducing more cooling air, the evacuation of the hazardous gases from the exhaust
is also improved.

Keywords: portable incinerator; computational fluid dynamics (CFD); combustion; parametric study

1. Introduction

The history of burning waste is narrated from many years ago up to modern human life. In the
previous era, people burned waste, usually various kinds of woods and animal wastes, to produce
heat for boiling water or cooking foods [1,2]. This procedure is still popular in some rural areas of Iran
and some other countryside due to the less populated area and difficulties of preparing/transportation
of other kinds of fuels for their domestic use. Of course, waste burning and other related technologies
have been improved during the past decades, but still these techniques are far from being fully
implemented worldwide. Some of the main obstacles in front of their advances can be pointed out as;
cultural issues, the countries’ directives and priorities, waste types, and sufficient places for landfills.
It is noteworthy that all the progress in this way is related to many trials and errors and numerous
devoted strategic studies, which are rarely publicly available for all researchers [2]. Access to all data
related to the progress of this subject due to the vast usages, different applications, and various kinds
of wastes are the main debates between the researchers in this field.

In the last few decades, many countries tried to have some good ideas to manage their wastes [3].
For example, during this period, many advances happened in medical applications; the medical
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wastes, how to treat them environmentally, and the use of them as a source of energy become a
headache for all battle sides [3,4]. Moreover, it was essential for some troops to reduce their track by
completely eliminating their wastes. Therefore, several countries have tried to apply some traditional
methods together with novel research to invent new methods to use wastes efficiently [2]. In the
available literature, the prior usage of the incinerators to the modern techniques with their current
definition was first reported for the Czech Republic and the UK [4,5]. After that, recent instruments
and advances in combustion techniques helped researchers and many other countries to be sure to
make huge investments on this topic. Such efforts have paid off for advanced countries like Sweden,
Germany, and Denmark. Nowadays, these countries use their wastes, and even import wastes from
other countries to produce the domestic heat and electricity using the knowledge and techniques of
district heating (DH) [6–9]. The progress in this topic is not only focused on the big incinerators but
also on the small and home application of incinerators. Nowadays, small incinerators and portable
ones are becoming popular in marine, military and hospital applications, and a few samples exist for
home applications [10].

In advancing countries like Iran and many other regional countries, due to the vast and low-cost
sources of fossil fuels, other resources received less attention [9]. For instance, renewable energies,
like solar, hydropower, geothermal and incineration, were not that successful in competing with fossil
fuels [11]. Renewable energies could be completely independent of fossil fuels, but incineration is a
good sample way, which helps countries to think about a transition technique to partially/completely
reduce their dependencies to fossil fuels. In Iran, traditionally, many applications of incineration
were reported. Recently in Iran, some municipalities and some little companies tried to implement
incineration to produce heat. Reports show that to some extent, by helping companies abroad and
importing their techniques, some progress has been achieved. All of their attempts were mainly on the
building of big incinerator facilities to produce heat and electricity [12–17]. Meanwhile, many research
projects have been introduced at university levels, which are focused on the environmental concerns
and not on the techniques [18]. Therefore, less attention to the combustion techniques and small
portable incinerators is a matter of concern in this research. In such studies, it has been attempted to
improve the combustion knowledge in incinerators as well as the application of portable incineration
for small rural areas [19–22]. During the last year, many countries focused on research with special
attention to the incinerators. The main principal behind using the incineration technique is to reduce
the volume and toxicity level of the municipal solid wastes, chemical and other biomaterial wastes. As a
sample of implementation of the incinerations, the United States could be considered. In this country,
more than 100 active facilities exist for the solid wastes. In addition, 1600 smaller size incinerators
are acting to reduce the medical wastes. These are not the only application of such chambers, around
200 similar combustion chambers, industrial boilers and furnaces are dealing with hazardous and
nonhazardous fuel sources [23].

Therefore, many papers have been published, but their main matter of concern was about
thermo-economic and environmental aspects. It means that a narrow gap exists regarding the full
understanding of the combustion behavior inside incinerators [24,25]. More specifically, when pandemic
dieses endanger human beings, the knowledge of incineration is of importance to deal with reducing
the landfilling of the untreated medical wastes [26,27].

In this paper, with the help of Computational Fluid Dynamics (CFD) and combustion knowledge,
a portable home incinerator, which can be used in the rural areas of Iran, has been simulated.
A parametric study is done to investigate the most involved parameters on the working of a portable
incinerator. Moreover, the ability of the incinerator to burn various volumes of wastes has been
studied numerically.

2. Geometry Creation

In order to simulate the combustion process inside the incinerator, it is necessary to follow several
steps. In the first step, the geometry of the incinerator is created by using the ANSYS WORKBENCH
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19.2 (Ansys Inc., Canonsburg, PA, USA) [28]. According to the first design of the incinerator, the
geometry is depicted schematically in Figures 1 and 2. In Figure 2, the considered incinerator is
presented in a side view to show other important aspects of such geometry. Based on the schematic
of the incinerator, the computational domain is created in Figure 3. Later on, the crated geometry is
prepared by a network of mesh, which is verified and validated by temperature variations along the
centerline. Such validation is done to show the independence of the results to the element numbers.
More details of validations are reported in the results and discussion part.
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Figure 3. The created computational domain for doing combustion simulation of the portable incinerator
(all values are in mm—A: Gas exhaust, B: Burner inlet in primary chamber, C: Fresh air inlet, D: Air
inlet, E: Burner inlet in secondary chamber, F: fresh air inlet).

Generally, the powers of the portable incinerators are in the range of 1000 kW to 1500 kW with the
burning rate of 60–80 kg/h [10,29]. According to the principal geometry, the important parts of the
portable incinerator are identified as the primary combustion chamber and the secondary combustion
chamber. It is noteworthy to mention that for doing a simulation, it would be very difficult to consider
all geometry details. Consequently, the most involved details in the simulations are introduced to the
models. Figure 3 is presented to show the entire computational domain according to the simplified
model. As it is shown in this figure, the biggest chamber on the right side is the primary one, and the
smallest one left under the exhaust port is the secondary chamber.

In Figure 4a–c, the network of the created computational elements is presented. As it is shown
in this figure, a network of mesh elements is generated in triangular form for the surface mesh and
tetrahedral and triangular prism for volume mesh. The total number of elements after doing the mesh
quality test is set to be 6,665,341 elements. In Figure 4a, a cut plane in the X–Z direction is depicted,
which passed through the upper limit of the rubbish volume to show the volume meshes in this region.
In Figure 4c, a cut plane in the X–Y direction is passed through the center line of the main fresh air inlet
to show the volume mesh in another view.
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3. Waste Properties

The rubbish (waste) composition and their properties are completely different according to many
factors and the food culture. Table 1 is prepared according to the average material properties, which
are prepared from the Iranian food and waste culture. In this study, the MSW involves approximately
38% paper, 25% food waste (solid material), 10% plastics, 19% car tire, and 8% glass.

Table 1. Normalized Iranian waste properties. All numbers are reported as their lower heating
values (LHV).

Solid Materials MJ/kg

Car tire 37
Food waste 4.2

Glass fiber-reinforced polyester (GRP) 15
Leather 18.9

Newspaper 18.6
Paraffin wax 42

Sawdust 19

Plastics MJ/kg

Acrylonitrile butadiene styrene (ABS) 39
Cellulose 16

Nylon, polyamide (PA) 28
Polyester (PET), textiles, bottles 23

Polyethylene (PE) 46
Polypropylene (PP) 43

Polystyrene (PS) 46
Polyurethane (PU) 36

Polyvinyl chloride (PVC) 18.9

Liquid MJ/kg

Acetic acid 15.8
Acetone 22.4

Kerosene/Paraffin 34.8
White spirit 34.8

4. Governing Equations

In order to calculate the flow field and the combustion of the waste burning inside an incinerator,
it is necessary to have a very complicated system, which considers all of the involved phenomena.
In the first step of simulations, for geometry a simplification is performed to consider the most involved
boundaries. Now, it is the time to solve the equations according to the geometry and the created
computational domain. Therefore, it is very common to use some simplifications in assumption
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to consider the most involved reactions as well. Accordingly, the governing equations are divided
into two parts. The first part is related to the solid combustion and the respective reactions, and
the second part is related to the gas-related equations. These two parts, with their corresponding
nomenclatures, are reported in Tables 2 and 3. Moreover, Iranian natural gas (NG) is used as the
primary fuel. Therefore, in this case, all of the composition is normalized and given to the general
combustion model of ANSYS FLUENT 19.2 [28]. The general combustion model is used according to
the combustion theory for the hydrocarbons. This equation can be written as the following [30–32]:

CxHyOzNlSn +
(
x +

y
4
−

z
2
+ n + l

)
O2 
 xCO2 +

y
2

H2O + lNO2 + nSO2 (1)

Table 2. Governing equations and the chemical reactions related to the solid combustion [29–31],
reproduced with permission from M. Saffari Pour, Producer Gas Implementation in Steel Reheating
Furnaces from Lab to Industrial Scale: A Computational Fluid Dynamics and Thermodynamics
Approach, Doctoral Thesis, 2016 [32].

Equations Name Material Phase Governing Equations

Continuity
(Mass balance)

Solid Devolatilization and char burnout

Fluid ∂
∂t (ρiYi) +∇

(
ρi
→

U f Yi

)
= −∇

→

J i + Ri + Si (EDC model)

Momentum
Solid dup

dt = FD
(
u f − up

)
+

g(ρp−ρ f )
ρp

+ Fex

Fluid ∂
∂t

(
ρ f
→

U f

)
+∇

(
ρ f
→

U f
→

U f

)
= −∇P + µ f∇

2
→

U f −∇

〈
u′f u′f

〉
+ Fext

Energy
Solid mpcp

dTp

dt = hAp
(
T∞ − Tp

)
+ εpApσ

(
T4

f − T4
p

)
Fluid ∂

∂t

(
ρ f e f

)
+∇

(
ρ f
→

U f e f

)
= ∇(k∇T) + Eex

Table 3. Governing equations [30,31] and the chemical reactions [33] related to the gas combustion,
reproduced with permission from M. Saffari Pour, Producer Gas Implementation in Steel Reheating
Furnaces from Lab to Industrial Scale: A Computational Fluid Dynamics and Thermodynamics
Approach, Doctoral Thesis, 2016 [32].

Equations Name Material Phase Governing Equations

Continuity
(Mass balance) Gas Mixture

∂
∂xi

(
ρũiỸk

)
= ∂

∂xi

(
µ ∂Ỹk
∂xi
− ρu′′i Y′′k

)
+

.
ωk

k = 1, 2, 3, . . . , N

Momentum
Ash Solid dup

dt = FD
(
u f − up

)
+

g(ρp−ρ f )
ρp

+ Fex

Gas Mixture ∂
∂xi

(
ρũiũ j

)
= − ∂P

∂x j
+ ∂

∂xi

(
τi j − ρu′′i u′′j

)
+ ρg

Energy Gas Mixture ∂
∂xi

(
ρũĩh

)
= ∂

∂xi

(
µ
Pr

∂h
∂xi
− ρu′′i h′′

)
+ Sh

In the above chemical reaction, x, y, z, l, and n are the coefficients that can be derived from the
stoichiometric balance of the reaction.

As the gas and air mixture velocity is high enough, the turbulent model has been used for the
flow fields. The common k− ε model is used for the turbulent modeling [30,31,33].

∂
∂t
(ρk) +

∂
∂xi

(ρũik) =
∂
∂xi

((
µ+

µt

σk

)
∂k
∂xi

)
+ Gk − ρε (2)

∂
∂t
(ρε) +

∂
∂xi

(ρũiε) =
∂
∂xi

((
µ+

µt

σε

)
∂ε
∂xi

)
+ C1

ε
k

Gk −C2ρ
ε2

k
(3)
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Gk = µt

(
∂ũ j

∂xi
+
∂ũi
∂x j

)
∂ũi
∂xi

(4)

µt = Cµρ
k2

ε
(5)

In the above equations, the constants are defined as: C1 = 1.44 C2 = 1.09, Cµ = 0.09, σk = 1.0,
and σε = 1.3.

Moreover, the radiative heat transfer is modeled by discrete ordinate (DO). The heat transfer
equations are fully discussed by Khodabandeh et al. [29].

The governing boundary conditions for solving the previous problem are given in Table 4 as:

Table 4. The governing boundary condition applied in this study.

Location Type Value

A Pressure gauge P = 0 kPa

B Burner mass flow rate of air = 8 (kg/s)
mass flow rate of fuel = 5 (kg/s)

C Air inlet V = 1.75 (m/s)

D Air inlet V = 1.5 (m/s)
This value for all air inlets is the same.

E Burner mass flow rat of air = 6 (kg/s)
mass flow rate of fuel = 3 (kg/s)

F Air inlet V = 3 (m/s)

Numbering is presented according to Figure 3.

5. Results and Discussion

For doing a reliable simulation of an incinerator, it is completely essential to test the numerical
procedures from computational and chemical error aspects. In order to pave the way of checking
the simulation procedure, in the first step, three different numbers of mesh elements have been
tested with the temperature gradient along with the considered incinerator. A line is passed from the
center of the bottom of the main fresh air inlet and it is continued along the incinerator’s full length.
These three different numbers of mesh elements are denoted by cases 1 to 3 with 5,969,969, 6,665,341,
77,723,753 elements, respectively. Moreover, the maximum skewness for cases is 0.847, 0.791, and
0.621, respectively. The curvature normal angle for cases is 18◦. Figure 5 shows the results of these
three cases. As it is clearly illustrated in this figure, the temperature of cases 2 and 3 are very close,
and they reported almost similar results. Therefore, for saving the computational time and due to
the similar results derived by cases 2 and 3, case 2 is selected as the reference mesh case for further
thermo-chemical calculations.
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A combustion process verification could be achieved through the validation of chemical reactions.
A literature survey leads us to a very similar case, which is done by Alessio Frassoldati et al. [34].
They did the simulation for a 2D axisymmetric burner, which worked with methane/hydrogen as
fuel. This selection is chosen due to their comparison with the experiments, and in their numerical
work, different turbulent models were considered. Hence, in this case, a direct comparison is done for
both numerical simulations and experiments in Figure 6. The compared results show that the oxygen
concentration on the centerline is very close to those reported by Alessio Frassoldati et al. [34] and the
overall error is less than 5 percent.
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In order to present a visual sense of the differences of the compared cases, Figure 7 is presented.
In this figure, a cut plane has been shown in the X–Y plane with its normal vector in the z-direction at Z
= 0.98 m. All of the contours in this part are depicted based on this cut plane. The reason for choosing
this cut plane is to explain the most involved boundaries of waste to show the chemical reactions at
these boundaries.
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5.1. Effects of Cooling Air

The first parameter in focus in this research is the mass flow rate of the cooling air. To investigate
the effects of the cooling air, other parameters are kept constant. It means that the rubbish height is set
to be 800 mm, and the primary burner position is set to be 1500 mm. Therefore, the flow rate of the
cooling air varies from 0.07 kg/s up to 0.21. Table 5 is prepared to show a summary of the investigated
cases and their conditions.

Table 5. Different mass flow rate of the cooling air for the incinerator.

Case Numbers Rubbish Height Burner Position Mass Flow Rate

Case 1 800 mm 1500 mm 0.07 kg/s
Case 2 800 mm 1500 mm 0.14 kg/s
Case 3 800 mm 1500 mm 0.21 kg/s

In Figure 8, three different cases for variation of the mass flow rate of the cooling air are presented.
One of the famous contours, which are related to the production of gasses in the incinerator, is presented
in this figure. As it can be seen from this figure, by increasing the mass flow of the cooling air, carbon
monoxide (CO) production has been increased. This is due to the injection of more air with higher
velocities, which can produce higher suction power for the evacuation of off-gases from the portable
incinerator system.Processes 2020, 8, x FOR PEER REVIEW 10 of 22 
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A combustion reaction is always going in a direction to produce carbon dioxide (CO2). Therefore,
having the contours of CO2 during a combustion process could help to identify the rate of pollutant
emissions. In Figure 9, the contours of the mass fraction of CO2 on the representative plane similar to
CO are depicted. From these contours, it can be inferred that by introducing more air the hot spots in
the production of CO2 have been reduced from case 1 to case 3. In addition, an even dispersion of CO2

in the entire chamber could be expected.
Figure 10 is presented to show the total pressure during the combustion of the waste inside the

incinerator. It can be seen that by increasing the mass flow rate of the cooling air from 0.07 to 0.21 kg/s,
the pressure inside all chambers has been reduced. It means that the suction power is increased and
the evacuation of the off-gases would be much faster than previously.
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Another important characteristic of a combustion process is the temperature. As it is depicted in
Figure 11, more cooling air results in reducing the total temperature inside the chambers. Furthermore,
by comparing the above-mentioned cases, it can be observed that the hot spots reduced from case 1 to
case 3. In addition, the temperature has a smooth distribution by increasing the cooling air. It means
that a dilution happened inside the incinerator.
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For a full investigation of the flow field inside an incinerator, it is essential to study the velocity
fields, vectors and contours. As it is shown in Figure 12, the velocity magnitude near the exhaust port
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and inside the second chamber has been increased from case 1 to case 3. It means that the suction
process creates more negative pressure and helps to evacuate the off-gases faster from the incinerator
system. Moreover, the contours of velocity vectors from case 1 to case 3 illustrate that the suction
process causes an amplitude in the velocity vectors near the outlet zone and consequently a better
evacuation of off-gases from the secondary chamber has been achieved.Processes 2020, 8, x FOR PEER REVIEW 12 of 22 
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5.2. Effects of Primary Burner Position

The primary burner has the main responsibility of burning most of the waste volume. Hence,
it is quite essential to be exact and in place to reduce the volume of the waste and produce the most
energy and heat from the waste. In this part, the fluid dynamics of the place of the primary burner are
in focus. Two cases have been prepared. For the previous case, the place of the primary burner was
1500 mm from the main fresh air inlet. In this section, the minimum and the maximum place for the
installation of this burner from the main air inlet are considered to be 1000 and 2000 mm, respectively.
Besides, other parameters have been kept constant, according to the summary presented in Table 6.

Table 6. Different places of the primary burner installation in the incinerator (Shown in Figure 13).

Case Numbers Rubbish Height Burner Position Mass Flow Rate

Case 4 800 mm 1000 mm 0.07 kg/s
Case 1 800 mm 1500 mm 0.07 kg/s
Case 5 800 mm 2000 mm 0.07 kg/s

Figure 13 shows the differences between the total pressure inside the incinerator when the burner
is in 1000 mm and 2000 mm from the main air inlet. It is clearly presented that by increasing the distance
from the main air inlet, the pressure has been decreased. This phenomenon is due to producing the
most heat and flow right near the secondary chamber and under the exhaust port. So, the incinerator
could evacuate the off-gases faster and more efficiently.
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Figure 13. Total pressure inside the incinerator for the place of installation of the primary burner (kPa).

In Figure 14, it is attempted to show the temperature contours for the position of the primary
burner. As can be seen from the temperature contours, for case 5, the burner is so close to the wall that
it separates the primary and the secondary chamber. Being adjacent to this wall results in an uneven
temperature distribution in the primary chamber and the creation of hot spots in the secondary one.
Likewise, the burner at the position of 2000 mm is very far from the waste volume and is unable to
provide enough heat for them.
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For the velocity field presented in Figure 15, the same principles are still valid in the same way
for the temperature and the pressure. The closer the burner is to the exhaust port, the more velocity
magnitude can be observed at the vicinity of the boundary of the primary and secondary chamber.
This will result in the evacuation of more heat rather than off-gases.Processes 2020, 8, x FOR PEER REVIEW 14 of 22 
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5.3. Effects of Rubbish Height

The other important parameter to be studied in this research is the waste volume’s effect on the
incinerator operation condition. Such evaluation is done by changing the waste height of the rubbish
inserted to the incinerator. In order to study these effects, it is crucial to keep other parameters constant.
A summary of the compared conditions in this part is reported in Table 7.

Table 7. Different rubbish heights inside the primary chamber of the incinerator.

Case Numbers Rubbish Height Burner Position Mass Flow Rate

Case 6 700 mm 1500 mm 0.07 kg/s
Case 1 800 mm 1500 mm 0.07 kg/s
Case 7 900 mm 1500 mm 0.07 kg/s

In Figure 16, it is attempted to show the pressure contours inside the incinerator versus variations
in waste volume. As it can be observed, the pressure is not that affected by the waste volume changes.
It means that such an incinerator is able to provide a reliable pressure range inside the chambers due
to an efficient installed ejector system in the exhaust port to regulate this pressure.
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The temperature contours for two samples of the waste volume are presented in Figure 17.
From these contours, it is observed that by increasing the height of the waste, the hot spots are reduced
drastically. In addition, the total temperature inside the primary combustion chamber has been reduced;
it means that less heat can be provided for the lower parts of the waste.
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5.4. Comparison of All Cases by Oxygen Concentration

For a complete comparison of the previously mentioned cases, the oxygen concentration inside
the incinerator chamber is selected. Such a selection is made for more detailed investigation of the
all-chemical involved reactions. On the other hand, for safety and according to the environmental
regulations, the oxygen concentration at the exhaust of the incinerators must be around 3–5% [35].
Consequently, to have a good combustion system, keen attention must be devoted to the oxygen
concentration. The oxygen data extraction is done on a line at Y = 1.09 m, which starts from the center
of the main air inlet and passes directly along with the incinerator to the end of it. For the sake of
clarity, this line is visualized in Figure 18.
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Figure 19 shows the effects of the cooling air mass flow rate on the mass fraction of oxygen inside
the considered incinerator. The plotted lines show that by increasing the mass flow of the cooling air
up to 0.14 kg/s, the same trend follows for the oxygen concentration. On the other hand, when the
mass flow of oxygen is increased to an amount of more than 0.14 kg/s the trend does not follow as it
did previously. As the oxygen for the mass flow of 0.21 kg/s is high enough, it starts to be consumed
immediately. Simultaneously, other air inlets on both sides of the incinerator increase the oxygen
content, which can be observed in the middle of incinerator (X = 1.5). Consequently, due to the high
airflow rate, the velocity of oxygen has been increased, and all of the injected oxygen is consumed
at the primary chamber, and not enough oxygen exists at the secondary chamber. Lack of oxygen at
this chamber could be a reason that more pollutants are produced when continuously working with
this condition.

Figure 20 shows the effects of the primary burner position on the oxygen concentration inside the
portable incinerator. As it is depicted by the plotted lines, the oxygen is injected from the main air
inlet, and by reaching the burner position, it starts to be consumed. In this way, it can be seen that
by increasing the primary burner distance from the main air inlet, more oxygen can be introduced to
the system, but this oxygen behind the secondary chamber is suddenly consumed. This could lead
to an unbalanced oxygen concentration inside the chamber and consequently, uneven heat release
from the primary burner. In addition, the peak points right after X = 2 m correspond to the oxygen
concentrations in the secondary combustion chamber.
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Figure 21 shows the effect of the waste volume on the oxygen concentration inside the primary
and secondary chambers. For all of the rubbish volumes as the cooling air mass flow rate is kept
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constant, the same trends could be expected. On the other hand, as the rubbish with a height of 700 mm
is the minimum loading of the wastes, the total amount of oxygen would be higher compared to other
rubbish heights. This means that the oxygen would react in a faster way and keep some unused oxygen
in the primary chamber. Again, similar behavior for the second chamber could be expected in the same
way as the primary chamber. Moreover, comparing all the results, whether in terms of temperature or
other main factors including pressure and oxygen mass fraction, shows that the optimum place of the
primary burner at the ceiling of the primary chamber is found to be 1500 mm from the main air inlet.
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6. Conclusions

In this numerical work, an investigation is done through CFD for a portable incinerator. The waste
inside the considered incinerator is selected according to Iranian waste compositions. A parametric
study has been proposed for the most involved factors for the design of such an incinerator. Accordingly,
the following remarks can be concluded:

• By introducing the higher mass flow rate of the cooling air, the hot spots inside the combustion
chamber reduced, and an even temperature distribution has been achieved.

• By introducing the higher mass flow rate of the cooling air, not only the air velocities inside
the combustion chambers have been improved, but also the negative pressure, which helps the
evacuation of hazardous gases, decreased drastically.

• By increasing the rubbish volume, the incinerator is still able to burn the waste but this burning
would face some limitations, which could affect the fluid dynamics parameters of the incinerator.

• According to the investigations, the optimum place of the primary burner at the ceiling of the
primary chamber is found to be 1500 mm from the main air inlet.

• By increasing the burner distance from the main air inlet, all thermo-chemical parameters of the
incinerator are affected.
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The worst case of the primary burner could be the closest one to the secondary chamber. In this
case, there would be a high risk of unburned wastes in the main chamber as well as high-temperature
concentrations near the boundary of these two chambers, which could damage the separation wall
between the two chambers.

Author Contributions: M.S.P. performed the research, calculated all data, analyzed the data, and mainly wrote
the paper. A.H.-F. suggested the structure of the research, edited, revised, and partially wrote the paper. B.F. is the
principal supervisor of the research, suggested the main idea of the research, and numerical analysis has been
performed under her supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Elites Foundation of Iran for supporting the young researchers
through the Postdoctoral research grant issued for Mohsen Saffari Pour.

Acknowledgments: The authors would like to express their gratitude to the National Elites Foundation of Iran
for preparing the Postdoctoral research grant for Mohsen Saffari Pour. The authors are also very thankful for the
Sharif University of Technology (SUT) staff, more specifically the Faculty of Mechanical Engineering for creating
supportive equipment and cooperative atmosphere to fulfill this research.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Nomenclature

Notations
Ap Particle surface area [m2]
cp Specific heat capacity of particle [ J

kg K ]

Eex Volumetric heat sources [ w
m3 ]

e f Total internal energy [ J
kg ]

FD Inverse of relaxation time [1/s]
Fex Other forces per unit mass of particle [m/s2]
Fext Other forces per unit volume of gas [ kg

m2s2 ]
g Gravity [m/s2]
h Convective coefficient [ w

m2K ]

h̃ Favre-Averaged enthalpy [ J
kg ]

→

J i Diffusive flux of species [ kg
m2s ]

k Thermal conductivity [ w
m K ]

mp Mass of particle [kg]
P Pressure [ kg

m s2 ]
P Reynolds-Averaged pressure [ kg

m s2 ]
Pr Prandtl number [−]
Ri Net production rate of species [ kg

m3s ]
Si Additional created source rate of species [ kg

m3s ]
Sh Other volumetric heat sources [ w

m3 ]
T f Temperature of gas mixture [◦C]
Tp Temperature of particle [◦C]
T∞ Temperature far from surface of particle [◦C]
→

U f Gas mixture velocity [ m
s ]

ũi Favre-Averaged gas mixture velocity [ m
s ]

u f Fluid flow velocity [ m
s ]

u′f Gas mixture velocity fluctuations [ m
s ]

up Particle velocity [ m
s ]

Yi Local mass fraction of each species [−]
Ỹk Favre-Averaged mass fraction of species [−]
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Greek symbols
εp Particle emissivity [−]

µ f Dynamic gas viscosity
[

kg
ms

]
ρ Reynolds-Averaged density of species

[
kg
m3

]
ρi Density of species i

[
kg
m3

]
ρ f Density of gas mixture

[
kg
m3

]
ρp Density of particle

[
kg
m3

]
σ Stefan-Boltzmann constant [ w

m2K4 ]
τi j Viscous diffusion tensor [ kg

m2s2 ]
.
ωk Net production rate of species [ kg

m3s ]
Subscripts
f Gas
p Particle
Abbreviations
CFD Computational fluid dynamics
NG Natural Gas
DO Discrete ordinate
LHV Lower heating value
MSW Municipal solid waste
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