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Abstract: The influence of post-processing conditions on the magnetic properties of amorphous
and nanocrystalline microwires has been thoroughly analyzed, paying attention to the influence
of magnetoelastic, induced and magnetocrystalline anisotropies on the hysteresis loops of Fe-, Ni-,
and Co-rich microwires. We showed that magnetic properties of glass-coated microwires can be
tuned by the selection of appropriate chemical composition and geometry in as-prepared state or
further considerably modified by appropriate post-processing, which consists of either annealing or
glass-coated removal. Furthermore, stress-annealing or Joule heating can further effectively modify
the magnetic properties of amorphous magnetic microwires owing to induced magnetic anisotropy.
Devitrification of microwires can be useful for either magnetic softening or magnetic hardening of
the microwires. Depending on the chemical composition of the metallic nucleus and on structural
features (grain size, precipitating phases), nanocrystalline microwires can exhibit either soft magnetic
properties or semi-hard magnetic properties. We demonstrated that the microwires with coercivities
from 1 A/m to 40 kA/m can be prepared.

Keywords: magnetic microwires; post-processing; hysteresis loops; magnetic anisotropy

1. Introduction

The development of new magnetic devices (sensors, actuators, magnetometers, transformers,
motors, etc.) is substantially affected by technological progress in the field of magnetic materials [1–3].
The performance of the magnetic devices is determined by their properties: the right choice of magnetic
material allows for devices’ performance improvement. Soft magnetic materials are essentially relevant
for a number of emerging applications [3].
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Amorphous and nanocrystalline materials prepared by means of rapid melt quenching present
unique combination of physical properties, such as superior magnetic softness, dimensionality suitable
for various industrial applications, and excellent mechanical properties [4–6]. Given that the fabrication
process of amorphous and nanocrystalline materials is usually fast and inexpensive, these materials are
recognized among the most promising soft magnetic materials. Several fabrication techniques involving
rapid melt quenching allow preparation of amorphous materials with either cylindrical (wires) or
planar (ribbons) geometries [4–6]. Accordingly, amorphous ribbons and wires can present rather
different magnetic properties and, hence, they are suitable for a wide range of applications. In particular,
for energy and power conversion applications in transformers, amorphous and nanocrystalline with
low magnetic losses and high values of saturation magnetization are more suitable [4]. In contrast,
amorphous, nanocrystalline, and even crystalline wires can exhibit rather unique magnetic properties,
such as the giant magneto-impedance effect (GMI) or fast magnetization switching associated with a
perfectly rectangular hysteresis loop shape and attributed to a large Barkhausen jump [7–15].

It is worth mentioning that a considerable GMI effect has been observed also in amorphous and
nanocrystalline ribbons [16,17]. However, the specific domain structure of magnetic wires consisting
of inner axially magnetized domain surrounded by the outer domain shell allows for achieving high
circumferential magnetic permeability in Co-rich amorphous wires or large Barkhausen jump upon
remagnetization of axially magnetized single domain in Fe-rich amorphous wires [18–20]. The origin
of such domain structure is dictated by the internal stresses distribution originated by the rapid melt
quenching fabrication process. Accordingly, both high GMI effect and fast magnetization switching
related to propagation of a single domain wall, DW, can be observed even in as-prepared amorphous
magnetic wires [18–20]. Recently, fast DW propagation has been reported also in nanowires prepared
either by electrodeposition [21,22] or involving a rapid melt quenching technique [20,23,24].

As mentioned above, most of the studies are related (although not limited) to either single DW
dynamics or GMI effect. The main interest in the GMI effect is related to extremely large impedance
sensitivity to an external magnetic field (up to 10%/A/m) observed in properly prepared and processed
magnetic microwires [10–13,18,25,26]. Such features of the GMI effect observed in amorphous wires
allowed the development of the GMI technology suitable for numerous applications, such as magnetic
compass and acceleration sensors integrated in complementary metal-oxide-semiconductor (CMOS)
circuits [27,28], reduced-sized magnetometer suitable for magnetic field mapping [29,30], detection
of a biomagnetic field with the pico-Tesla sensitivity [31], and magnetoelastic and temperature
sensors [32,33].

A variety of technological applications require miniaturization combined with excellent corrosion
and mechanical properties and biocompatibility of the magnetic elements [2–4,12–14]. This combination
of physical properties and reduced dimensions can be achieved in glass-coated microwires: among
the rapid melt quenching methods, the so-called Taylor-Ulitovsky method allows preparation of the
thinnest amorphous wires covered by flexible and insulating glass [34–37]. It is worth mentioning that
the method itself has been known since the 1960s [34], and the preparation of magnetic amorphous
microwires has been reported about since the 1970s [18,35,36]. The preparation method consists of the
fabrication of glass-coated microwires with metallic nucleus, diameters typically from submicrometric
up to 40 µm, by simultaneous rapid melt quenching of metallic alloy covered by insulating glass
coating [36]. This method is suitable for fabrication of magnetic microwires with either amorphous or
nano-micro crystalline structure [18,23–25,33,36–38].

A variety of magnetic properties interesting for various technological applications, such as
a high GMI effect (up to 650% GMI ratio) [18,25,26], extremely fast single domain wall (DW)
propagation (with DW velocity up to 3 km/s) [19,23,24,38], considerable magnetoresistance [36,39],
and magnetocaloric [36,40] effects or even semi-hard magnetic properties [36,41] have been reported
for glass-coated microwires.

As discussed elsewhere [36], the magnetic properties of microwires to a great extent are
determined by the microstructure of the metal core. The microstructure depends on fabrication
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conditions, like the quenching rate as well as the chemical composition of the metallic nucleus
alloy. Thus, if the quenching rate achieved during the quenching process from the melt is not high
enough, metastable crystalline microwires with crystalline structure of metallic alloy nucleus can be
prepared [36,40,41]. However, even magnetic properties of amorphous microwires are affected by the
fabrication conditions (like quenching rate or glass-coating thickness) and chemical composition of the
metallic alloy [18,42–44]. This compositional dependence is related to the magnetoelastic anisotropy
affected by the magnetostriction coefficient as well as by the internal stresses values [18,43–47].
However, appropriate post- processing is another factor allowing for either fine-tuning or even drastic
modification of magnetic properties [43,44,48].

In this review, we have analyzed the influence of various factors on the magnetic properties of
glass-coated microwires and provide the guideline for selection of appropriate post-processing for
optimization of properties of magnetic microwires.

2. Experimental Methods and Materials

We prepared and analyzed amorphous glass-coated microwires based on Fe-, Co- and Ni- alloys
with minor metalloid additions (Si, B, C) necessary for preparation of amorphous alloys [6–8,12,36]
(Table 1). The employed Taylor-Ulitovsky technique is described earlier elsewhere [36].

Table 1. Compositions and geometry of studied glass-coated microwires.

Composition
Metallic Nucleus

Diameter,
d (µm)

Total Diameter,
D (µm) Ratio = d/D

Magnetostriction
Coefficient,
λs × 10−6

Fe62Ni15.5Si7.5B15 14.35 33.25 0.43 27
Fe49.6Ni27.9Si7.5B15 14.2 33.85 0.42 20
Co70.5Mn4.5Si10B15 10 26 0.38 −0.2

Co77.5Si15B7.5 13.1 18 0.73 −5
Co69.2Fe3.6Ni1B12.5Si11C1.2Mo1.5 22.8 23.2 0.98 −1

Co68.5Si14.5B14.5Y2.5 5 22 0.23 −5
Co65.4Fe3.8Ni1B13.8Si13C1.65Mo1.35 18.8 22.2 0.85 −1
Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 6.6 15.7 0.42 −3
Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 6.8 13.6 0.5 −3
Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 9.8 18.5 0.53 −3
Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 11.8 18.4 0.64 −3
Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 13.4 20.9 0.64 −3
Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 16.8 24 0.7 −3
Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 16.8 21 0.8 −3

Co69.2Fe4.1B11.8Si13.8C1.1 25.6 30.2 0.85 −0.03
Fe71,8Cu1Nb3,1Si15B9,1 7.0 24.8 0.282 30
Fe71,8Cu1Nb3,1Si15B9,1 18.2 39 0.467 30

Fe70.8Cu1Nb3.1Si14.5B10.6 11.8 14.4 0.8 30
Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 25.6 26.6 0.96 −0.29

Co68.7Fe4Ni1B13Si11Mo2.3 17 23.6 0.72 −1.06
Fe38.5Co38.5B18Mo4Cu1 9.4 22.5 0.41
Fe38.5Co38.5B18Mo4Cu1 10 16.6 0.6

Fe50Pt40Si10 8 21 0.38

The structure of the samples has been analyzed by the X-ray Diffraction (XRD) as well as by the
Differential Scanning Calorimeter (DSC). The Bruker (D8 Advance) X-ray diffractometer with Cu Kα

(λ = 1.54 Å) radiation has been used in the XRD studies. A wide halo characteristic of completely
amorphous materials was observed in amorphous (as-prepared or annealed) microwires. The DSC
studies were performed using a 204 F1 Netzsch calorimeter (Netzsch Co, Selb, Germany).

The samples were heat treated at a temperature, Tann, ranging from 200 ◦C to 500 ◦C in a
conventional furnace. Typically, the crystallization of amorphous microwires was reported for
Tann ≥ 490 ◦C [49]. The advantage of amorphous microwires is their superior mechanical properties
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typically reported for amorphous materials [50,51]. In most cases, we fixed annealing time, tann,
of 60 min which is usually used for heat treatment of amorphous and nanocrystalline materials [48,49].

In the case of stress-annealing, the tensile stress was applied during the annealing, as well as
during the sample cooling in the furnace. The stress value in the metallic nucleus, σm, was evaluated
considering different Young’s modulus of metal, E2, and glass, E1, as follows [43,48,52]:

σm =
K·P

K·Sm + Sgl
(1)

where K = E2/E1, Sm, and Sgl are the metallic nucleus and the glass coating cross sections, respectively,
and P is the applied mechanical load.

Hysteresis loops have been recorded using the fluxmetric method adapted for studies of magnetic
microwires [49]. Hysteresis loops have been represented as the normalized magnetization, M/Mo,
versus the axial magnetic field, H, where Mo is the sample magnetic moment obtained at the maximum
magnetic field amplitude, Ho [49,53].

The magnetostriction coefficient, λs, of the studied microwire, was evaluated by the Small Angle
Magnetization Rotation (SAMR) method recently adapted for microwire [54,55]. In this method,
λs-values are determined in the microwire saturated by an axial magnetic field, H. Simultaneously,
a low AC transverse field, Hc, generated by an AC electric current flowing along the microwire allows
a reversible magnetization rotation. A more detailed SAMR method description and of the set-up
adapted for evaluation of magnetostriction coefficient in microwires are provided elsewhere [54,55].

The glass coating was removed from the microwires by chemical etching using diluted (10%)
hydrofluoric (HF) acid.

3. Results and Discussion

Below, we have summarized the highlight findings already published, together with recently
obtained results on tailoring of magnetic properties of glass-coated microwires, with particular
emphasis placed on amorphous and crystalline microwires.

3.1. Effect of Magnetoelastic Anisotropy on Magnetic Properties of Amorphous Glass-Coated Microwires

The sign and value of the magnetostriction coefficient affect the hysteresis loops of amorphous
microwires, since magnetoelastic anisotropy is the main source of magnetic anisotropy in amorphous
materials. Accordingly, the simplest way to tune the magnetostriction coefficient, λs, in amorphous
alloys is to modify its chemical composition [54–57].

Fe-rich microwires have positive λs-values, of the order λs ~ (20–40) ×·10−6, while in Co-rich
microwires λs are negative, taking λs ~ −(5–3) × 10−6 [56,57]. Accordingly, the magnetostriction can
take vanishing values in Co-Fe or Co-Mn amorphous alloys on the Co-rich side [54–58]. Alternatively,
a decrease in λs is observed in Fe-Ni alloys with an increase in Ni content. However, doping with Ni
correlates with a simultaneous decrease in saturation magnetization [57].

The relationship between the λs sign and value and the hysteresis loops of amorphous microwires
is shown in Figure 1. As can be appreciated from Figure 1, the character of hysteresis loops for
amorphous microwires with positive and negative λs-values is rather different: amorphous microwires
with positive λs-values present rectangular hysteresis loops, while hysteresis loops of microwires with
negative λs-values are almost non-hysteretic with low coercitivity, Hc, values.
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Figure 1. Hysteresis loops of magnetic microwires Fe75B9Si12C4 with positive (a) 
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values. (Reproduced with permission from [42] Open Access Copyright© 2019 MDPI).

Such difference in hysteresis loops character is commonly attributed to different magnetic
anisotropy of microwires with positive and negative λs-values: the rectangular hysteresis loop
of microwires with positive λs-values was interpreted in terms of axial magnetic anisotropy [42].
Thus, axial magnetic anisotropy is intrinsically related to a peculiar domain structure consisting
of inner axially magnetized single domain responsible for the remagnetization process by single
domain wall propagation and outer domain shell with radial magnetization orientation [9,59,60].
The remagnetization of such microwires is running by the single and large Barkhausen jump [9,52,59–61].
Perfectly rectangular hysteresis loop character is related to an extremely fast magnetization switching
by single domain wall propagation.

On the other hand, the origin of quasi-linear hysteresis loops (see Figure 1b,c) is related to the
quasi-reversible magnetization rotation from the circular to the axial direction upon application of an
axial magnetic field [60].

As regarding the aforementioned magnetoelastic anisotropy, Kme, another relevant parameter is
the internal stresses value, σi. Indeed, Kme is given by [23,38,62–64]:

Kme = 3/2 λsσi (2)

where total stresses, σ = σi + σapp, σapp—applied stresses.
There are several factors responsible for the internal stresses value and distribution: (i) the difference

in the thermal expansion coefficients of metallic alloy nucleus solidifying simultaneously with the
glass coating surrounding it; (ii) the quenching stresses itself related to the rapid solidification of the
metallic alloy nucleus from the surface inside the wire axis; and (iii) the drawing stresses [43–46,62–64].

Most theoretical evaluations of the internal stresses value and distribution show that the largest
internal stresses are associated with the difference in the thermal expansion coefficients of the metallic
alloy and the glass coating [62–64]. The quenching stresses are roughly an order of magnitude
lower [42,43].

There are only several attempts of evaluation of internal stresses associated with the continuous
mechanical drawing [63,64]. The value of such stresses has been estimated from the results on remanent
magnetization measurements in glass-coated microwires with partially removed (by chemical etching)
glass-coating under applied tensile stresses [63,64]. The value of this stress component depends on
the microwire geometry and was estimated to be about 250–600 MPa, i.e., again about an order of
magnitude below the internal stresses related to the difference in the thermal expansion coefficients
of metallic alloy and the glass coating [63,64]. Furthermore, they further enhance the axial internal
stresses arising from the difference in the thermal expansion coefficients of the metallic alloy and the
glass coating.

Provided description allows for predicting that the internal stresses value inside the metallic
nucleus can be tuned by the ρ-ratio between the metallic nucleus diameter, d, and the total microwire
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diameter, D (ρ = d/D) [42,43,62–64]. In fact, this prediction is confirmed experimentally by correlation of
magnetic properties, such as coercivity, Hc, or magnetic anisotropy field, Hk, in magnetic microwires of
various chemical compositions, and ρ-ratio [38,42,43,62–64]. Below, we provide several experimental
evidence of such correlations.

The influence of controllable glass-coating removal by etching in 10% HF on hysteresis loops of
Co70.5Mn4.5Si10B15 microwire is shown in Figure 2. Gradual transformation of hysteresis loops from
linear to almost perfectly rectangular must be attributed to relaxation of the internal stresses related to
the presence of glass-coating. This evolution of hysteresis loops can be understood considering the
low negative λs-values and the axial character of internal stresses in most of the metallic nucleus [65].
Evident difference in hysteresis loops of as-prepared Co70.5Mn4.5Si10B15 microwires and microwires of
the same composition with partially removed glass-coating experimentally confirms the aforementioned
theoretical results on character of internal stresses. Low negative magnetostriction coefficient and
preferentially axial character of internal stresses explain linear almost non-hysteretic character of
hysteresis loops of as-prepared Co70.5Mn4.5Si10B15 microwires.
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Figure 2. Hysteresis loops of as-prepared (a) and with chemically etched glass-coating for 5 min (b),
10 min (c) and 50 min (d) Co70.5Mn4.5Si10B15 microwire. (Reproduced with permission from [65],
Copyright© 2020 Elsevier).

The influence of chemical etching on the hysteresis loops of Co68.5Si14.5B14.5Y2.5 microwire with
higher negative λs-values is even more remarkable (see Figure 3): as-prepared Co68.5Si14.5B14.5Y2.5

microwire presents non-hysteretic loops with saturation at magnetic field, H, above 6 kA/m
(see Figure 3a). However, upon chemical etching, gradual transformation of hysteresis loops from
linear to rectangular is observed (see Figure 3b,c). As previously reported [66], after etching in 10%
HF for 50 min, the glass-coating thickness decreases from 8.5 to 4 µm. Accordingly, the glass-coating
thickness can be considered as one of the most relevant parameters that affect the hysteresis loops of
glass-coated microwires.
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Gradual glass-coating removal by chemical etching must be associated with the gradual relaxation
of the internal stresses related to different thermal expansion coefficients of glass coating and
metallic alloy.

The commonly accepted model of domain structure of magnetic wires is the core–shell model
experimentally proved several times by various methods [60,61,67,68]. According to this model,
the domain structure of amorphous magnetic wires can be satisfactory described as consisting of inner
axially magnetized core surrounded with the outer shell with transverse magnetization. In the case of
Fe-rich wires, the outer shell presents radial magnetization orientation, while, in Co-rich microwires,
a bamboo-like domain structure with circular magnetization orientation is reported [60,61,67–70].

The origin for such domain structure is discussed considering the minimization of the energy
though the counterbalance of the magnetoelastic energy related to the internal stresses distribution as
well as to the exchange energy [69,70].

In the frame of this domain structure model, the radius of the inner axially magnetized core, Rc,
can be evaluated from the squareness ratio, Mr/Mo, as:

Rc = R·(Mr/Mo)1/2 (3)

where R is the metallic nucleus radius.
From the evolution of the hysteresis loops upon chemical etching provided in Figures 2 and 3,

the increase in the Mr/Mo upon chemical etching is evidenced. Consequently, we can assume that the
radius of inner axially magnetized domain increase upon partial internal stresses relaxation associated
with the glass removal. This assumption is evidenced from Figure 4 where evolution of Rc/R on time
of chemical etching, t, for Co70.5Mn4.5Si10B15 and Co68.5Si14.5B14.5Y2.5 microwires is shown. As can be
observed, for the microwire with lower λs-value, the increase in Rc/R with t is faster.
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Figure 5. Effect of applied stress on hysteresis loops (a) and Hk(σapp) (b) for as-prepared
Fe3.8Co65.4Ni1B13.8Si13Mo1.35C1.65 microwires. (Reproduced with permission from [71] Figures 2 and 3a
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Hk(σapp) dependence evaluated from Figure 5a shows a good linear tendency (Figure 5b).
Such linear Hk(σapp) dependence has been explained considering the relationship between the
magnetoelastic anisotropy, Kme, and σapp given by Equation (2) [71]. Consequently, relation between
the magnetostriction coefficient and magnetic anisotropy field, Hk, is given by [71]:

λs = µoMs(Hk/3σ) (4)

where µoMs is the saturation magnetization.
The magnetostriction coefficient is affected by the stresses, σ, as described elsewhere [71,72]:

λs,σ = λs,0 − Bσ (5)

where λs,σ is the magnetostriction coefficient under stress, λs,0 is the zero-stress magnetostriction
constant, and B is a positive coefficient of order 10−10 MPa and σ-stresses. Therefore, a decrease in
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λs reported for Co-rich microwires (λs < 0) upon applied stresses [54,55] can be associated with the
development of circumferential magnetic anisotropy in the outer shell [71]. Consequently, experimentally
observed linear Hk(σapp) dependence can be explained considering Equations (2), (4), and (5). The influence
of chemical etching on the hysteresis loops and on Hk observed in Figures 2 and 3 is exactly the opposite
to the effect of tensile stresses. Therefore, the theoretically predicted character of internal stresses with
a dominant axial tensile character and its dependence on the ρ-ratio look reasonable. Accordingly, it is
expected that the internal stresses value can be tuned by the glass-coating thickness through the ρ-ratio.

The correlation of the ρ-ratio and the hysteresis loops of Co-rich microwires with
a vanishing magnetostriction coefficient is reported elsewhere [12,73–75]. For the case of
Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 microwires with vanishing magnetostriction coefficient (see Figure 6)
linear, almost non-hysteretic loops with extremely low coercivities (up to 4 A/m) are observed. If we
plot Hk obtained from the hysteresis loops of Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 microwires with various
d and D-values versus the ρ-ratio, we can find out that there is a correlation between these parameters.
Magnetic anisotropy field, Hk, increases with decreasing the ρ-ratio (Figure 6b).
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© 2015 Elsevier B.V.)

As mentioned above, glass-coated microwires with positive λs-value generally present perfectly
rectangular hysteresis loops related to spontaneous magnetic bistability. A typical hysteresis loop of
microwires with positive λs-value is shown in Figure 1a. Fast magnetization switching and related
single DW propagation reported in magnetic micro- and nano-wires are proposed for various technical
applications, like magnetic sensors, electronic surveillance, magnetic memories, and logics [7,75–77].
Thus, the method for magnetic codification using magnetic tags [75] is based on sharp voltage signals
induced by fast magnetization switching of magnetically bistable microwires. In this application,
each tag consists of several microwires with rectangular hysteresis loop and hence well-defined
coercivities. Under an external AC magnetic field, each specific microwire in the tag is remagnetized in
a different magnetic field, which leads to the appearance of an electrical signal in the detection system.
Variety of coercivities allows for extending the number of combinations for magnetic codification.
Therefore, tunability of coercivities, Hc, of magnetically bistabile microwires is essentially relevant for
this application and has been extensively studied [46,78–80].

As can be appreciated from Figure 7, even for the same microwire composition, Hc can be changed
by almost an order of magnitude (from 85 to 630 A/m) by adjusting the ρ-ratio. Similarly to the
case of Co-rich microwires, Hc-values obtained for microwires with different D and d-values can be
represented by Hc(ρ) dependence (i.e., Hc-values for different D and d-values can be represented by
Hc(ρ) dependence (see Figure 7e).
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Figure 7. Hysteresis loops of Fe70B15Si10C5 amorphous microwires with different metallic nucleus
diameter d and total diameters D: with ρ = 0.63; d = 15 µm (a); ρ = 0.48; d = 10.8 µm (b); ρ = 0.26;
d = 6 µm (c); ρ = 0.16; d = 3 µm (d) and Hc(ρ) dependence of the same microwires (e). Adapted
from [78].

Considering aforementioned results, one can expect that stresses relaxation by heat treatment can
efficiently affect the magnetic properties of microwires.

One of the examples of annealing influence on hysteresis loops of Fe-rich microwires is shown in
Figure 8.
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For the Fe75B9Si12C4 microwires, annealing does not affect the hysteresis loop character. However,
a slight Hc decrease is observed (see Figure 8b).

More complex behavior has been reported for Fe-Ni based microwires with positive
magnetostriction and hence presenting spontaneous magnetic bistability [81,82].

As-prepared Fe62Ni15.5Si7.5B15 microwires present rectangular hysteresis loops (see Figure 9a) as
expected for microwires with positive λs-values (about 27 × 10−6).
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After annealing, an increase in coercivity, Hc, is generally observed (see Figures 9b–g and 10).
The hysteresis loop character remains unchanged: all hysteresis loops present rectangular shape.
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Although generally higher Hc-values are observed in annealed samples, Hc(tann) dependence is
not monotonic: for tann = 128 min some Hc decrease is observed (see Figure 10).

Similarly, the second Fe-Ni based (Fe49.6Ni27.9Si7.5B15) microwire presents rectangular hysteresis
loops in as-prepared state and after annealing (see Figure 11). Lower Hc-values observed in
as-prepared Fe49.6Ni27.9Si7.5B15 microwire can be related to lower λs-values of Fe49.6Ni27.9Si7.5B15

microwires (λs ≈ 20 × 10−6) [54,55]. However, Hc(tann) dependence is different from that showed by
Fe62Ni15.5Si7.5B15 microwire: upon annealing (at the same conditions, i.e., Tann and tann) first a slight
decrease in Hc followed by Hc rising is observed (see Figure 11e).
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Figure 11. Hysteresis loops of as-prepared (a) and annealed at Tann = 410 ◦C for tann = 4 min (b)
32 min(c) 128 min (d) and Hc(tann) dependence (e) for Fe49.6Ni27.9Si7.5B15 microwires. (Reproduced
with permission from [81] Copyright© 2020 AIP Publishing LLC, Open Access).

Considering that the annealing is the common route for the internal stresses relaxation, an observed
annealing effect on Hc in Fe-Ni microwires looks unexpected. For explanation of a rather different effect
of annealing on coercivity of Fe and Fe-Ni based microwires, different factors such as the beginning of
crystallization process or domain wall stabilization due to directional ordering of atomic pairs being
considered [81–84].

From our previous studies, we must disregard the crystallization process, since Fe-Ni based
microwires annealed at the same Tann for 8 h still present amorphous structure [85]. Therefore,
for interpretation of observed Hc(tann) dependencies in Fe-Ni based microwires, several phenomena
can be considered. One of these phenomena is local atomic environment changes in an amorphous
structure related to annealing and clustering. Indeed, local nano-sized precipitations have been
observed in annealed Fe-Ni based microwires by the atom probe tomography [85].
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Furthermore, atom pair ordering and hence DW stabilization is reported for Fe-Ni and Fe-Co
amorphous alloys [81–84,86,87].

Such DW stabilization is considered as the main origin of the Hc rising upon annealing observed in
amorphous materials containing two or more ferromagnetic elements [88,89]. Such magnetic hardening
is usually reported for annealing temperature below Curie temperature, Tc. This mechanism can
explain the difference in annealing influence on coercivity in Fe-based and Fe-Ni based microwires.
In addition, the Curie temperature, Tc, of Fe49.6Ni27.9Si7.5B15 amorphous alloys is about 400 ◦C, being
considerably lower than that for Fe62Ni15.5Si7.5B15 alloy [90]. Accordingly, the DW stabilization
for Fe62Ni15.5Si7.5B15 microwire is expected to be more relevant than that for the Fe49.6Ni27.9Si7.5B15

microwire and hence the internal stresses relaxation plays a major role in the alloy with lower Tc.
Additionally, the internal stresses relaxation upon annealing (evidenced by a Hc decrease in

Fe-rich microwires, see Figure 8) is another factor influencing the Hc(tann) dependencies of microwires.
However, chemical composition of Fe49.6Ni27.9Si7.5B15 microwire is similar to the Invar-like composition
(Ni/Fe content about 40/60) [82]. The peculiarity of the Invar-like crystalline materials with Ni/Fe content
about 40/60 is that they can present the Invar anomaly, i.e., low thermal expansion coefficient [91].
The Invar anomaly is intrinsically related to the local atomic structure of Fe-Ni alloys. Considering
similarity of short range order of amorphous and crystalline materials [92], one can expect lower
internal stresses influence in the Fe49.6Ni27.9Si7.5B15 microwire.

In spite of observed magnetic hardening of Fe-Ni based microwires upon annealing, observed
experimental dependencies allows for tuning the coercivity value by annealing.

Even more remarkable hardening upon conventional annealing has been reported in a variety of
Co-rich microwires with vanishing λs-values [49,93]. Thus, transformation of linear hysteresis
loop with low coercivity (Hc ≈ 4 A/m) into rectangular with Hc ≈ 90 A/m and considerable
magnetic hardening are observed in Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2 microwire upon annealing
without stress (see Figure 12). Gradual squareness ratio, Mr/Mo, rising upon Tann increasing can be
appreciated, although Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2 microwires annealed at different Tann present
similar coercivity.
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Figure 12. Hysteresis loop of the Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2 microwires annealed without stress
at different temperatures. (Reproduced with permission from [49] Copyright© 2020 Elsevier B.V.)

Observed behavior of Mr/Mo upon annealing must be attributed to rising of the inner axially
magnetized inner core diameter. Using relation (3) between the radius of the inner axially magnetized
core, Rc, and Mr/Mo, one can obtain Rc(Tann) dependence (see Figure 13). Observed modification
of the hysteresis loops shape and obtained Rc(Tann) dependence are consistent with the evolution
of the hysteresis loop shape upon glass-coating removal by chemical etching (see Figures 3 and 4).
Accordingly, Rc(Tann) dependence and observed evolution of the hysteresis loops upon annealing must
be related to the relaxation of internal stresses as discussed elsewhere [74,93–95].
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Figure 13. Dependence of radius of inner axially magnetized core, Rc, on annealing temperature, Tann,
in studied microwire. (Reproduced with permission from [49] Copyright© 2020 Elsevier B.V.)

Such evolution of hysteresis loops upon annealing is confirmed in various Co-based
microwires with low and negative λs-values [93–96]. One more example for another Co-rich
(Co69.2Fe4.1B11.8Si13.8C1.1) microwire with low negative λs-values is shown in Figure 14. In this
case, the annealing temperature was fixed (Tann = 250 ◦C) and the hysteresis loops have been recorded
at different annealing time, tann. Similarly to the case of Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2 microwires, we
can observe a remarkable Hc rising and gradual Mr/Mo, increase with an increase in tann (see Figure 15).
Accordingly, from Rc(tann) evaluated from Mr/Mo, we can again observe a gradual increase of the inner
axially magnetized domain radius upon annealing.
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Figure 14. The hysteresis loops of as-prepared (a) and annealed for 5 (b), 15 (c), 25 (d) and 45 (e) min
Co69.2Fe4.1B11.8Si13.8C1.1 microwires annealed at Tann = 250 ◦C. Adapted from [96] Copyright© 2014
Springer Nature.
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Figure 15. Dependence of coercivity, Hc, (a) and reduced remanent magnetization, Mr/MHmax

(b) on annealing time, tann in Co69.2Fe4.1B11.8Si13.8C1.1 microwires. Adapted from [96] Copyright
© 2014 Springer Nature.

Consequently, similarly to glass-coating removal, annealing of Co-rich microwires allows for
obtaining magnetically bistable Co-rich microwires. Such Co-rich microwires with magnetic bistability
induced by annealing present fast magnetization switching by propagation of single domain wall,
similarly to Fe-rich microwires [60]. However, magnetic properties of either annealed or chemically
etched Co-rich microwires are similar to those of Fe-rich microwires: the coercivity values of either
annealed or chemically etched Co-based microwires are almost an order of magnitude higher than
those of as-prepared Co-based microwires.

Therefore, optimization of the magnetic softness of amorphous microwires requires development
of special post-processing. One of the promising routes allowing achievement of better magnetic
softness is controllable magnetic anisotropy induction. Below, we will present several examples of
thermal treatment allowing magnetic properties optimization of magnetic microwires.

3.2. Effect of Induced Magnetic Anisotropy on Hysteretic Magnetic Properties of Amorphous
Glass-Coated Microwires

Considering new functional properties provided by insulating and flexible glass-coating, most
attention has been paid to tuning of the hysteresis loops of Fe-Co-Ni- based microwires by appropriate
annealing. As shown above, conventional annealing provides limited possibilities for tuning the
hysteresis loops. Accordingly, several attempts have been performed recently to search more efficient
post-processing allowing tuning the magnetic properties [43,52,97].

One of the most promising and effective methods for tuning of the magnetic properties of magnetic
microwires is stress-annealing. In the case of magnetic microwires with a positive magnetostriction
coefficient, this post-processing allows remarkable magnetic softness improvement [43,52,86,87,94,95].

From previous knowledge on the origin of induced magnetic anisotropy, it is known that the
magnetic anisotropy of amorphous materials can be effectively tailored by either stress or magnetic
field annealing [83,84].

Recently, stress-annealing has been successfully employed for tailoring of magnetic properties
in glass-coated microwires. Thus, according to several publications on the origin of the induced
anisotropy in glass-coated microwires [74,86,87,98], the presence of the glass-coating can be even
beneficial for tuning the magnetic anisotropy.

Several examples on the influence of stress-annealing on magnetic properties of glass-coated
microwires are provided below.

From Figure 16, we can clearly see that stress-annealing performed in the same conditions
(Tann and tann) allows better magnetic softening and transverse anisotropy induction in Fe-based
(Fe75B9Si12C4) microwires. As reported elsewhere [87,98], such transverse anisotropy depends on
various parameters, like Tann, tann, and stress, σm, applied during the annealing [87]. A clear example
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is shown in Figure 17. As can be appreciated from Figure 17, for high enough Tann or σm, a remarkable
transverse magnetic anisotropy can be induced.
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Figure 17. Hysteresis loops of as-prepared (a), annealed at 200 °C (b), 250 °C (c) and 300 °C (d) for 1 
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Figure 16. Hysteresis loops of as-prepared and annealed at Tann = 325 °C (a) and as-prepared and 
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h and σm ≈ 900 MPa Fe75B9Si12C4 microwires. (Reproduced with permission from [87] Copyright © 
2018, Springer Nature, Open Access). 
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Figure 17. Hysteresis loops of as-prepared (a), annealed at 200 ◦C (b), 250 ◦C (c) and 300 ◦C (d) for
1 h and σm ≈ 900 MPa Fe75B9Si12C4 microwires. (Reproduced with permission from [87] Copyright©
2018, Springer Nature, Open Access).

However, for low enough Tann, tann, or σm, the hysteresis loops maintain rectangular shape
(see Figure 18a) and can present all the features typical for magnetically bistable microwires, i.e., fast
and single domain wall propagation [98]. Lower coercivity is generally observed in stress-annealed
Fe-rich microwires (see Figure 18a,b). Consequently, stress annealing allows for more effectively tuning
Hc and Mr/Mo-values (see Figure 18c). However, for sufficiently high Tann, tann, or σm the hysteresis
loops of Fe-rich microwires become inclined (similar to that of as-prepared Co-rich microwires) with
clear transverse magnetic anisotropy (see Figures 17d and 18b). As recently reported [42,43,86,87],
such Fe-rich microwires with stress-induced transverse magnetic anisotropy present better GMI
response as well as GMI effect and hysteresis loops sensitive to applied stresses [99,100]. Therefore,
such microwires can be suitable for development of magnetic sensors based on GMI effect or for
magnetoelastic sensors [32,71].
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Figure 5. Effect of applied stress on hysteresis loops (a) and Hk(σapp) (b) for as-prepared 

Fe3.8Co65.4Ni1B13.8Si13Mo1.35C1.65 microwires. (Reproduced with permission from [71] Figures 2 and 3a 

Copyright © 2019 Elsevier B.V). 
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Figure 15. Dependence of coercivity, Hc, (a) and reduced remanent magnetization, Mr/MHmax (b) on 

annealing time, tann in Co69.2Fe4.1B11.8Si13.8C1.1 microwires. Adapted from [96] Copyright © 2014 Springer 

Nature. 
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Figure 18. Hysteresis loops of as-prepared and stress-annealed at Tann = 200 ◦C, σ ≈ 900 MPa for
different tann (a), effect of tensile stress applied during the annealing at Tann = 300 ◦C on hysteresis
loops (b) and Hc and Mr/Mo values (c) of Fe75B9Si12C4 microwires. Figure 18a is adapted from [87]
Figure 2 (Copyright© 2018, Springer Nature, Open Access).

In the case of Co-based microwires higher annealing temperature, time or stresses are
required to prevent magnetic hardening associated with relaxation of internal stresses related to
glass-coating [42,43,101]. As can be observed in Figures 19 and 20, for extended range of Tann, tann or σm,
stress-annealed Co-rich microwires present rectangular hysteresis loops. Therefore, stress-annealing
of Co-rich microwires allows for tuning their coercivity in quite extended range. Thus, in certain
stress-annealing conditions, Co68.7Fe4Ni1B13Si11Mo2.3 microwires with rectangular hysteresis loops
and extremely low coercivity of about 1A/m can be obtained (see Figure 21) [102].
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Figure 19. Hysteresis loops of Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2 microwires stress-annealed at different 

conditions: Tann = 200 °C (a), Tann = 350 °C (b) and Tann = 375 °C (c) . (Reproduced with permission from 

[49] Figure 7 Copyright © 2020 Elsevier B.V). 

 

 

 

 

 

 

 

 

 

Figure 19. Hysteresis loops of Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2 microwires stress-annealed at different
conditions: Tann = 200 ◦C (a), Tann = 350 ◦C (b) and Tann = 375 ◦C (c). (Reproduced with permission
from [49] Figure 7 Copyright© 2020 Elsevier B.V.)
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Figure 20. Hysteresis loops of Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2 microwires annealed at Tann = 300 °C for 
tann = 1 h under σm = 118 (a), σm = 236 (b) and σm = 472 MPa (c) and Hc(σm) dependence at Tann = 300 °C 
for tann = 1 h (d). 

Figure 20. Hysteresis loops of Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2 microwires annealed at Tann = 300 ◦C
for tann = 1 h under σm = 118 (a), σm = 236 (b) and σm = 472 MPa (c) and Hc(σm) dependence at
Tann = 300 ◦C for tann = 1 h (d).
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Figure 22. Hysteresis loops of as-prepared and current annealed at 30 mA and 40 mA for 5 min (a), 3 
min and 30 mA (b) Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 amorphous glass-coated microwire. (Reproduced with 
permission from [26] Copyright © 2019 Elsevier B.V). 

The aforementioned circumferential magnetic field, Hcirc, produced by the current (Oersted field) 
in the surface of the metallic nucleus can be evaluated from the formula [29,86]: 

Hcirc = I/2πr (6) 

where I is the current value, r-radial distance. 
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In this case, the microwires were heated by a DC current, I, of 30 and 40 mA. These conditions were 
selected in order to avoid the crystallization and related deterioration of the magnetic properties. In 
the case of Joule heating, the current density is one of the main parameters determining the sample 
heating [104]. Although the thickness of the glass coating and the metallic nucleus diameter also affect 

Figure 21. Hysteresis loops of as-prepared (a), annealed at Tann = 350 ◦C (b) and stress annealed at
Tann = 350 ◦C and σm = 250 MPa (c) Co68.7Fe4Ni1B13Si11Mo2.3 microwires. Adapted from Ref. [102].

For sufficiently high Tann, tann or σm-values linear hysteresis loop of Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2

microwires can be recovered (see Figure 19). However, Tann, tann or σm-values at which transverse
magnetic anisotropy in Co-rich microwires can be induced are considerably higher than those for
Fe-rich microwires.

One more efficient method for tuning of hysteresis loops of Co-rich microwires, preventing
excessive magnetic hardening, is the Joule heating (see Figure 22) [29]. In this case, the current flowing
through the microwires produce heating itself as well as the circumferential magnetic field, Hcirc,
(associated with the current I flowing through the sample) [29,103].
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Figure 22. Hysteresis loops of as-prepared and current annealed at 30 mA and 40 mA for 5 min (a),
3 min and 30 mA (b) Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 amorphous glass-coated microwire. (Reproduced
with permission from [26] Copyright© 2019 Elsevier B.V.)

The aforementioned circumferential magnetic field, Hcirc, produced by the current (Oersted field)
in the surface of the metallic nucleus can be evaluated from the formula [29,86]:

Hcirc = I/2πr (6)

where I is the current value, r-radial distance.
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Magnetic softening obtained at certain conditions of Joule heating is evidenced by Figure 22
where the effect of Joule heating on hysteresis loops of Co67Fe3.9Ni1.5B11.5Si14.5Mo1.6 microwire is
shown. In this case, the microwires were heated by a DC current, I, of 30 and 40 mA. These conditions
were selected in order to avoid the crystallization and related deterioration of the magnetic properties.
In the case of Joule heating, the current density is one of the main parameters determining the sample
heating [104]. Although the thickness of the glass coating and the metallic nucleus diameter also affect
the heat transfer rate [40]. In the given case, the current densities (58.3 and 77.7 A/mm2 for 30 and
40 mA, respectively) are well below the value that can produce magnetic hardening related to the
crystallization [104].

Observed magnetic softening is related to the presence of magnetic field that can considerably
affect the magnetic anisotropy of amorphous materials [105]. It was reported that the macroscopic
magnetic anisotropy of amorphous materials is originated by a preferred magnetization direction
during the annealing and was discussed in terms of either the directional ordering of atomic pairs or
compositional and topological short-range ordering [83–85,93–95,105].

3.3. Tuning of Hysteretic Magnetic Properties in Crystalline and Devitrified Glass-Coated Microwires

The devitrification of amorphous nucleus reached by post annealing process is another useful tool
allowing considerable modification of the magnetic properties and even magnetic softening in some
Fe-rich microwires [48].

In the case of FeSiBNbCu (so-called Finemet) alloys, low magnetostriction values and better
magnetic softness can be achieved by the devitrification of the amorphous precursor [57]. The magnetic
softening of the devitrified Finemet alloys is commonly explained considering the vanishing
magnetocrystalline anisotropy, as well as the vanishingλs-value of the material, consisting of nano-sized
grains with an average size on the order of 10 nm, embedded in an amorphous matrix obtained by
nanocrystallization of the amorphous precursors [57].

The average magnetostriction coefficient takes nearly-zero values [57,106], due to the control of the
crystalline volume fraction: the existence of two phases (amorphous and crystalline) provides a good
balance of a negative magnetostriction of α-Fe-Si nanocrystallites of about (λFeSi

s ≈ −6 × 10−6) [48] and
a positive one for the amorphous matrix of about (λam

s ≈ 20 × 10−6) [48] resulting finally in vanishing
net magnetostriction values [105]:

λ
e f f
s ≈ Vcrλ

FeSi
s + (1 − Vcr) λ

am
s (7)

where λs
eff is the saturation magnetostriction coefficient, and Vcr is the crystalline volume fraction.

This nanocrystallization of FeSiBNbCu alloys is usually observed after annealing in the range
of 500–600 ◦C for 1 h (i.e., at temperatures between the first and second crystallization stages).
One of the examples of the evolution of the hysteresis loops of Finemet-type microwires upon
nanocrystallization is shown in Figure 23. As can observed from Figure 23, in the case of the
Fe70.8Cu1Nb3.1Si14.5B10.6 microwire, annealing at Tann up to 550 ◦C allows considerable decrease
of coercivity. For these annealing conditions, the character of hysteresis loops does not change:
all the hysteresis loops present rectangular shape. In some cases, rectangular hysteresis loops
are reported not only upon devitrification of Finemet-type, but even after second crystallization
process when values up to 2400 A/m are observed [107]. One of the examples is shown in Figure 24a,
where hysteresis loop of Fe71,8Cu1Nb3,1Si15B9,1 microwire (ρ=0.282) annealed at Tann = 700 ◦C is shown.
However, Fe71,8Cu1Nb3,1Si15B9,1 microwire (ρ = 0.467) present rather different step-wise hysteresis
loops (see Figure 24b) that can be attributed to partially crystalline (bi-phase) structure. Such partially
crystalline magnetic microwires, with step-wise hysteresis loops related to magnetic interaction
between crystals or mixed amorphous-crystalline structure, can be interesting for applications in
electronic surveillance systems [108].
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Figure 24. Hysteresis loops of Fe71,8Cu1Nb3,1Si15B9,1 microwires with ρ = 0,282 (a) and ρ = 0,467 (b) 
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The microwires obtained by devitrification exhibit higher saturation magnetization and at certain
annealing conditions can present better magnetic softness and GMI response than as-prepared Fe-rich
microwires and therefore they are useful for GMI sensors and metacomposites applications [47].

In fact, microwires with nanocrystalline structure can be obtained even directly in as-prepared
state without annealing [109,110]. The advantage of such microwires is that they can present better
mechanical properties [109,110].

It is worth mentioning that the use of specially designed compositions allows a further increase of
saturation magnetization, µoMs, [111] and also obtains extremely magnetically soft nanocrystalline
materials. In the case of microwires, the use of a similar chemical composition allows preparation of
nanocrystalline microwires with improved DW mobility without any post processing [109]. The partially
crystalline (Fe0.7Co0.3)83.7Si4B8P3.6Cu0.7 microwire presents elevated values of Hc (about 480 A/m) and
rather high saturation magnetization of about 1.6 T (see Figure 25).
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Such elevated Hc-values are quite similar to that exhibited by other partially nanocrystalline
microwires, i.e., Hitperm-like Fe38.5Co38.5B18Mo4Cu1 microwires with similar average grain
size (about 38 nm and 23–33 nm for (Fe0.7Co0.3)83.7Si4B8P3.6Cu0.7 and Hitperm-like microwires,
respectively) [110]. Accordingly, even partially crystalline or nanocrystalline microwires can
present perfectly rectangular hysteresis loops. For a (Fe0.7Co0.3)83.7Si4B8P3.6Cu0.7 microwire, elevated
µoMs-values allowed for obtaining extremely fast domain wall velocity even in an as-prepared
state [110].

Aforementioned Hitperm-like Fe38.5Co38.5B18Mo4Cu1 microwires are the other example of
nanocrystalline microwires with perfectly rectangular hysteresis loops (see Figure 26) and hence
fast magnetization switching by single domain wall propagation [110]. Higher Hc-values of
Fe38.5Co38.5B18Mo4Cu1 and (Fe0.7Co0.3)83.7Si4B8P3.6Cu0.7 microwires have been attributed to elevated
magnetostriction coefficient of these microwires as-compared to Finemet-type microwires.
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On the other hand, magnetically hard and semi-hard wires are suitable for some applications
specifically to the development of smart markers for the electronic article surveillance, compass
needles, motors, tachometers, magnetic microelectromechanical systems (MEMS), magnetic tips for
magnetic force microscopy, or dentistry [112,113]. Recently, several successful attempts to obtain
elevated coercivity in microwires have been reported [114–116]. Among others, various approaches
have been developed to increase coercivity through the use of new alloys, i.e., Fe-Pt based alloys [114]
or Heusler-type (Ni-Mn-Ga) alloys [115].

Magnetic hardening in Fe50Pt40Si10 microwires has been observed after annealing upon the
formation of L10-type superstructure after crystallization of as-prepared amorphous precursor
(see Figure 27). In this case, after devitrification of amorphous Fe50Pt40Si10 microwire, Hc ≈ 40 kA/m
is observed.

Processes 2020, 8, x FOR PEER REVIEW 22 of 28 

 

magnetic force microscopy, or dentistry [112,113]. Recently, several successful attempts to obtain 
elevated coercivity in microwires have been reported [114–116]. Among others, various approaches 
have been developed to increase coercivity through the use of new alloys, i.e., Fe-Pt based alloys [114] 
or Heusler-type (Ni-Mn-Ga) alloys [115]. 

Magnetic hardening in Fe50Pt40Si10 microwires has been observed after annealing upon the 
formation of L10-type superstructure after crystallization of as-prepared amorphous precursor (see 
Figure 27). In this case, after devitrification of amorphous Fe50Pt40Si10 microwire, Hc ≈ 40 kA/m is 
observed. 

−150 −100 −50 0 50 100 150

−1.0

−0.5

0.0

0.5

1.0

 M
/M

5K

H (kA/m)

 5 K
 75 K
 150 K
 300 K

(a)

 

−150 −100 −50 0 50 100 150

−1.0

−0.5

0.0

0.5

1.0

M
/M

5K

H (kA/m)

 5 K
 50 K
 200 K
 300 K
 350 K

(b)

 

Figure 27. Hysteresis loops of as-prepared (a) and annealed at 500 °C for 1 h; (b) Fe50Pt40Si10 microwires 
measured at different temperatures. Adapted from Ref. [114]. 

Magnetic hardening is also reported in Co-rich microwires annealed by Joule heating [116]. 
Consequently, magnetic properties of crystalline microwires depend on the chemical 

composition of the metallic nucleus and on structural features (grain size, precipitating phases) of 
either as-prepared or annealed microwire: crystalline microwire can exhibit either soft magnetic 
properties or semi-hard magnetic properties. 

4. Conclusions 

We showed that the magnetic properties of glass-coated microwires prepared by the Taylor–
Ulitovsky method can be tuned in an as-prepared state or further modified by appropriate post-
processing. 

Magnetic properties of amorphous magnetic microwires can be tuned either in as-prepared state 
or by controlling the magnetoelastic anisotropy through the magnetostriction coefficient value and 
by the internal stresses values related to the fabrication conditions and geometry of microwires. 
Furthermore, appropriate post-processing (including either conventional heat treatment, heat 
treatment in the presence of applied stress or magnetic field, or glass-coating removal) allows further 
tuning of magnetic properties of magnetic microwires. 

We showed that the microwires with coercivities from 1 A/m to 40 kA/m can be prepared. 
Depending on the chemical composition of metallic nucleus as well as structural features (grain 

size, precipitating phases), a prepared microwire can exhibit soft magnetic properties or semi-hard 
magnetic properties. 

Author Contributions: Conceptualization, A.Z. and V.Z.; methodology, M.I., J.M.B., and V.Z.; validation, A.Z.; 
formal analysis, A.Z.; investigation, A.Z., A.T., P.C.-L., J.O., L.G.-L., and V.Z.; resources, A.Z.; data curation, 
V.Z., P.C.-L., J.M.B., M.I., L.G.-L., and A.T.; writing—original draft preparation, A.Z.; writing—review and 
editing, A.Z., P.C.-L., J.M.B., L.G.-L., and A.T.; supervision, A.Z.; funding acquisition, A.Z. and V.Z. All authors 
have read and agreed to the published version of the manuscript. 

Figure 27. Hysteresis loops of as-prepared (a) and annealed at 500 ◦C for 1 h; (b) Fe50Pt40Si10 microwires
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Magnetic hardening is also reported in Co-rich microwires annealed by Joule heating [116].
Consequently, magnetic properties of crystalline microwires depend on the chemical composition

of the metallic nucleus and on structural features (grain size, precipitating phases) of either as-prepared
or annealed microwire: crystalline microwire can exhibit either soft magnetic properties or semi-hard
magnetic properties.

4. Conclusions

We showed that the magnetic properties of glass-coated microwires prepared by the
Taylor–Ulitovsky method can be tuned in an as-prepared state or further modified by
appropriate post-processing.

Magnetic properties of amorphous magnetic microwires can be tuned either in as-prepared
state or by controlling the magnetoelastic anisotropy through the magnetostriction coefficient value
and by the internal stresses values related to the fabrication conditions and geometry of microwires.
Furthermore, appropriate post-processing (including either conventional heat treatment, heat treatment
in the presence of applied stress or magnetic field, or glass-coating removal) allows further tuning of
magnetic properties of magnetic microwires.

We showed that the microwires with coercivities from 1 A/m to 40 kA/m can be prepared.
Depending on the chemical composition of metallic nucleus as well as structural features (grain

size, precipitating phases), a prepared microwire can exhibit soft magnetic properties or semi-hard
magnetic properties.
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