
 

Processes 2020, 8, 903; doi:10.3390/pr8080903 www.mdpi.com/journal/processes 

Article 

Numerical Analysis of the Flow around Two Square 

Cylinders in a Tandem Arrangement with Different 

Spacing Ratios Based on POD and DMD Methods 

Feng Wang 1,2,*, Xiaodong Zheng 1,*, Jianming Hao 1,3 and Hua Bai 1 

1 Wind Tunnel Laboratory, School of Highway, Chang’an University, Xi’an 710064, China; 

jianminghao@chd.edu.cn (J.H.); baihua15@chd.edu.cn (H.B.) 
2 Wind Engineering Research Centre, School of Engineering, Tokyo Polytechnic University,  

Kanagawa 243-0297, Japan 
3 Department of Civil, Structural and Environmental Engineering, University at Buffalo,  

Buffalo, NY 14260, USA 

* Correspondence: wf@chd.edu.cn (F.W.); 2018121026@chd.edu.cn (X.Z.) 

Received: 8 July 2020; Accepted: 28 July 2020; Published: 30 July 2020 

Abstract: To more clearly understand the changes in flow characteristics around two square 

cylinders with different spacing ratios, the main mode of the flow field was extracted by using the 

Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) methods. 

The changes in the main mode of the flow field at different spacing ratios and the difference of the 

time series were analyzed and compared. This processing can separate the mixed information in 

the flow field and obtain the dominant modes in the flow field. These main modes can clearly 

reflect the dominant flow characteristics in the flow field. The analysis results show that when L/D 

= 2, the flow field structure is consistent with the flow field around a single square cylinder. When 

L/D = 2.5–3.5, the vortex shedding from upstream cylinders combines with the vortex near the 

downstream cylinders. This mutual coupling causes a significant change in the drag coefficient 

value of the downstream cylinder. When L/D = 4, the main vortex from the upstream cylinder can 

be completely shed, which means that the upstream and downstream square cylinder vortices start 

to become independent. The main focus of this paper is to use the advantages of POD and DMD to 

obtain several modes with higher energy in the flow field. Furthermore, it can be considered that 

these main modes can fully reflect the flow characteristics of the flow field. 

Keywords: two square cylinders; flow characteristics; numerical analysis; proper orthogonal 

decomposition; dynamic mode decomposition 

 

1. Introduction 

Square cross-section structures commonly exist in the fields of civil and marine engineering. 

The problem of flow around square cylinders has been a popular topic in structural wind and ocean 

engineering research in recent years. In practice, structures rarely exist in isolation and more often 

present a certain form of arrangement. Two cylinders in a tandem arrangement are one of the simple 

and typical distribution forms, which, to some extent, represents the complexity of structural 

interference in the flow field. 

Liu [1] studied the aerodynamic changes of the flow around two square cylinders with different 

spacing ratios under several Reynolds numbers (Re) by means of experimental methods. Sakamoto 

[2] carried out experiments under Re = 2.76 × 104 and Re = 5.52 × 104, and obtained three spacing ratio 

intervals for the aerodynamic change of the upper and lower square cylinder. Kim [3] examined the 
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test flow around two square cylinders with Re = 5.3 × 103 and Re = 1.6 × 104, and found that the 

aerodynamic coefficient curve changed significantly at the point where the spacing ratio was 2.0 and 

2.5, respectively. Yen [4] also made use of Particle Image Velocimetry (PIV) to conduct experiments, 

and analyzed the change of flow field with different spacing ratios. Meanwhile, the change of 

inclination angle of the downstream square column was also considered. Lv [5] used Computational 

Fluid Dynamics (CFD) with the Renormalization Group(RNG) k-ε model to simulate flows around 

two square cylinders with different spacing ratios under Re = 2.2 × 104, and found that the critical 

spacing ratio where the drag coefficient of the downstream square column was suddenly changed 

was between 1:2 and 1:3. Li [6] conducted the test under Re = 1.6 × 104 and Re = 1.0 × 106 using the 

improved Delayed Detached-Eddy Simulation (DDES) and obtained the critical spacing ratio under 

the corresponding Reynolds number. Ahmad [7] used Large Eddy Simulation (LES) to perform the 

same analysis. Lankadasu [8] also carried out experiments with shear flow considered. 

In order to clearly understand the coherent structure in these complex flow fields, many vortex 

structure identification methods, such as Q criterion, λ_2-method, Ω criterion [9–11] have been 

proposed one after another to extract the coherent structure in the flow field. However, these 

methods will mask the potential complexity of fluid flow superimposed with multi-dominant 

coherent structures [12]. Lumley [13] introduced the Proper Orthogonal Decomposition (POD) 

method for the first time in the study of turbulence, using the modes extracted from POD to identify 

the coherent structure of turbulence, these modes are ordered by energy, it combines the coherent 

structure and energy of turbulence. Compared with other identification methods, POD can clearly 

identify the dominant flow mode in the flow field [12] In the past several decades, POD has been 

widely used in the decomposition and reconstruction of wind pressure on the surface of structures 

[14–16], coherent and turbulent process analysis [17–21], and the establishment of a reduced-order 

model [22] of fluid-structure interaction (FSI). Among these, Kikitsu [18] used PIV to obtain the 

image of the three-dimensional vibrating square cylinder wake region, and then extracted the 

dominant structure of the flow field in the cylinder vortex-induced vibration through POD. Wang 

[15] used PIV and pressure scanning to obtain the flow field image and pulsating pressure around 

the square cylinder simultaneously, and the effect of the turbulent coherent structure on the 

pulsating pressure on the structure surface was analyzed using POD. Liu [20] performed POD 

analysis and reconstruction of the wall pressure fluctuations below the constrained wake of a 

two-dimensional square tube near the wall, and believed that this method can give the main flow 

structure that cannot be captured by the original wall fluctuations. Prothin [21] used phase 

averaging based on the first POD coefficients to characterize the turbulent and coherent process in 

the near wake of the rudder, to highlight the unsteady nature of the flow around NACA0015 foil. 

The DMD (Dynamic mode decomposition) algorithm recently developed by Schmid [23]. Through 

DMD, the flow field can be decomposed based on frequency information, that is, each DMD mode 

has a single and different frequency value, and these modes are sorted in descending order of 

pulsating energy at different frequencies [12]. Compared to the POD algorithm, the DMD algorithm 

considers both the temporal (spectral) and spatial orthogonalities, resulting in the phase/frequency 

information and the corresponding coherent structures, while POD only decomposes the modes 

sorted by energy, and these modes may contain multiple frequency components [24,25]. Yu [26] 

used DMD to decompose the calculated flow field around an NACA0012 airfoil, and analyzed the 

evolution of the vortex structure of the airfoil in the shear flow. Zhang [27] used DMD to decompose 

the flow field around a bridge section and analyze the influence of the vortex generator (VG) on the 

vortex shedding from the main beam cross-section of the bridge. Pan [28] uses DMD to analyze 

wake flow around NACA0015 airfoil, captured the vortex shedding pattern behind the trailing edge 

and its high-order harmonics, including abundant information such as frequency, wavelength and 

convection speed. At present, the data sources for most relative studies are either structural data 

(such as surface wind pressure) or surrounding flow field information, while Andres [29] recently 

combined these two aspects of information and proposed a new POD and DMD framework for 

fluid-structure coupling. 
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To the best of the author’s knowledge, research into the flow around two square cylinders with 

tandem arrangement has mainly focused on the change in the aerodynamic coefficient or the 

determination of the critical spacing ratio under different Reynolds numbers. The analysis of the 

flow characteristics of the flow field is only by means of experiments or CFD. This means the data 

obtained from these methods generally contain a variety of information components, such as various 

scales of vortex display, on one image, and it is difficult to identify the contribution of different 

vortex structures to the flow field based on these instantaneous flow characteristics. The main focus 

of this paper is to use the advantages of POD and DMD to obtain several modes with higher energy 

in the flow field. Furthermore, it can be considered that these main modes can fully reflect the flow 

characteristics of the flow field. Based on the characteristics of these main modes, comparison and 

analysis of the changes in the flow field around two cylinders in a tandem arrangement with 

different spacing ratios at Re = 1.6 × 104 is undertaken. It should be noted that the source data of the 

analysis are based on CFD simulations. 

2. CFD Simulation 

A quadrilateral grid was used for calculation. The grid division and area size are shown in 

Figure 1, where D is the side length of the square cylinder and L is the distance between the square 

cylinders’ centroids. The mesh of the single cylinder is similar to that of two cylinders. The 

turbulence model chosen for calculation is the RNG k-ε model. The no-slip boundary condition is 

imposed at the cylinder’s surface, the left semicircle boundary as the velocity inlet condition, and the 

right semicircle as the pressure outlet. Using the semi-implicit method for pressure-linked equations 

(SIMPLE) algorithm, the first order upwind is used as the format of temporal discretization, and the 

spatial discretization precision is second order. The non-dimensional time-step size is 

= U/ =0.0002 3.6/0.065=0.0111  s t D , including more than 500 time-steps in each period of vortex 

shedding [30], and performing 20 inner iterations within each physical time-step. Simulations were 

performed using ANSYS Fluent. Corresponding grid independence test was carried out, taking the 

two square cylinders with a spacing ratio of 2.5 as an example, and the results are shown in Table 1. 

Finally, the medium mesh was selected for calculation. The size of the first layer of the grid near the 

wall is y1 ( = / =0.0003 1y y D ); calculation results show that y+max ≈ 1. The lift coefficient RMS value Cl ‘ 

and drag coefficient average value Cd are shown in Figure 2. The simulation results of the upstream 

cylinder are very close to the test values of Liu [1]. However, as can be seen from the aerodynamic 

coefficient variation trend and transverse velocity U distribution (Figure 3), when L/D equals 2, the 

airflow circumvents the upstream square cylinder and then reattaches to the downstream cylinder, 

and a complete vortex shedding is then formed behind the downstream square cylinder. The wake 

flow pattern is very similar to the flow around the single square cylinder (Figure 4). When the 

spacing ratio changed from 2 to 2.5, the negative Cd value of the downstream square cylinder 

changed to positive. The vortex shedding from the upstream square cylinder failed to reattach to the 

downstream cylinder on both sides in time. Instead, it crashed into the windward side of the 

downstream square column, causing the flow around the downstream square column more 

complex. As shown in Figure 3, the wake flow pattern of L/D = 2 is quite different than that of the 

others; this spacing ratio fits with the turning point of the force coefficient in the test of Kim [3]. As 

the spacing ratio increases to 4, it can be seen that there is a relatively complete vortex sandwiched 

between the upper and lower cylinder, which is generated by the airflow passing around the 

upstream square cylinder. The direct results obtained by CFD simulation can only show the change 

of a variable value over time in a single reaction flow field, and these data contain both temporal and 

spatial information. In this work, POD and DMD methods are used to separate the main modes of 

the flow field and the corresponding time coefficient. As described above, with this processing 

method, not only can instantaneous images of the flow field be obtained, but flow field modes with a 

clear energy proportion (degree of contribution) can also be obtained. The calculation results of the 

flow around the single square cylinder are shown in Table 2, and the results are in good agreement 

with the test values. It can be seen from the comparison between CFD simulation results and 
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experimental values that the flow field obtained by calculation has high reliability, and the flow field 

data obtained by calculation can be used for the following analysis. 

 

Figure 1. Computational grid of L/D = 2.5. 

Table 1. Mesh convergence test results when the spacing ratio equals 2.5. 

 cell number Cd1 Cd2 Cl1' Cl2' 

coarse 38,280 1.923  1.777  1.666  1.589  

medium 70,984 1.924  1.358  1.702  1.714  

fine 104,833 1.925  1.254  1.712  1.787  

 

 

Figure 2. Force coefficients of upstream and downstream square cylinders with different spacing 

ratios. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Distribution of transverse velocity U at different spacing ratios (m/s): (a) L/D = 2; (b) L/D = 

2.5; (c) L/D = 3; (d) L/D = 4. 

Table 2. Computational Fluid Dynamics (CFD) simulation results of flow around a single square 

cylinder. 

Single square Cd Cl ‘ St 

Re = 1.6 × 104 (CFD) 1.966 1.332 0.139 

Re = 2.2 × 104 (CFD) 2.001 1.436 0.136 

Re = 2.2 × 104 (Exp[6]) 2.100–2.210 1.210 0.130 

 

Figure 4. Distribution of transverse velocity U flow around a single square cylinder (m/s). 

3. POD and DMD Methods 

3.1. Proper Orthogonal Decomposition 

POD has a complete mathematical description in mathematics. Its essence is to find a set of 

optimal basis functions in the space domain to express a known function. It is essentially a linear 

decomposition [31]. After a series of mathematical descriptions and transformations, generally in 

actual use, POD can be expressed as shown in Equation (1), where m ( )x  is the POD mode and 

k
ma  is the corresponding coefficient of the mode. For rigorous mathematical derivation, please refer 

to Lumley [13]. 

m
1

( ) ( )


 
M

k k
m

m

w x a x  (1)

In the snapshot POD method proposed by Sirovich [32], M represents the number of snapshot 

samples. The modes and features identified by POD are ranked based on energy. Therefore, the first 

few order modes obtained by the POD method reflect the main flow characteristics of the flow field, 

and usually the dominant character of flow fields can be reconstructed well using these modes. In 

fact, the POD method is basically consistent with the singular value decomposition (SVD) and 

principal component analysis (PCA) methods [25]. The SVD formula is shown in Equation (2), where 

W is the variable matrix of interest, and each column of vectors represents a time sample. If it is a 

two-dimensional spatial distribution, it should be rearranged into a one-dimensional vector. U 

returns the POD mode matrix, V returns the time series corresponding to each order mode, and S is 

the energy ratio of each order mode, where * represents the conjugate transpose. 
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*W USV  (2)

3.2. Dynamic Mode Decomposition 

We can redistribute the variable matrix W into WA and WB, where WA contains the first N-1 

snapshot, and WB is the last N-1 snapshot (N is the total number of samples): 

1 2 1{ ( ), ( ),......, ( )}A
NW w x w x w x  

(3)

2 3{ ( ), ( ),......, ( )}B
NW w x w x w x  

Suppose WB can be obtained by WA transformation, as shown in Equation (4), and the singular 

value vector of WA is decomposed into *AW USV . The solution of the conversion matrix F can be 

further simplified to Equation (5) [25], and then the eigenvalue solution of the matrix F is derived to 

obtain the eigenvalue μj and the eigenvector Λj. 

1 2 1{ ( ), ( ), ......, ( )} B A
NW FW F w x w x w x  (4)

* 1= BF U W VS  (5)

The frequency corresponding to each mode is shown in Equation (6), where fs is the snapshot 

sampling frequency. The modal flow growth rate (decay rate) can be expressed as Equation (7). 

sIm(ln( )) / (2 ) f f   (6)

sRe(ln( )) g f  (7)

Finally, the DMD mode can be expressed by Equation (8), where Λj is the eigenvector 

corresponding to the mode. 

= jj U   (8)

The ordering of DMD modes also requires reflecting the degree of contribution of this order 

mode to the flow field but, at present, this sorting method has not been unified like POD. Here, 

several sorting methods exist: sorting according to the modal 2-norm [24,33]; sorting rules 

developed by Kou [34]; and the sorting method used in Hu’s paper [35], as shown in Equation (9). 

* 1

1
=

j

jV S



 (9)

4. Results and Discussion 

4.1. POD Analysis of Two Square Cylinders With Different Spacing Ratios Under Re = 1.6 × 104 

The number of snapshot samples used in decomposition is 500, and the sampling frequency of 

snapshot samples is about 714 Hz. POD decomposition is performed on the transverse velocity U 

which is calculated by CFD. 

The POD decomposition of the sample matrix W can be performed directly, so that the 

first-order POD mode obtained is the average flow field. It is also possible to subtract the mean value 

of the snapshot samples from each value in the matrix W, so that the obtained mode does not include 

the first-order mode of the average flow field. In order to compare with the DMD method, this 

article adopts the former method for POD processing. 

The energy distribution of the main POD modes of the flow field around a square cylinder and 

the flow field around two square cylinders in a tandem arrangement at different spacing ratios is 

shown in Figure 5. The first-order mode occupies the dominant energy, which reflects the character 
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of the average flow field or static flow field, as shown in Figure 6. It can be seen that modes 2 and 3, 4 

and 5, 6 and 7 actually exist in pairs, from their corresponding time coefficients, it can also be seen 

that a phase difference is formed between the two modes, and the frequency distribution obtained 

after the spectral transformation is also consistent, which reflects the alternating shedding of the 

vortex, which is consistent with Wang’s related research [36]. In this article, the operating conditions, 

with the exception of L/D = 2, do not list another mode of lag. At the same time, it can be seen from 

Figure 6 that each order POD mode of L/D = 2 is very similar to the flow around a single square 

cylinder (Figure 7). The order 2–3 is an anti-symmetric structure, and the order 4–5 is a symmetric 

structure. The vortex structure changes from large to small as the order of modes increases, 

corresponding to the gradual decrease in vortex energy. Except for the average flow field, the main 

frequency obtained by the second to third order mode spectrum transformation with the largest 

energy ratio is very close to the main frequency obtained by the upstream and downstream square 

cylinder lift coefficient spectral transformation, and dominates the pulsating field. Extracting the 

first few modes for reconstruction, it can be seen that the reconstructed images of the order 1–5 and 

the order 1–7 are very consistent with the original image, which shows that the order 1–5 POD 

modes can reproduce most of the characteristics of the flow field. As the modulus increases, the 

accumulated modal energy changes little, resulting in little change in the reconstructed image. As 

shown in Figure 8. When the spacing ratio between the upstream and downstream square cylinder 

changes from 2 to 2.5, the POD mode is no longer similar to the flow field around the single square 

cylinder. The wake area of each mode expands, and the vortex core becomes smaller. The character 

of the flow field is quite different from that of L/D = 2, but it can still be seen that the third and fifth 

mode show obvious asymmetrical and symmetrical structures, respectively. When L/D equals 3 or 4, 

the symmetry of the POD mode is weakened, which may be due to the fact that these POD modes 

are simultaneously doped with eddy forms of other frequencies. 

 

Figure 5. Energy distribution of the Proper Orthogonal Decomposition (POD) modes. 
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(a) 

(b) 

(c) 

(d) 

Figure 6. Dominant POD modes at different spacing ratios: (a) L/D = 2; (b) L/D = 2.5; (c) L/D = 3; (d) 

L/D = 4. 

 

Figure 7. Dominant POD modes of the single square cylinder fields. 
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Figure 8. Reconstruction of transverse velocity U of flow field when L/D = 2.5. 

As shown in Figure 9, when L/D = 2.5, the spectral transformation corresponding to the time 

coefficient of the POD mode has only a single main frequency, but when L/D > 3, some modes have 

multiple main frequencies. Table 3 lists the main frequencies obtained by the spectral transformation 

of the main POD mode time coefficients with different spacing ratios, and the main frequency 

obtained by the time series spectral transformation of the upstream and downstream square cylinder 

lift coefficients. From these frequency distributions, it can be seen that when L/D equals 2 or 2.5, the 

dominant frequencies of the first and third modes are the eddy frequency or its multiplied 

frequency. When the spacing ratio is gradually increased, the second and third-order mode 

frequencies are basically unchanged, but the frequency of the fourth to seventh modes gradually 

increases. When the spacing ratio L/D = 4, the frequency of the fourth to seventh mode is close to the 

multiple relationships with the vortex shedding frequency of the square cylinder. From the mode 

diagram of L/D = 4, it can be seen that the main vortex of the upstream and downstream square 

cylinders begins to separate from each other, that is, after the airflow flows through the upstream 

square cylinder, the vortex shedding that dominates the energy can be formed relatively completely, 

and then flap on the downstream square cylinder. 

 
(a) 

 
(b) 

Figure 9. Time travel curve and Fourier power spectra of the dominant pod modes: (a) L/D = 2.5; (b) 

L/D = 3.5 
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Table 3. Dominant frequency obtained by Fourier power spectra of the main POD modes at different 

spacing ratio. 

Spacing ratio 
Mode 

3 
Mode 5 Mode 7 

Frequency of vortex 

shedding of 

upstream cylinder 

Frequency of vortex 

shedding of 

downstream cylinder 

L/D = 2 5.5781 11.1562 16.7344 5.6030 5.6003 

L/D = 2.5 5.5781 11.1562 16.7344 5.6250 5.6252 

L/D = 3 5.5781 11.1562 16.7344/19.5234 5.8496 5.8496 

L/D = 3.5 5.5781 11.1562/13.9353 19.5234 6.1817 6.1817 

L/D = 4 5.5781 13.9353 19.5234 6.3822 6.3822 

4.2. DMD Analysis of Two Square Cylinders With Different Spacing Ratios Under Re = 1.6 × 104 

As described above, the mode obtained by the POD method may contain multiple frequencies. 

In practice, in civil engineering or marine engineering structures, the vibration response of the 

structure is often closely related to a certain frequency, such as vortex-induced vibration (VIV). 

Therefore, if we can obtain the frequencies with relatively high energy in the flow field and the flow 

characteristics corresponding to these frequencies one-to-one, it will be beneficial to our analysis of 

the structural vibration mechanism. The dynamic modes obtained through DMD can display such 

information well. In this study, DMD processing was also performed on the transverse velocity U, 

and then sorted according to the energy occupied by each mode. These DMD modes appear in pairs, 

with opposite frequencies. The DMD mode energy at different spacing ratios is shown in Figure 10. 

In most papers, the first-order mode obtained after sorting by mode amplitude or mode energy is the 

average flow field, that is, the 0 Hz mode [33–35]. However, after sorting according to the selected 

sorting rules in this paper, the first-order DMD mode obtained under the condition of L/D equals 2.5, 

3, or 3.5 is not the 0 Hz mode, but is close to or at the same order of magnitude as the 0 Hz mode in 

terms of energy proportion. Such analysis results also appear in the analysis of Yu [26]. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Energy distribution of (Dynamic Mode Decomposition) DMD modes at different spacing 

ratios: (a) L/D = 2; (b) L/D = 2.5; (c) L/D = 3; (d) L/D = 4. 
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The distribution of the Ritz values of the DMD modes at each spacing ratio is shown in Figure 

11, where the small green circles represent on or inside the unit circle, and the red solid squares 

represents outside the unit circle. It can be seen that most of the modes at each spacing ratio are in a 

stable state or a periodic state. When L/D = 2.5, there are two frequencies with a large growth rate 

around 0 Hz, but their energy ratio is very small, so they can be ignored. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Ritz eigenvalue distribution of the DMD modes at different spacing ratios: (a) L/D = 2; (b) 

L/D = 2.5; (c) L/D = 3; (d) L/D = 4 

Table 4 lists the growth rate (decay rate) of DMD modes with different spacing ratios, and the 

frequency and structure of the modes are shown in Figure 12. When L/D = 2, the first-order mode is 0 

Hz and occupies the dominant energy. The attenuation rate of the first few modes is close to 0, which 

represents a stable state. Their frequency is basically the same as the POD mode, and close to the 

vortex frequency or a multiple of it. When L/D = 2.5, it can be seen that there are multiple modes with 

larger energy, each of which representing a different frequency, meaning that there are many main 

frequency components in the flow field. The structure of the flow field is more complicated, but the 

frequency of the first, second, fourth, and fifth orders decays quickly, and the corresponding 

frequency and the vortex frequency deviate slightly. These characteristics reflect the interaction 

between the front and rear square cylinders in the whole flow field well. When L/D = 3, the energy 

ratio of the static flow field is close to other sixth-order energies, and in a stable state. These modes 

together dominate the flow field. At this time, the coupling of the upstream and downstream 

vortices is relatively weakened. When L/D = 4, the average flow field returns to the first order, and 

the energy ratio of the first mode is very large. The energy distribution in the flow field is similar to 

L/D = 2, indicating that the number of main frequency components in the flow field is small, and the 
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flow field structure is clear. The coupling degree of the vortex shedding from the upstream cylinder 

and the vortex around the downstream cylinders is weakened. It can be seen that the results 

obtained by DMD analysis and POD analysis are in agreement. 

Table 4. Growth rate (decay rate) of the DMD modes at different spacing ratios. 

Spacing ratio Mode 1 Mode 3 Mode 5 Mode 7 

L/D = 2 0.000038 0.007276 0.021934 0.01921 

L/D = 2.5 –2.46957 –0.0512 –5.14639 0.007418 

L/D = 3 0.011701 0.000499 –0.1858 0.034145 

L/D = 4 0.000179 1.239718 –2.3864 1.131636 

 

(a) 

(b) 

(c) 

(d) 

Figure 12. The DMD modes of the flow field around two square cylinders at different spacing ratios: 

(a) L/D = 2; (b) L/D = 2.5; (c) L/D = 3; (d) L/D = 4. 
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5. Conclusions 

Through the CFD simulation, the data of the flow field around two cylinders in a tandem 

arrangement in different spacing ratios and the flow field around a single cylinder were obtained. 

These data were then compared with experimental data to verify the reliability of the simulation. 

Finally, POD and DMD analysis was performed on these data, and a comparison was made of the 

main modal features extracted to fully understand the change of flow field characteristics at different 

spacing ratios. The following conclusions can be drawn: 

(1) In the POD analysis, when the spacing ratio L/D = 2, the POD mode is similar to the flow 

around the single square column, and the frequency of the first few modes is close to the frequency 

of the vortex shedding from the square cylinder or their multiples. When the spacing ratio increases 

to 2.5, POD modes are greatly different from L/D = 2, and the front and rear square column vortexes 

are coupled with each other, with an obvious interference effect. When the spacing ratio is 4, it can 

be seen from the POD mode whose energy proportion is only second to the average flow field that 

the vortex shedding that dominates the energy can be formed relatively completely after the airflow 

flows through the upstream square cylinder. 

(2) In DMD analysis, when the spacing ratio L/D = 2, the DMD mode and frequency are 

consistent with the POD mode, and the main modes are in a stable state; when L/D equals 2.5 or 3, 

there are multiple main modes with relatively high energy, indicating that the flow field is 

composed of multiple main frequency components; when L/D = 4, the DMD mode energy ratio is 

similar to L/D = 2, and the main mode frequency with a large growth rate is close to the frequency of 

vortex shedding or its multiples, indicating that, at this spacing ratio, the upstream and downstream 

square cylinder vortices start to become independent. 

(3) According to the above analysis results, it can also be seen that POD and DMD achieve the 

separation of complex information in the flow field. It can be seen from the text that the lateral 

velocity image calculated by CFD is difficult to clearly describe the flow field characteristics caused 

by the spacing ratio. A series of modes sorted by energy, obtained by POD decomposition, represent 

eddy structures with different participation degrees mixed in the flow field. By comparing the first 

few modes with the higher energy, we can clearly see the change of the flow field eddy caused by the 

change of the spacing ratio. When the flow field itself is more complex, the POD mode may be mixed 

with multiple frequency components. The mode obtained by using DMD directly corresponds to a 

specific frequency, so that we can obtain the dominant frequency of the flow field and the 

corresponding flow structure more clearly. The increase in frequency has brought benefits for us to 

further study the flow-induced vibration of the structure. In future work, assuming that the accuracy 

of CFD simulations of complex cross-sections such as bridge cross-sections can be improved, and 

that such simulations can be performed more cheaply than at present, the complex flow fields 

around these sections can be decomposed to further understand the flow patterns, and even the 

wind-induced vibration mechanism, in these cases. 
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Nomenclatures 

  
k
ma

 coefficient of POD mode 

Cd drag coefficient average value 
Cl’ lift coefficient RMS value 

D square cylinder length (m) 

F conversion matrix of DMD 

f frequency corresponding to DMD mode (Hz) 

fs snapshot sampling frequency (Hz) 

g DMD modes growth rate (decay rate) 

L distance between the square cylinders’ centroids (m) 

N total number of samples 

Re Reynolds number 

S energy ratio of each POD mode 

U velocity value of inlet (m/s) 

U mode matrix 

V time series corresponding to each order mode 

W variable matrix 

WA  first N-1 snapshot matrix 

WB last N-1 snapshot matrix 

y1 height of the first layer near the wall (m) 

y+max max height of the dimensionless first layer near the wall 

μj eigenvalue of DMD 

Λj the eigenvector of DMD 

( )k x  Snapshot data matrix 

m( ) x  POD modes 

 j
 DMD modes 

 j
 energy of each DMD modes 
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