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Abstract: Mathematical modelling of bioprocesses has a long and notable history, with eminent
contributions from fields including microbiology, ecology, biophysics, chemistry, statistics,
control theory and mathematical theory. This richness of ideas and breadth of concepts provide
great motivation for inquisitive engineers and intrepid scientists to try their hand at modelling,
and this collaboration of disciplines has also delivered significant milestones in the quality and
application of models for both theoretical and practical interrogation of engineered biological
systems. The focus of this review is the anaerobic digestion process, which, as a technology that
has come in and out of fashion, remains a fundamental process for addressing the global climate
emergency. Whether with conventional anaerobic digestion systems, biorefineries, or other anaerobic
technologies, mathematical models are important tools that are used to design, monitor, control and
optimise the process. Both highly structured, mechanistic models and data-driven approaches have
been used extensively over half a decade, but recent advances in computational capacity, scientific
understanding and diversity and quality of process data, presents an opportunity for the development
of new modelling paradigms, augmentation of existing methods, or even incorporation of tools from
other disciplines, to ensure that anaerobic digestion research can remain resilient and relevant in the
face of emerging and future challenges.

Keywords: mathematical modelling; anaerobic digestion; mechanistic models; data-driven models;
mathematical analysis; hybrid modelling; thermodynamics

1. Introduction

Mathematical modelling has an important and continued role to play in the design and operation
of engineered biological systems (EBS), where the inherently complex interaction between biotic
and abiotic components may result in unpredictable and undesirable process behaviour requiring
operator intervention or advanced control architecture. Over the last four decades (circa 1980 onwards),
much focus has been on the development and extension of classical models based on first-principles
theory and engineering knowledge. Notably, the work of several research groups coalesced around
a unified mechanistic model with the aim to represent, i.e. simulate, the dynamics of the activated
sludge treatment process [1,2]. This reference model, the Activated Sludge Model No. 1 (ASM1) [3],
initiated a highly productive period in wastewater engineering, where mathematical modelling
became a distinct and important field within the bioprocess engineering community. Iterations of
ASM1 to include phosphate accumulating organisms (ASM2 [4]) and subsequent consideration of
their denitrifying ability (ASM2d [5]), facilitated a greater degree of granularity in the modelling
of wastewater treatment processes. However, the increased model complexity due to additional
requirements on parameterisation and model calibration highlighted the difficulty in developing
rigorous mathematical models that are a trade-off between complexity and accuracy. Nevertheless,
the framework of these models has remained in popular use, through refinement and augmentation,
as the standard modelling tool used by wastewater engineering practitioners and researchers.
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The focus of this review is the globally used anaerobic digestion (AD) process that conventionally
transforms biodegradable organics (e.g., agricultural residues, food waste, wastewater treatment
sludge) into energy-rich biomethane and nutrient-rich biosolids under anaerobic environmental
conditions. While the standard process consists of four well-characterised conversion stages (hydrolysis
→ acidogenesis→ acetogensis→methanogesis), the complexity that manifests in AD biochemistry,
energetics, microbial diversity and process operation lends itself well to mathematical modelling, as
will be explored here.

Given the relative ubiquity of the ASMs and a reawakening of AD research during the late 1990s,
it was inevitable that engineers and scientists would seek to develop a similar modelling framework to
facilitate dynamical interrogation of this net energy positive environmental technology. Building on
the fundamental process kinetics and physico-chemistry of the ASMs, with some changes in reporting
of units and use of kinetic rates, Anaerobic Digestion Model No. 1 (ADM1) [6] provided a valuable
in silico tool to support an expanding field of academic research. ADM1 has remained the standard
model in AD research and in its integration with ASM1 as the Benchmark Simulation Model No. 2 [7,8],
has provided the ability for plant-wide modelling of wastewater treatment systems [9]. This process
coupling extends the capacity of sub-component models for simulation, design and optimisation, to
include whole plant Life Cycle Assessment [10], future-proofing the transition from conventional
wastewater treatment plants to water resource recovery facilities [11,12], and the augmentation of
novel processes and technologies [13,14].

ADM1 is known to have severe limitations. As with ASM1, it does not handle phosphorus
and its associated biochemistry, nor does it consider sulphur and iron species or, until recently,
the bioavailability of trace elements, which are important components for stable anaerobic digester
operation. Extensions to the original model have subsequently addressed these omissions [15–18].
However, unlike the iterations of the ASMs, there has been no standardised progression of ADM1,
but rather bespoke modifications and simplifications tailored towards process specific objectives [19,20],
more efficient computation in engineering software [9,21], or the incorporation of new empirical
knowledge and parameter data [22,23]. In their excellent 2015 review of AD modelling application and
needs, Batstone et al. [22] state that up to that point, forming consensus towards the establishment of a
standardised ADM2 is an attractive proposition, but establishment of both the science and underlying
mechanics of the model remained transitory.

In this review, we revisit the origins of mathematical modelling for application to anaerobic
digestion and comment on the current state-of-the-art with respect to the theory, applications,
and technologies that comprise or exist alongside models for research and practice. In Section 2,
we place the most widely known and used model, ADM1, in a wider historical context and discuss its
relevance to current practice. Large, highly parameterised models have well-understood limitations
and requirements for managing uncertainty. Although exponential increases in computational
performance (cf. Moore’s Law) have significantly reduced the simulation time of complex and highly
dimensional models, simplifying assumptions and lumping of parameters are often employed in
mathematical models to aid study of anaerobic systems. However, in Section 3 we discuss the potential
insights that reduced or minimal models, which often represent a sub-component of the larger process,
can provide, particularly in combination with analytical tools common to a branch of mathematics
known as dynamical systems theory. Deterministic modelling remains generally the standard in
engineering practice. Although the use of data-driven models and machine learning for monitoring
and control of biological systems has developed in a similar time-frame, it has largely remained
under-used by the engineering community. In Section 4, the growth of digital tools and data modelling
for application to anaerobic digestion is described and comment on the increasing need for making
use of the increasingly diverse sources of data and meta-data that have potential to reveal process
knowledge ex-situ and across process scales. In Section 5 we conclude by taking a wide-lens view
of the future of mathematical modelling for anaerobic digestion, focusing on the role of models as
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anaerobic processes diversify and metabolic pathways are re-purposed for alternative energetic and
chemical products.

Engineered anaerobic systems have a vital function for future energy security, and the use
of mathematical models will continue to be important and much more intrinsic in plant design,
operation and control. This review celebrates what has gone before and the increasing role that
mathematical modelling plays in design, control, operation and analysis of engineered anaerobic
systems (See Figure 1 for a chronological chart of published studies on AD modelling). The review
provides some commentary on anticipated future trends, as greater empirical and theoretical
knowledge becomes available for derivation of more representative and rigorous models, often by
incorporating ideas employed more commonly in other fields. The review aims to be accessible
to readers from a diverse background and, as such, we limit the use of mathematical equations to
elementary examples that are qualified in the text. More thorough reviews of the mathematical
derivations of the methods presented here are cited in the text.
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Figure 1. Number of publications listed in https://apps.webofknowledge.com/ Web of Science
(Clarivate Analytics, accessed 14th June 2020) by topic (1970–2020); Anaerobic Digestion (AD) + terms.
ADM1 is Anaerobic Digestion Model No. 1. Note. Numbers for AD + Model are scaled by a factor of 1/4.

2. A First-Principles, Engineering Approach to modelling Anaerobic Digestion

The history of anaerobic digestion modelling from an engineering perspective, which is
a mathematical description of the microbial dynamics and biochemical processes resulting in sequential
biodegradation of complex organic material into biogas, begins over 50 years ago.

The pioneering work of John F. Andrews, an environmental engineer at Clemson University,
South Carolina, formed the touchstone for incremental development of practical mathematical models
that could be understood and used by both researchers and practitioners to augment their experimental
studies. Andrews used the structural elements of Ordinary Differential Equations (ODEs), which had
facilitated the dynamical study of microbiology using mathematical constructs by researchers such
as Lotka, Volterra, Haldane, Monod, Rashevsky, the forefathers of a discipline now commonly
referred to as mathematical biology [24]. It is interesting to note that these key players came from
broad scientific disciplines; Haldane was a geneticist, Monod a biochemist, Volterra a mathematician,
Lotka a biophysicist, and Rashevsky a theoretical physicist.

https://apps.webofknowledge.com/
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The early work by Andrews built on the empirical and theoretic research of these pioneers to
derive mathematical expressions that were founded on first-principles chemistry encapsulated by the
Michaelis-Menten enzymatic reaction rate Equation [25]

Ṗ =
Vmax[S]

KM + [S]
, (1)

where Ṗ is the rate of product formation, Vmax is the maximum achievable rate of the chemical
system, KM is a constant representing the substrate concentration, [S], at a reaction rate half the Vmax.
Through the early work of Lotka and Volterra, describing the dynamics of biological systems as a pair
of non-linear ODEs (i.e., the predator-prey equations) (see, for example [26]), and the empirical
rationalisation of the Michaelis-Menten equation by Jacques Monod to derive an equation for microbial
growth on a rate-limiting nutrient [27], the platform for mathematical modelling of bioengineering
systems was established [28]. Andrews synthesised this structural and empirical knowledge to
describe microorganisms growing on substrates that are self-inhibitory above a threshold concentration
(e.g., those found in industrial wastewater treatment such as ammonia, phenols, and volatile fatty
acids). Andrews coupled the Haldane function describing enzymatic inhibition with the Monod
equation for microbial growth to develop Lotka-Volterra type non-linear ODEs for simulating the
continuous-culture dynamics of microorganisms under rate-limiting inhibition [29]

dX1

dt
=

dX0

θ
− dX1

θ
+

[
µ̂

1 + Ks/S1 + S1/Ki

]
X1, (2)

dS1

dt
=

dS0

θ
− dS1

θ
− 1

Y

[
µ̂

1 + Ks/S1 + S1/Ki

]
X1, (3)

where Xi, i ∈ [0, 1] are the microbial biomass concentrations in the reactor influent and effluent,
respectively, Si, i ∈ [0, 1] are the substrate concentrations in the reactor influent and effluent, µ̂ is the
maximum specific growth rate, θ is the mean residence time in the reactor (Note. 1/θ is commonly
denoted as D, the dilution rate, in current modelling practice), KS is the half-saturation constant,
Ki is the inhibition constant, and Y is the yield coefficient of biomass growing on the substrate (for units,
see original article [29]). What is notable about this study is that it is one of the first examples of the
use of digital computing to obtain solutions to a system of equations describing microbial dynamics.
A digital analogue simulation program, PACTOLUS, ran the model on an IBM360 computer, employing
a circuit-like block-diagram approach more commonly associated with electronic engineering.

The importance of seminal work in the late 1960s and early 1970s by researchers such as Andrews
and Perry L. McCarty, a pioneering environmental engineer whose work on AD kinetics and energetics
resonates with engineers and modelers to this day, cannot be understated. They developed an
empirically derived basis for coupling microbiology with engineering practice using mathematical
tenets. Integral to this was the understanding that process stability, and ultimately failure (e.g., through
organic overloading, product inhibition), could be predicted by appropriate kinetic models supported
by experimental evidence. Andrews published the first mathematical model of the anaerobic digestion
process in 1969 to address the increasing reports of digester failures [30]. Similarly, McCarty and his
former PhD student, Lawrence, derived process models from observations from anaerobic continuous
cultures to determine limits of operation based on kinetic theory [31,32]. Anaerobic digestion as an
industrial process became prominent in Europe in response to energy shortages during World War
II, and in the United States, anaerobic municipal solid waste treatment had existed as a technology
from around the same period. Given the complexity of feedstocks that were being used in AD, and the
relative immaturity in process engineering, the high prevalence of reactors experiencing process
instability and failing would be significant. It was, therefore, serendipitous that Andrews initiated
a first epoch in AD process modelling to understand stability just a few years before the 1973 OPEC
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oil embargo precipitated an oil crisis that directly led to a drive towards alternative energy supplies,
with AD at the forefront.

The dynamic modelling approach was extended further to include a method to incorporate
changes in pH through the introduction of phase (gas, liquid, biological) interactions and alkaline
buffering capacity (i.e., CO2 - bicarbonate system) [33]. The time-dependent, predictive characteristics
of this extended model provided the ability to obtain a semi-quantitative assessment of the model
uncertainty, which is the difference between observed (experimental) data and model prediction for
the model variables of interest. Noting that model uncertainty comprises parametric uncertainty
and structural uncertainty, and both model inputs and experimental observations are subject to
measurement uncertainty, then it is generally accepted that the model predictions are not a perfect
representation of reality [34]. In turn, this acknowledgment of uncertainty laid the foundation for
model-based process control of bioengineering systems such as the activated sludge process and
anaerobic digestion [34–38]. This was a momentous leap-forward in the early days of programmatic
computing, especially as industry and academia were starting to coalesce around methods for
incorporation of Instrumentation, Control and Automation (ICA) technology for the improvement of
biological treatment processes [39,40].

Over subsequent years, other research groups began to build on the work of Andrews
and further extend AD models to include additional stages of the process beyond acetoclastic
methanogensis, the focus of the earlier models [30,33]. Fundamentally, these later models adopt the
same mass-balanced, reaction kinetics approach as Andrews, adding more processes and components
to describe an increasingly more complex but also more complete conventional anaerobic digestion
process. Hill and Barth included heterotrophic acidogens and the obligate methanogens previously
studied by Andrews, and a function describing methanogen inhibition by Volatile Fatty Acids (VFA)
and ammonia [41]. As with previous models, the authors considered only the acetate metabolic
pathway based on existing empirical knowledge at the time. Notation in this model differs minimally
from that provided by Andrews in Equations (2) and (3), with the dilution term (1/θ) now given
as the flow rate over the reactor volume (F/V) and the differential terms on the right-hand side
stated implicitly.

A thorough mathematical description of the gas-liquid transfer of carbonate and ammonia,
and the algebraic equations describing charge balancing to calculate temperature-corrected pH, is
reported for the first time in this work. This detail invariably led to greater model complexity
and, at the time, reliance on high specification computers and bespoke programming languages
(Continuous modelling Simulation Program, CMSP, op. cit. Hill & Barth). Although the anaerobic
digestion process was understood to be microbially diverse, process or population scale modelling
could be simplified due to the highly structured and often compartmentalised nature of bioreactor
systems. This structuring, based on agglomeration of microbial ecological functions, i.e., step-wise
mass-balanced and stoichiometrically rational biochemical reactions performed by mixed but
functionally distinct microorganisms, provided a firm basis from which mathematical modelling
of biologically engineered systems became established in the following two decades. Table 1 indicates
a selection of the key mathematical models that provided necessary iterations towards a consensus
dynamic model for anaerobic digestion, manifest as the Activated Sludge Model No. 1. For brevity,
the list is by no means exhaustive and does not aim to present any detailed analysis of the models,
which may instead be found in comprehensive reviews elsewhere [42–44].



Processes 2020, 8, 0888 6 of 31

Table 1. Important AD mathematical modelling milestones towards ADM1. Key (Process): EH = Enzymatic hydrolysis, AG = Acidogenesis, AGp = propionate
Acidogenesis, AGb = butyrate Acidogenesis, AGa = acetate Acidogenesis, AcG = Acetogenesis, pAcG = propionate-degrading Acetogenesis, bAcG = butyrate-degrading
Acetogenesis, fAcG = fatty acid-degrading Acetogenesis, AMG = Acetoclastic Methanogenesis, HMG = Hydrogenotrophic Methanogenesis; (Industry): A = Agricultural,
BW Biological (Activated) Sludge, G General AD, IW Industrial Wastewater; (Program): CSMP = Continuous Systems modelling Program, NR = Dynamic
solver/program not reported. Note. Number of parameters include conventional operating/control parameters such as dilution rate and influent concentrations.
* Parameter information not available.

Model # State Variables # Parameters Year Program Notes Reference

[AGa→ AMG] A 9 28 1977 CSMP
VFA and NH+

3 inhibition
on MG only

[41]

[AGa→ AMG + HMG] A 4 N/A* 1982 CSMP Complete use of H2 assumed [45,46]

[AGp + AGb→ AcG→ AMG + HMG] G 9 18 1983 NR
pH regulation through redox
potential by H2

[47]

[EH→ AG→ pAcG→ AMG + HMG] G 10 35 1984 MIMIC
First generalised and structured
model (stoichiometric matrix) [48]

[EH→ AGa→ AMG] BW 7 14 1986 NR
Hydrolysis of dead, particulate
biomass is rate-limiting step [49]

[AGa→ AMG] IW 5 23 1986 NR
VFA inhibition on AG & MG,
NH+

3 inhibition on MG
[50]

[EH→ AG→ pAcG + bAcG→ AMG] A 16 33 1993 Pascal
NH+

3 inhibition & pH-Temperature
interactions

[51]

[EH→ AG→ pAcG + fAcG→ AMG + HMG] BW 18 48 1993 Pascal
Extension of structured approach. Focus
on acetate kinetics/digester stability [52]

[EH→ AGp + AGa→ AcG + pSR + aSR→ AMG + HMG] IW 33 55 1994 METHANE H2 inhibition considered [53]

[EH→ AG→MG] G 5 14 1996 TUTSIM Reduced order for process control [38]
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Modelling efforts were bolstered by research conducted in empirical microbiology,
which contributed to providing better characterisation (i.e., parameterisation) of anaerobic growth
kinetics and understanding of the metabolic and biochemistry of the principal reaction pathways [54–57].
Experimental work provided the data and knowledge to determine the structure and stoichiometric
properties of the anaerobic digestion process that, in turn, allowed for an emerging formalism in
parallel model development. An important body of work that motivated a structural approach to AD
modelling was Gujer and Zehnder’s extensive study of anaerobic digestion conversion processes [55],
which built on an earlier proposed structure describing overall substrate flux from particulate organic
matter to methane and carbon dioxide end-products [58]. Their study describes anaerobic digestion
as six distinct conversion processes, integrating established knowledge of the acetogenesis and
methanogenesis steps with emerging bioprocess kinetics and microbial research on the mechanisms of
organic matter hydrolysis and acidogenesis, thus providing a complete description of the canonical
AD process as understood at that time. Defining the units of substrate flux in mass of theoretical
Chemical Oxygen Demand (tCOD) as opposed to a molar basis, was a consideration replicated from
activated sludge modelling, in its conventional use for measurement of wastewater characteristics
and given its implicit function for calculating carbon oxidation states and, thus mass balancing of
biochemical reactions [6,59]. Note. Typically, for anaerobic modelling, concentrations of organic
compounds are given in units kgCOD m−3, and inorganic carbon and nitrogen in kmole m−3, whereas
ASMs generally use mg L−1. The case for using molar units, however, was argued on the basis that
the inclusion of inorganic carbon (CO2) to close the mass balance for anaerobic oxidation of VFAs
invalidates the stoichiometric carbon balance of the biochemical reactions [60].

The structured approach was further formalised by Bryers [48] using simple matrix algebra to
derive expressions for the biological reactions in the form of a stoichiometric matrix of (m× n) molar
coefficients (νi,j, for i = 1, . . . m reactions and j = 1, . . . n components [reactants, biomass, gases])
to ensure a completely mass-balanced system of process equations. In considering a unit basis of mass
COD, normalised yield coefficients defining Sj consumed (−) or formed (+) in the ith reaction are
given by

Yi,j =
νi,j Mjmj

νi,lim Mlimmlim
, (4)

where Mj and mj are the molecular weight and COD mass equivalence of component Sj, respectively,
and lim indicates the limiting reactant in the ith reaction. Now, using matrix algebra, we have the
following condition under the principle of mass conservation

Υ · S = 0, (5)

where Y is an m× n matrix of yield coefficients and S is a vector of length n of components.
The use of a structural matrix for deriving a system of equations representing biochemical

reactions was first proposed by Petersen [61] and employed in the development of a mathematical
model of activated sludge systems by the IAWPRC (now International Water Association, IWA)
Task Group on Mathematical modelling for Design and Operation of Biological Wastewater Treatment [3].
The Gujer matrix, as schematically summarised in Figure 2, is partitioned into three sections comprising
a matrix of stoichiometric coefficients and a process rate vector, as described above, and a composition
matrix that includes conservative constituents of the state variables, e.g., biomass contains both COD
and nitrogen, which ensure proper mass and charge balancing as model resolution increases, i.e.,
the product of each row in Υ and each row in the composition matrix will be zero.

The conversion rates for each state variable can be simply calculated by the column-wise
summation of the product of stoichiometric terms and process rates

Ṙ = ρT ·Λ =
n

∑
j=1

ρjνi,j, i = 1, . . . , m, (6)
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where Λ is the matrix of m× n stoichiometric terms and ρ is a vector of n process specific kinetic rates,
which take the form

ρj =
µj,limX
Yj,lim

, (7)

where µj,lim is the substrate-limited growth rate of organism X, defined by some growth function
(e.g., Monod saturating kinetics, Contois density dependent growth, etc.), cf. the final term in
Equation (3). Note. Hydrolysis in these early models is typically included as a first-order reaction rate

(i.e., rhyd = khydS). The notation Ṙ ≡ dRj
dt , for j = 1, . . . , n, is used to indicate that the resultant vector

of rates are time-dependent and equivalent to a system of ODEs, with additional terms to mass balance
the reactor and describe any liquid-gas transfer, which can be integrated to give transient dynamics of
the process with respect to each state variable.

Figure 2. A general schematic of the Gujer/Petersen matrix. We use νi,j to represent stoichiometric
coefficients, ρj for process rates and indicate the two commonly used constituents in biological treatment
models, Chemical Oxygen Demand (CODi) and nitrogen (Ni).

This highly structured matrix formulation for constructing biochemical reaction models was
adopted as standard within the engineering community, leading to a general framework for modelling
the activated sludge process, specifically related to nitrogen removal (ASM1) [3]). It was particularly
open to integration in simulation software, especially programs with superior abilities for rapidly
solving matrix linear algebra problems, such as Matlab and FORTRAN. Naturally, this led to several
bespoke simulation software to provide engineers with the tools to rapidly develop and interrogate
the models through process simulation, often in a modular way (e.g., Biowin, STOAT, GPS-X, SIMBA,
AQUASIM) [1]. Although the Anaerobic Digestion Model No. 1 was published over ten years after the
first ASM, work on developing a general anaerobic digestion model employing a similar structural and
notational form emerged earlier. Siegrist et al. used a Gujer matrix of 14 processes and 18 state variables
to model the digestion of mesophilic sewage sludge [52] and Christ et al. used this approach with
a better description of the hydrolysis constants for the digestion of municipal organic residues [62].
Other groups incorporated greater degrees of resolution in existing deterministic models of the
process, for example by separation of the complex organic substrates (carbohydrates and proteins) for
hydrolysis [51,63,64].

The Anaerobic Digestion Model No. 1, developed by the IWA Task Group for Mathematical
modelling of Anaerobic Digestion Processes [6], consolidates much of the preceding theory, empirical
knowledge and mathematical structure referenced in this section. The original model represents
a comprehensive five-stage anaerobic digestion process (including an initial disintegration step),
with 19 sub-processes, comprising biochemical reactions (defined through the use of the Gujer
matrix) incorporating degradable substrates and soluble/insoluble inerts, and physico-chemical
reactions (non-biologically mediated processes such as ion association/disassociation, phase transfer).
Biochemical processes are (1) an initial disintegration of composite material (e.g., lysed biomass)
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to particulates, which undergo (2) enzymatic hydrolysis (forming carbohydrates, proteins and lipids),
(3) acidogenesis of simple sugars and amino acids to organic acids, CO2 and H2, (4) acetogenesis of
long-chain fatty acids and organic acids (butyrate, valerate, propionate) to acetate and hydrogen,
and finally (5) acetoclastic and hydrogenotrophic methanogenesis. The model may be solved
as a system of 32 ODEs, where some lumped variables are decoupled (e.g., inorganic carbon
Sic ≡ [SCO2, SHCO3−]). Biochemical reactions are assumed to follow the 1st-order rate law for
extra-cellular processes and Monod-type substrate uptake for intra-cellular kinetics. Alternatively,
the model can be defined as a system of Differential Algebraic Equations (DAE), with the biochemical
reactions integrated explicitly as a system of 26 ODEs (7 groups of bacteria and archaea, 19 catalysing
processes), three liquid phase physico-chemical processes, and eight implicit algebraic variables
(per reactor). This approach is a means to overcome the inherent ‘stiffness’ problem due to the fast
hydrogen and pH dynamics (now explicitly calculated algebraically), which results in some numerical
solvers encountering difficulty in solving the system of ODEs.

As noted earlier, the model is far from perfect but its flexibility and structure means it is suitable
as a tool to be used at the design stage of AD plant development, for qualitative scenario testing,
or for benchmarking control schemes [65–67]. As with the ASMs, modifications to the model have
been implemented based on process requirements, such as operating mode [68,69], or to include new
biochemical processes [70,71]. A more comprehensive transition to a consensus ADM No. 2 that
addresses the main issues with the original model has yet to emerge, perhaps due to the lack of clear
consensus or motivation, or that its inherent structure provides ample opportunity for modification
of components for bespoke applications. Many of the suggested approaches relate to the lack of
identifiability and heavy parameterisation of ADM1, which makes its use for process monitoring and
model-based control difficult [72]. It is interesting to note that models that have sought to overcome
the structural verbosity are greatly simplified, relying on fewer state variables and lumping parameters
where practical. These models, such as the widely studied Bernard model (sometimes referred to
as AMOCO or AM2) [73] and its subsequent mathematical treatments [43,74–76], relate back to the
pioneering early work of Andrews and Graef, allow the process to be identifiable and enable process
control schemes to be designed for improved or optimal process performance. Given the substantial
quantity of literature on the topic of model identifiability, i.e., model selection and parameterisation,
we refer the readers to an excellent review of the subject related to anaerobic digestion [77].

In the next section, we take a closer look at how reduced modelling approaches and their
mathematical analysis are being used to provide further insights into the dynamic and steady-state
behaviour of anaerobic digestion.

3. Reduced-Order Models Unlock the Power of Mathematics

It is common practice in modelling to start with a simple description of the system under
investigation before building in complexity to achieve a more complete representation of reality.
However, it should be noted that greater complexity does not necessarily equate to a higher degree
of accuracy [78]. Terminology such as simplicity and complexity are often abstract and subjective,
but in the frame of engineering models such as those discussed here, models with a greater number
of parameters, state variables (dimension), and processes, or those that are highly non-linear, can be
defined as complex. In mathematical sciences, this complexity is often referred to as model order and
is the principle driver for the richness of dynamical behaviours captured in microbial community
models [79].

The early anaerobic digestion models were low-order and aggregated, developed with the
empirical knowledge of the biochemical reactions at that time, and constrained by the available
computing resources and numerical solvers for integrating the system of differential equations.
The dramatic advances in computational power and efficiency have provided engineers with an
ever-increasing ability to simulate bioprocesses at greater levels of complexity and speed. However,
there are still significant trade-offs between model resolution, accuracy and performance. For example,
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consider a mathematical model describing biofilm growth in a biological reactor. There are several
approaches that can be taken to represent the evolution of this process in time, where the simplest
would be to assume a homogeneous, quasi steady-state biofilm and to develop a model as a system
of ODEs, for which the solution is trivial (e.g., [80]). The underlying assumption of a completely
mixed system is not correct in practice, as biofilms are subject to diffusive mass transfer limitation,
requiring consideration of spatial heterogeneity. Describing biofilm processes at higher dimensions,
using Partial Differential Equations (PDEs) to solve the diffusion-limited mass transfer of biomass,
gas and liquid (i.e., using the second-order Navier–Stokes equations or via the simpler boundary
layer approximation), is non-trivial and significantly increases the computational requirements to find
solutions [81]. A trade-off between model complexity and empirical uncertainty, which is the extent
and accuracy of data to support model parameterisation, is one of the fundamental challenges that
limits anaerobic digestion modelling [82].

Model order reduction methods such as decomposition, interpolation, low-order approximation
and simplifying physics, are generally applied in engineering when high order models are
computationally costly, or simulation become impractical. In EBS, mathematical biologists are often
interested in the qualitative behaviour of the system rather than quantitative predictions, and the
simpler models often allow for a tractable and complete analysis using techniques re-purposed from
dynamical systems theory. It is important to ensure that the simplifying process retains conservation
of the properties of the full-order model and has a low approximation error, otherwise analysis of
the simple model becomes a study of a largely theoretical system with no further insight into the
actual system. Anaerobic digestion is an ideal process for reduced-order modelling as it is highly
compartmentalised allowing for easy decoupling of system interactions into smaller sub-processes
with fewer state variables and parameters. Physico-chemical processes that may operate at significantly
different timescales to the biochemical reactions may also be excluded.

The work of Andrews and colleagues (see Section 2) laid the early foundations for the application
of dynamical analysis to anaerobic systems. They presented not only a template for mathematical
modelling and dynamic simulation of the process, but were the first to discuss the opportunities
for automatic process control to address system instability or failure caused by acidification or
functional inhibition [33,36]. The analysis at this time involved exhaustive and time-consuming
numerical simulation (by today’s standards) of a model over hundreds of operating points and
process conditions. Although ADM1 consolidated state-of-the-art modelling and provided a reliable,
if imperfect, representation of the process, others drew on these earlier ideas to address specific
challenges such as the effect of reactor start-up conditions on process stability [83] and reactor control
under process disturbances [84] or shock loading events [85,86].

A major benefit of with representative and qualitatively reliable reduced models, which are
tractable to mathematical interrogation, is their availability for deeper study of the non-linear dynamics
and the implications on system performance. In effect, they represent in silico tools that can complement
time-consuming experimental studies, allowing for rapid investigation of local and global system
behaviour to aid process or experimental design, derive new knowledge and understanding, and even
suggest new operating protocols. It must be reiterated that models cannot completely replace practical
experiments, nor prove comprehensively the underlying process mechanisms in all but the simplest of
systems [87].

Anaerobic digestion models have been extensively studied by mathematical biologists due to
their generally reducible structure, the rich dynamics emerging from relatively few biotic interactions,
and the modularity of components facilitating an array of hypothesis driven studies. Mathematical
analysis provides an ability to study the asymptotic behaviour of dynamical systems, such as AD, i.e.,
we are able to observe whether the process tends to some steady-state (stable equilibrium) or undergo
unforced cycling (functional periodicity), for a given set of parameters and initial conditions of the
process [88].
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Several mathematical analyses of existing AD models appeared in the 2000s. The Bernard model
(see Section 2), describes a two-step (acidogenesis-methanogenesis) process and is tractable to
dynamical systems analysis of its steady-state behaviour and stability. One of the principal benefits of
simpler models are their availability for model-based process control, where a perfect representation
of the typically non-linear system is not required [89]. An initial bifurcation analysis of the model
at equilibrium allows for identification of the key process variables that can significantly impact
process behaviour and, thus, determine the main candidates for control variables and their critical
values. Rincón et al. employed the model to design an adaptive controller to avoid biomass washout
in an anaerobic digester through identification of the normal form bifurcation (i.e., local behaviour
around the system equilibrium) with dilution rate as the bifurcating parameter [90]. An analytical
determination of the model equilibria and their stability using general growth functions (i.e., only the
functional response and not the mathematical structure of biomass growth is assumed), showed the
existence of bistability dependent on initial conditions, where the process may converge to the nominal
(desired) operating point or undergo acidification and complete washout of the biomass [74]. Recently,
the Bernard Model was again used, and a rigorous analytical approach employed for open-loop control
of Biochemical Oxygen Demand (BOD) within a target design interval [91]. The model has also been
used to investigate the correct determination of overloading tolerance, defined as the distance between
a stable interior equilibrium and the limit point of the system, for correct process monitoring [75,92].
To address issues of process representation with this reduced-order model, especially at low microbial
population sizes, a stochastic process has been suggested as a way to account for its structural and
parametric uncertainty [93], demonstrating a promising, if not fully realised, potential.

Researchers have studied the dynamical behaviour of EBS more generally [94], analysing the
role of ecological interactions (e.g., competition, mutualism), rather than the specific process, on the
existence, uniqueness and stability of the system [95–97]. These methods have also been applied to
specific processes, such as the ammonia removal (SHARON) process [98], Anammox systems [99],
anaerobic chlorophenol mineralisation [100,101], and conventional anaerobic digestion [102,103].

Although global stability analysis is challenging for models of increasing order, an initial
numerical analysis of the full ADM1 (44 state variables, 29 ODEs, 15 DAEs) was achieved
using a prediction-correction continuation algorithm for solving the differential equations and the
Newton-Raphson method for simultaneous solution of the algebraic equations [104]. They showed,
through performing a one-parameter bifurcation that a limit point exists when either the dilution
rate increases, or substrate inlet concentration increases above or decreases below critical threshold
values. A positive feedback loop between acetic acid accumulation and acetate degrader washout
due to inhibition was identified as the critical mechanism in all three cases. Interestingly, a reduced
model that allowed for the derivation of analytical solutions matched the qualitative behaviour of
the full ADM1, as long as key features (i.e., ammonia inhibition) are preserved in the simpler model).
Further study of the Börnhoft model have shown the role of inhibition on multiplicity of equilibria [105],
expanded knowledge of the richness of AD dynamics, and counter-intuitive result suggesting biogas
production may not always be optimal at the co-existence equilibrium [106]. A recent study not only
provides new theoretical results for the model but examines the effects of stochasticity to account for
both environmental and parameter uncertainty (as with [93] and the Bernard Model). Interestingly,
the author’s find that the process is more prone to failure at start-up and becomes resilient to stochastic
effects as the microbial communities establish. This is perhaps an intuitive result given real-world
examples of start-up failure in biological reactors, for example due to acclimation issues (e.g., [107]).

A relatively simple example of bifurcation analysis, for illustrative purposes, is provided in
Appendix A, using the model first developed by Andrews (See Section 2) [29].

Despite a significant body of work demonstrating the power of mathematical analysis for
enhancing AD process understanding and enabling practical controller design, there still remains a
substantial barrier to the wider use of these techniques for engineering purposes. In part this is due
to a dissonance between the level of mathematical acuity required to conduct the analysis and the



Processes 2020, 8, 0888 12 of 31

substantial process knowledge in the domain of engineers and scientists. Although there do exist
groups who have core competency in both fields, more formal engagement through communication,
collaboration and bottom-up empirical studies to support theoretical observations, will be necessary if
it is to gain traction in the wider EBS community.

4. Empiricism, Data and the Digital Future

It may be argued that the mechanics of anaerobic digestion is well-understood, and the maturity
of phenomenological models facilitate their use for process design, operation and control. In data
poor environments, where measurements are infrequent, erroneous or hard to obtain, mechanistic
models are an obvious choice. Nevertheless, improvement in sensor technology and fast and cheap
tools to characterise the microbial communities in digesters through multi-omic analyses, has gifted
scientists and engineers with a wealth of data and knowledge of their ecology [108–110]. When used
effectively, this can provide a greater resolution of understanding, helping to derive models that link
microbial community composition and function effectively [111,112]. For example, metagenomic
data as microbial biomarkers have recently been used in combination with a data-driven model for
prediction of ammonia and phenol inhibition [113].

Unlike data-rich industries that employ extensive process monitoring, there is a sense that
data-driven models for systems that are open to high levels of uncertainty and transient or irregular
variation in their operation is under-exploited. Although process monitoring and automatic control
have become standard, for example in largest wastewater treatment systems, there is still a tendency to
rely heavily on existing knowledge and empirically driven decision-making, where the plant operators
are the experts, while much of the data gathered at the plant is unused. This has come to be known as
‘dark data’, which is data collected by an industry that is either archived or discarded in lieu of capacity
or motivation for its use at that time [114]. It can be argued that for AD plants, dark data is largely
irrelevant given the quantity of data typically acquired, but as industries are increasingly integrated,
relying on automation and knowledge extracted from data, so the opportunities offered by digital
technologies, which can manage large and diverse amounts of information, become apparent [115].

Machine learning and intelligent systems (i.e., Artificial intelligence, AI) have become, seemingly,
pervasive in industry and society in general. However, there are risks associated with their wholesale
adoption, and not because they threaten to break Asimov’s three laws of robotics, as popular media
may like to imagine. The main issues for concern, especially in motivating uptake by the water and AD
industries, are (i) the potential for application redundancy by using ‘smart’ tools that provide little or no
benefit where conventional engineering practice is more than adequate (human vs. machine expertise),
(ii) hastily appropriated technologies without undertaking due diligence on model relevance/adequacy
or consideration of the long-term system behaviour (garbage in, garbage out/inherent non-linearity
and uncertain dynamics), (iii) advanced models and algorithms may require significant cost and
expertise to implement and maintain. Nevertheless, it is apparent that developments in data acquisition
and computing capacity facilitates the cautious use of ‘smart models’ for improvement of EBS. Indeed,
many of the tools used now are based on fundamental theory developed over a century of statistical
and mathematical research. For example, popular dimension reduction and regression techniques such
as Principal Component Analysis (PCA) and Partial Least Squares (PLS) have been re-purposed for
chemometric process monitoring [116,117] and control [118] of anaerobic digesters. These multivariate
methods are used to transform high-dimensional data by matrix factorisation into a lower-dimensional
space that retains the maximal information (variance) present in the original dataset (X for PCA)
or maximal covariance between predictor and response datasets (X and Y for PLS). The relationship
between the original variables and samples projected into this reduced-dimensional space represents
a model of the system or process described by the original data

X = TPT + E : [PCA & PLS], (8a)

Y = UQT + F : [PLS], (8b)
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where T and U are the projections (or scores matrices) of X and Y, respectively, P and Q are the weights
(or loadings matrices). E and F are the residual matrices. If the purpose of these models is for process
monitoring and fault or disturbance detection, it is vital that the data used to construct them, and the
number of principal components (factors in PLS) to retain (Tl , Ul , where l < m, where m is the original
number of variables in the X-block), represent its normal operating behaviour. New data acquired
from the process is projected into the model and statistical measures (e.g., Hotelling’s T2 statistic)
are used to identify samples that exceed some pre-determined threshold. The presumption is that
these points represents non-normal process behaviour where variable contributions to the loadings
may be examined to determine the source(s) of this exception.

PCA has been used as a data pre-processing step for extracting the correlation structure between
variables. This variable selection method has been used as a preliminary step in the use of machine
learning models to predict biogas yield from municipal AD [119]. A PCA model was used to detect
disturbances in a sewage sludge fed AD process using PLS regression to chemical composition of the
digestate from Near Infrared spectral data [120].

However, conventional multivariate models are limited by their stationarity [121], i.e., the model
is a representation of the process over a fixed domain (e.g., time). To be useful for monitoring of
dynamic processes, such as wastewater treatment and AD, adaptive/recursive methods have been
developed for real-time monitoring and multivariate statistical process control, whereby the data
model is updated with new information as it is acquired [122–124].

Unlike PCA, regression models, such as PLS, can be used to relate empirically derived data
(measured explanatory variables) such as spectral data to one or more dependent (predicted) variables
such as chemical concentrations, through their covariance structure. These regression models become
useful in process operation when key performance indicators or control variables are difficult to
measure. A model may be developed based on available and reliable measurements that are correlated
with the target variable, acting as a soft-sensor for process monitoring and control. Like PCA methods,
issues such as stationarity, multi-collinearity, and bias persist with ordinary PLS (OPLS). Robust method
adaptations and rigorous data handling protocols are generally available (and required) to handle
issues that may be encountered when using multivariate tools in practice [125,126]. Multivariate
soft-sensors have been used quite widely by the wastewater community but fewer examples relating
to the anaerobic digestion process have appeared [117,127,128]. This may be reflective of the general
preference for using mechanistic models in AD or, anecdotally, the suspicion by practitioners that
data-driven models are intangible and unrepresentative of the process. This may be exacerbated by
the varied quality and quantity of data historically recorded at the plants themselves.

Nevertheless, ‘smart’ AD systems as a sub-class of a wider smartening of industry through the
so-called 4th Industrial Revolution is an interesting and potentially valuable direction that practitioners
may explore. This is especially pertinent in relation to the larger ‘Smart Water’ initiatives and
repurposing of AD technology in bio-based manufacturing and biorefineries.

A renewed interest in Artificial Neural Networks (ANN) and Fuzzy logic, methods that have
a long association with the bioprocessing and manufacturing industries, as well as AD itself [129,130],
may propagate research and debate on the role of advanced data-driven models for application to AD
moving forward. However, at present most applications of machine learning models have focused on
conventional purposes, such as methane prediction [131–133].

In the final section we discuss how modelling is evolving by incorporation of interdisciplinary
ideas and methods and show that no single approach is a catch all for engineered biological systems
and anaerobic digestion, specifically.

5. Multi-Disciplinarity and the Future of Anaerobic Digestion modelling

Mathematical modelling will play an increasingly important role in the design, monitoring
and optimisation of EBS such as anaerobic digestion. As new challenges and opportunities
emerge, technology develops and understanding increases, models will adapt and integrate the
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new knowledge acquired in the pursuit of smarter, cleaner and transformative processes. A recent
review has highlighted possible trajectories for mathematical modelling of AD systems, both vertically
(i.e., scale of models and connections across these scales) and horizontally (i.e., integration of processes,
new anaerobic technologies) [22].

5.1. Hybrid Models

In the previous sections we have seen how disparate modelling approaches have been employed
in the design, monitoring and control of AD. The selection of the appropriate model to use is dependent
on its purpose, the quality, quantity and type of available process knowledge and data, the cost of
model development and implementation versus the benefit of employing a model, among other
considerations. It is a truism to state that no model is perfect, and often no single model is uniquely
suited to the task in hand. For example, when there is lack of confidence in process measurements
or data for characterising a process is unobtainable but a good mechanistic understanding has accrued,
then a first-principles model seems logical. On the other hand, for many complex biological systems,
only surface understanding of the system is known, and no consensus exists on the precise structural
properties and interaction mechanisms, then a data-driven approach may be suitable. There is still
debate, intensified by the current digitalisation epoch, as to whether machine learning is ready to
entirely replace mechanistic modelling. As previously alluded to, the rapid adoption of AI and
machine learning tools across many industries brings to mind the gold rush era. Some may succeed
and prosper, while others may inevitably discover only fool’s gold. This is exemplified in the medical
field, where early adoption of machine learning by clinicians is superseded by their acquisition in
tackling more complex problems found in cell biology research. To quote a recent polemical opinion
on this subject [134]:

Fundamental biology should not choose between small-scale mechanistic understanding and large-scale
prediction. It should embrace the complementary strengths of mechanistic modelling and machine
learning approaches . . .

Hybrid modelling is not a new concept, in fact many applications of what would be considered
‘pure modelling’ are a combination of structured and unstructured methods, e.g., consider parameter
estimation techniques, such as the Extended Kalman Filter for fitting mechanistic models. However,
explicit use of distinct modelling approaches has rarely been considered for application to bioprocesses.
For anaerobic digestion, it appears viable that combining mechanistic and data-driven methods,
together with extant process knowledge and empirical data would provide a means to overcome some
of the shortcomings of either modelling approach alone [132].

An early example of hybrid modelling for AD employed a neural network to model process
kinetics in combination with the Bernard Model described in Section 3 to ensure the ANN is constrained
by the law of mass conservation (see Equation (5)) [135]. A similar approach using a kinetic model for
lignocellulose fermentation and a PLS soft-sensor showed reasonable prediction potential over long
time horizons [136]. The study is notable in its claim that it represents a simple demonstration of the
digital twin concept. Although we do not discuss digital twins in this review, the concept that physical
systems from individual process units to whole cities may be replicated digitally is becoming fairly
ubiquitous, in tandem with concepts such as Industry 4.0 mentioned previously. Although it could be
argued the use of buzzwords may attract attention to otherwise conventional research, all models may
be classed as digital representations of real-world phenomena and some of these will feature in the
establishment of digital twins in the future.

A neural network was used to predict AD performance and a Particle Swarm optimisation (PSO)
algorithm is used to maximise methane yield, essentially employing a (meta)heuristic approach to
evaluate a fitness function until a stopping criterion is reached (based on temperature and Volatile
Suspended Solids (VSS), in this case) [137]. Nature-based methods, such as PSO, are not covered
in this review, but more information on their emerging relevance to bioprocess monitoring, can be
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found in [138]. PCA was used as a feature extraction method to greatly reduce the dimensionality of
ADM1 with relatively low loss of information, producing an identifiable model for supervisory control
and optimisation of a winery effluent treatment plant [139]. A novel hybrid approach, augmenting
ADM1 with information at the cellular level including intra-cellular fluxes and microbial activity, has
recently been described. Flux Balance Analysis (FBA), a method to predict metabolic function from
genomic information, was used to replace the Monod growth function in the ADM1 with an FBA
growth prediction based on intra-cellular flux of metabolites [140]. The method allows for the dynamic
prediction of optimal microbial composition, where conventional FBA provides steady-state analysis.

5.2. Thermodynamic Modelling

There has been considerable debate within the scientific community on the aptitude of purely
kinetic models to describe the behaviour of systems that are subject to energetic constraints [28],
especially in systems where microbial growth is directly linked to free energy availability. In anaerobic
digestion, omission of energetic considerations in the mathematical description of the process dynamics
will lead to qualitative and quantitative errors in model predictions, significantly undermining their
usefulness. Indeed, the interplay between microbial kinetics and energetic constraints becomes
important when the system approaches thermodynamic equilibrium, i.e., moving from exergonic
sufficiency (net release of free energy) towards an endergonic state (net absorption of free energy) where
biochemical reactions are completely inhibited (See Figure 3 for an example of the impact of hydrogen
on thermodynamic inhibition of anaerobic propionate degradation). The rich microbial ecology
that emerges in low energy environments, where thermodynamic inhibition is likely to constrain
metabolic conversion, is both of interest and importance in the preservation of viable communities in
AD [141,142] and the study of thermodynamic principles in biological systems has been an active area
of research for decades [143]. Indeed, McCarty’s formative description of microbial growth energetics
as the relationship of free energy of catabolism and the energy necessary for cell synthesis, the cell
growth yield [144,145], is perhaps as important today as Andrews’ early conceptualisation of kinetic
models for AD has been in the development of model formalisms for process control and optimisation
over the last 20 years.

Various strategies have been proposed for the incorporation of thermodynamics into existing
kinetic models or for the development of a universal theory. The Monod growth function is purely an
empirical construct. Despite showing that the equation can relate with thermodynamic principles
through the substrate affinity constant, i.e., KS = e−∆G0/RT [146], it is done so by making the
assumption that only the limiting substrate and not microbial concentrations impact the growth
dynamics. The Gibbs free energy change as the thermodynamic driving force for biochemical reactions
forward was first coupled with a Michaelis-Menten type irreversible kinetic model describing
anaerobic propionate degradation by Hoh and Cord-Ruwisch [147]. They surmised that reactions
occurring close to thermodynamic equilibrium are reversible, driven by bidirectional reaction rates for
the enzymatic conversion of substrates ([S]) to products ([P]), and the reverse [25,148], given by the
Briggs-Haldane mechanism

E + S
k1

k−1
Eχ

k2

k−2
E + P

where E is the enzyme concentration, Eχ is the enzyme-substrate-product complex, and k1, k2,
k−1 and k−2 are the forward (k+) and reverse (k−) rate constants, which are combined to give the
overall equilibrium constant Keq = k1k2/k−1k−2. Under substrate saturation conditions, the Haldane
kinetic scheme (shown in Equations 2 and 3, within square brackets) dominates any thermodynamic
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constraints. However, as the substrate is consumed, a trade-off between kinetics and thermodynamics
becomes apparent [141], and a rate equation for the reversible reaction can be derived

µ =
µ̂S
(
1− Γ/Keq

)
KS + S

(
1 + krΓ/Keq

) , (9)

where kr = k2/k−1, Γ is the mass-action ratio ([P]/[S]) at dynamic equilibrium). Given that the
overall free energy change of reaction ∆rG = RT ln Γ/Keq [149], then the general model proposed
becomes [147]

µ =
µ̂S
(

1− e∆rG/RT
)

KS + S
(
1 + kre∆rG/RT

) , (10)

In modelling the growth rate using the theory of reversible enzymatics, the energy required for
driving the reaction and invested in maintaining other cellular functions not related to growth is
overlooked, i.e., energy used for microbial growth is not the maximum free energy available in the
system [150–152]. There has been significant developments in the understanding of thermodynamic
principles for general application to microbial life, notably refinements in the derivation of metabolic
energy requirements [153,154] and attempts to develop general or universal models to address
shortcomings in established models, e.g., limits on metabolic parameter identification [155], and even
the use of Maxwell-Boltzmann statistical physics to derive a fundamental link between microbial
growth and energy states at the molecular level of substrates (i.e., the Microbial Transition
State) [156,157].

However, despite a considerable amount of research on the application of thermodynamics to
microbial systems, there are relatively few examples of direct application to the anaerobic digestion
process itself. Oh and Martin used principles of thermodynamic equilibrium with chemical activity and
fugacity together with a stoichiometric model to study energetic requirements of methanogensis [158],
and recently Delattre et al. have proposed a kinetic-thermodynamic model to characterise a
synthetic anaerobic tri-culture community performing sulphate reduction and methanogenesis [159].
Despite this, it is certain that as more consistent approaches are developed and theory more widely
understood, appropriate thermodynamic models will be developed and tested for application to
AD systems with the aim to improve performance and understand energetic limitations of different
metabolic pathways. A recent paper has demonstrated that potentially, analytical methods from
mathematics (see Section 3) can be used, despite the increased complexity, to elucidate the role of
thermodynamics in biological growth models [160].

The thermodynamics of anaerobic digestion is inherently linked to the function of microbial
communities and its inclusion in mathematical models has been shown to better predict inhibition of
microbial growth under non-saturated substrate concentrations. Furthermore, there is an emerging
trend for end-product diversification in AD systems, such as sustainable biorefineries producing
high-value bio-based products [161–163]. The control and optimisation of these ‘manufacturing’
facilities will require models that represent metabolic pathway diversity and selection, especially the
reversibility of novel catabolic pathways, through a general and robust framework describing the
thermodynamic-kinetic trade-offs [142,152]. We anticipate significant integration of thermodynamic
approaches with conventional engineering practice and microbial ecology in the coming years.
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Figure 3. Example of the thermodynamic ‘window of opportunity’ for syntrophic degradation of
propionate via two pathways (MMC is the ‘classical’ methylmalonyl-CoA pathway). Both reactions
are susceptible to hydrogen inhibition, shown by their increasing endergonicity as H2 partial pressure
increases. Hydrogenotrophic methanogens mitigate this by transforming hydrogen to methane, above
a certain partial pressure threshold required for growth. The red and blue boxes show the hydrogen
partial pressures at which propionate degradation by the classical and Smithella pathways are possible
due to this syntrophic behaviour (Adapted from [142]).

5.3. Computational Fluid Dynamics

Although ADM1 may be regarded as the most complete phenomenological description of the
AD process from a bioprocess perspective, where the conditions of microbial growth are rigorously
defined, there is an underlying assumption, as in many chemostat-type models, of spatial homogeneity,
i.e., a completely mixed environment, or zero spatial dimensionality. This makes calculation of mass
retention time and transfer rates relatively straightforward. However, in practice these ideal conditions
are not observed and, at full-scale, the heterogeneous distribution of metabolites and biomass
can lead to sub-optimal performance, dead-zones and unwanted reactor behaviour (e.g., foaming,
physico-chemical gradients) [164,165].

modelling the mass transport and hydrodynamic behaviour of fluids and particles in anaerobic
digestion has been an emerging research field in recent years. Computational Fluid Dynamics (CFD)
is an established modelling tool that uses the mathematics of fluid mechanics (e.g., Navier–Stokes,
Euler equations) and numerical analysis to solve the governing equations on a 1- to 3-dimensional
discretised grid [166]. As computational capabilities have increased (see Section 1), so the possibilities
for using CFD to influence design and performance of AD reactors, especially related to mixing
efficiency and identification of flow issues, have become a viable tool for multi-disciplinary research
teams [167] and modelling consultancies (see Figure 4 for an example of CFD employed at full-scale).
This is reflected by the increasing number of studies and software platforms that use CFD for AD
research, including the performance of gas-mixing [168], physical mixing [169,170], process design
and optimisation [171].

The use of CFD in anaerobic digestion processes, whether for reactor mixing and design
or process optimisation, is likely to become a valuable tool for process engineers. At present it is
used as a complementary approach with models that describe biochemical reactions through dynamic
integration. However, recent studies have looked at using CFD models with biological kinetics and
advection-diffusion transport of soluble metabolites and biomass, in a similar way to the methods for
modelling spatially realised biofilm growth [172,173].
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Figure 4. Example of CFD modelling for a full-scale AD plant showing flow velocity and mixing profile
within a stirred reactor. Image courtesy of AM-TEAM and BIOMATH (Ghent, Belgium, June 2020).

5.4. Individual-Based modelling

We have seen that modelling of anaerobic digestion, and bioprocesses more broadly, have evolved
and diversified as knowledge has accrued at different scales and computational capacity has
dramatically increased. Although mechanistic models are likely to persist as the method of choice for
engineers and practitioners, other approaches will emerge that offer those working in AD with tools
to enhance their understanding and management of these systems. One such method that is highly
granular and explicitly resolved is individual-based modelling. Individual-based Models (IbMs) and
associated tools, such as agent-based models and cellular automata (CA), are spatio-dynamical and
discrete in time, space and states. Although CA are typically used to predict geometric distributions based
on local interactions, IbMs are highly resolved at the cell or individual level [79,174]. Unlike aggregated
and continuous population models, IbMs proscribe behavioural physical and biological traits to
individuals in a highly discretised manner, where the complex, global behaviour of the population
emerges from the simpler, local properties and interactions among individuals.

IbMs have historically been used in macro-ecology but found significant purchase as a tool for
modelling biofilms, building on knowledge gained from spatio-temporal, multi-species biomass-based
models, such as those briefly mentioned in Section 3 [175,176]. In addition to the microbial
growth properties, physical interactions between individuals, motility, environmental gradients,
fluid dynamics, thermodynamics, and even stochasticity may also be included as hybrid components to
a more comprehensive process, sub-process or reactor scale model [177–179]. Such a multi-scale model
is complex and requires a large degree of multi-disciplinarity to ensure successful implementation.
However, the use of IbMs is becoming more ubiquitous and recent efforts to develop large-scale
simulators of EBS using hybrid IbM and statistical emulators have established a framework for
studying microbial community behaviour at scale [71,180,181], opening the door for application to
anaerobic digestion processes [179,182] (See Figure 5 for an example application of an IbM applied to
anaerobic processes).

HET AOB NOB ANA DEAD

type

Figure 5. Cont.
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Figure 5. An Individual-based Model representing the morphology of (top) A nitrifying-denitrifying
biofilm. Ammonia Oxidising Bacteria (AOB) are seen to outcompete their Nitrite Oxidising counterparts
(NOB) for dissolved oxygen in the bulk liquid (empty space). Competition for nitrite between ammonia
oxidisers (ANA) and heterotrophs (HET) is observed within the biofilm, with HET establishing at
the surface and ANA dominant in the anoxic regions of the biofilm, (bottom) An anaerobic digester.
Morphology is dependent on initial seeding. The relative density of acetoclastic methanogens (xac_ch4)
and hydrogenotrophic methanogens (xco2_ch4) is indicative of the dominant acetoclastic pathway,
and the syntrophic interaction with the acetogens (xglu_ac). The images were produced using the
NUFEB simulator [183] by Bowen Li (Newcastle University, UK, June 2020) and used with permission.

6. Conclusions

With five decades of anaerobic digestion mathematical modelling there may be an assumption of
consensus among the scientific and engineering communities who have directly or indirectly aided
the development and validation of models from theory to practice. Although it could be argued
that there is a level of maturity embodied by the most well-known and used tool, the Anaerobic
Digestion Model No. 1, we have seen that such highly structured, complex models do not fit all
purposes. Indeed, many applications of empirically derived mechanistic models rely on simplifying
assumptions to obtain a structure that is identifiable, without loss of specificity or accuracy, e.g.,
for process control. Here we argue that the rigorous application of mathematical analysis tools,
typically in the domain of theorists, can be appropriately applied to reduced-order models of AD
to investigate the qualitative behaviour of the system, identifying unexpected behaviour, guiding
experimental studies, and suggesting suitable control parameter limits for improved process operation.

Many of the bottlenecks that have limited not only modelling but more general AD research, such
as reliable and in situ instrumentation, limited understanding of the complex microbial ecology of
digesters, and restrictive computational capacity, have generally been overcome in the last two decades.
This has manifested, more widely, in the large availability of data in the bioprocess industry, opening
up opportunities for AD modelling across scales, from the cellular and metabolic level, through to
plant-wide integration and supervisory control. Although data-driven models and digital tools based
on machine learning algorithms and AI are emerging in parallel with the Industry 4.0 ethos of “Smart
Systems”, it is cautioned by the well-known aphorism “garbage in, garbage out”. There are a significant
number of publications on the use of AI techniques such as Artificial Neural Networks, but these
may be subject to the problem of over-fitting and loss of generality. Investment in time and energy to
develop complexity is driven by an assumption that the more information the better the model. This is
not strictly true, many soft-sensors employed today are based on simple multivariate relationships
between a few measured variables, where a standard PLS regression model may be adequate.

However, to address more challenging issues faced by industry, it is clear that some standard
modelling approaches may not be fit for purpose. The future of AD modelling will track the
needs of the industry but also incorporate ideas from other fields to ensure that models are robust,
reliable, flexible and adaptable to local and global shifts in the process domain. We are already



Processes 2020, 8, 0888 20 of 31

seeing this happen in the water sector, where environmental challenges such as climate change,
increased urbanisation and economic constraints, are driving industries to look at the potential for
models to ensure that infrastructure is resilient in the face of novel demands. AD technology is
a key component of the energy-food-water nexus and drivers already exist for collaboration between
modelers, engineers, scientists and other stakeholders to exploit the potential of available models
but also to integrate emerging and innovative methods into their thinking around AD, such as
hybrid modelling techniques, cellular level and metabolic knowledge, thermodynamic constraints on
microbial growth, fluid dynamic process visualisation, and fine-grain individual scale models that can
incorporate all of these elements.

This review does not suggest a preference for any model or modelling approach. There is no
ideal model for AD and often several models may achieve the same goal. Simply, we present a broad
overview of the historical context of AD modelling and look to the future as the wealth of knowledge
and information grows. The use of models for AD is strengthening and we envisage that this will
become even more important in the context of the climate emergency, the need for smart management
of resources and in the provision of resilient infrastructure that generate and process these resources.
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Appendix A. Bifurcation Analysis Example

Assuming no biomass enters the reactor, Equations (2) and (3) can be rewritten (after switching
the order) as

Ṡ1 = D(S0
1 − S1)−

1
Y

µ1(S1)X1, (A1)

Ẋ1 = −DX1 + µ1(S1)X1, (A2)

where D is the dilution rate, S0
1 is the influent substrate concentration, and µ1(S1) is the non-monotonic

Haldane growth function of the organism X1 growing on S1. To determine the equilibria of the system,
we now set the LHS of the equations to zero and solve the equalities for X1 and S1. This results in the
identification of three possible steady states defined analytically by

E0 =
(

S0
1, 0
)

(A3a)

E1 =
(
λ1, X∗1,1

)
(A3b)

E2 =
(
λ2, X∗1,2

)
, (A3c)

where λi and X∗1,i, i = [1, 2] are the steady-state concentrations of S1 and X1, respectively
(See Appendix A for details).

To calculate the stability of the equilibria, we first construct the Jacobian matrix of the system

J =

[
−D− ∂µ1(S1)

∂S1

X1
Y − µ1(S1)

Y
∂µ1(S1)

∂S1
X1 µ1(S1)− D

]
(A4)

For each equilibrium, we can substitute expressions for S1 and X1 at steady-state into the Jacobian
and check its eigenvalues, knowing that |J − sI| = 0, where I is the n× n identity matrix and s are the
eigenvalues that satisfy the equation. Taking, for example, the washout equilibria E0, the eigenvalues
are determined analytically to be [−D, µ(S0

1)− D]. Hence, we can now derive an explicit condition
that states E0 is meaningful and stable (si < 0) for D > µ(S0

1). In biological terms, this means if the
dilution rate is higher than the growth rate of the organism, its washout is guaranteed, a common
observation that links chemostat theory with empirical understanding. We can also find analytical
expressions for the existence, uniqueness and stability of the other two equilibria but omit them here
for brevity. Layperson definitions: Existence: Conditions for which an equilibrium exists; Uniqueness:
Under the conditions for existence, is the criteria for one and only one equilibrium satisfied? Stability:
Given some arbitrarily small perturbation away from the equilibrium, does the system return to that
equilibrium (local stability)? Does the system return to an equilibrium from any permissible point
in that system (global stability)? The Routh-Hurwitz criterion and Lyupanov functions are common
methods used to test stability for systems of ODEs [184].

Unless these analytical expressions are transparent to interpretation, it is often difficult to
extract practical knowledge from them. However, because they describe the general and immutable
behaviour of the system, local bifurcation analysis can be used as a complementary method for visual
interpretation of existence and stability of equilibria. For engineering purposes, bifurcation analysis is
usually performed using free system parameters, i.e., the operating or control parameters that can be
adjusted. However, bifurcation using fixed or unidentifiable parameters can provide useful knowledge
for model fitting when there is a degree of parameter uncertainty, or potentially where microbial traits
can be adapted or evolved (e.g., synthetic biology, bioengineering, bioaugmentation).

We conduct a numerical analysis of the model by assigning parameter values, shown in Table A1,
to the model. A one-parameter bifurcation, using dilution rate as the bifurcating parameter, is shown
in Figure A1. Briefly, the analysis identifies stable (red) and unstable (dashed black) equilibria
in the X1 variable domain. Two branch points (BP) representing the switching between two
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equilibria, and a limit point (LP) where two equilibria collide (or emerge), are identified. Biological
interpretation: LP represents the maximum dilution rate at which a positive X1 concentration is
possible. A two-parameter bifurcation diagram is shown in Figure A2. This is sometimes referred
to as an operating diagram as it allows for the identification of stable operating regions. In this case,
maintaining a dilution rate below 0.8284 and an acetate influent concentration between the blue and
red curves guarantees stable existence of the acetate degrader. Increasing this concentration, so that
the process is operating above the red curve in a region of bistability, would require control of the
initial conditions to avoid the washout case.

Table A1. Parameter set for bifurcation analysis example.

Parameter Value

µ̂ 2.0
Y 0.5
Ks 0.05
Ki 0.1
S0

1 0.5
D 0.4

Figure A1. One-parameter bifurcation in X1 for the parameter set given in Table A1 indicating a limit
point (saddle-node bifurcation), LP, at a dilution rate of 0.8284 at the collision of two equilibria (E1 and
E2). The red line corresponds to stable fixed points (equilibria) and dashed black line to unstable fixed
points. It can be noted that at D > 0.3279, the system is bistable in E0 and E2. The branch point (BP)
at D = 0, corresponds to the theoretical maximum X1, where no biomass or substrate leaves the reactor.

Figure A2. Two-parameter bifurcation diagram: A Bistable E0, E2 Unstable E1, B Stable E2 Unstable E0,
C Stable E0, Unstable E2, ∅ Stable E0.
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