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Abstract: Adsorption investigations in batch approaches were performed to explore the biosorption
of Ni(II) ions from aqueous solutions on date seeds powder. The effects of pH, particle size,
initial concentration of Ni(II) ions, adsorbent mass, temperature, and contact on the adsorption efficacy
were studied. The maximum removal obtained was 90% for an original Ni(II) ion solution concentration
of 50 ppm was attained at pH 7 after 30 min and with 0.30 g of an added adsorbent. The four
adsorption models, namely Freundlich, Langmuir, Dubinin–Radushkevich (D–R), and Temkin were
examined to fit the experimental findings. The adsorption system obeys the Freundlich model.
The system was found to follow the pseudo-second order kinetic model. Thermodynamic factors;
entropy (∆S◦), enthalpy (∆H◦), and Gibbs free energy (∆G◦) changes were also assessed. Results
proved that adsorption of Ni(II) ions is exothermic and spontaneous. Sticking probability value was
found to be less than unity, concluding that the process is dominated by physical adsorption.

Keywords: adsorption; date seeds; kinetics; isotherm; thermodynamics

1. Introduction

The presence of heavy metals in water streams is among one of the most dangerous environmental
problems arising from the disposal of untreated industrial effluents [1–4]. Many industries comprise of
final treatment processes where discharged metal compounds may lead to pollution in the effluent
water [2,5,6]. Most of these heavy metals are non-biodegradable or with long biological half-life leading
to potential accumulation and human exposure through food or water [1].

Ni(II) ions exist naturally in water as nitrates, sulfides, and oxides. Nickel intake above the
permissible limit causes skin dermatitis, fibrosis, vomiting, pulmonary, nausea, and many other
diseases [3,6–9]. Most of the methods used for Ni(II) removal from artificial wastewater-like cation exchange
and precipitation are costly and produce toxic sludge [2,9]. Recently, some economical, renewable,
and effective agricultural and natural materials have been studied as alternative biosorbents [2].
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Date (Phoenix dactylifera) seeds, which are composed of lignin, hemicellulose, and cellulose are
effective biosorbents; thus, eliminates various contaminants from wastewater [4,10]. The efficiency of
this inexpensive biosorbent is due to oxygenated functional groups in the lignocellulosic materials such
as cellulose and phenolic compounds [10]. The removal of Ni(II) ions onto bentonite/grapheme oxide
was previously studied [11] and the results revealed that it follows Langmuir isotherm with high uptake
capacity. Mehrmad et al. [12] have reported that the removal of Ni(II) ions by functionalized henna
powder depends on the experimental circumstances, mainly the Ni(II) concentration, the biosorbent
mass, and the pH of the medium, the Freundlich and Langmuir isotherm models were used to define
the process. The kinetic data were fitted with the pseudo-second-order reaction. The adsorption of
Ni(II) ions from wastewater by natural clay had previously been investigated [13] and it was reported
that the process is controlled by the pH value of the medium; the sorption process was rapid whereas
the maximum adsorption capacity had been attained within 120 min and it was found that the system
follows a pseudo-second-order reaction.

The adsorbent used in this study was prepared by a direct, facile, and economic technique.
The process does not require any chemicals addition nor high-temperature calcination. It is believed
that only few adsorbents were tested without any modification in the removal of heavy metals from
aqueous solutions while being powerfully recyclable. Phoenix dactylifera is one of the most plentiful
plants in Saudi Arabia and the region. Using date seed powder as an adsorbent for Ni(II) ions is
considered the novelty of this research.

This work aims to assess the potential of date seed powder to act as an inexpensive and
environment-friendly material for the removal of Ni(II) from artificial wastewater. This study was
designed to assess, compare, and characterize the adsorption of Ni(II) ions by date seeds powder
(DSP) without the addition of any chemicals or thermal treatment. DSP was initially characterized
using Brunauer–Emmett–Teller (BET) surface area, scanning electron microscope technique (SEM),
and attenuated total reflection-Fourier transform infrared spectrometer (ATR-FTIR). The factors
that influence the adsorption efficiency such as mass, concentration of Ni(II) ion, pH, temperature,
and contact time, were investigated in this work.

2. Materials and Methods

2.1. Collection and Treatment of Adsorbent

Dates seeds were collected locally from Abha city, Saudi Arabia. Seeds were rinsed with tap water
and then by deionized water, dried at room temperature and were then grounded to powder size using
a ball mill before being sieved. The efficiency of the room-temperature dried DSP was compared with
small amount of oven-dried DSP and no differences were noticed on the results. Thus, to minimize the
cost, drying of DSP by oven was not used in this study.

2.2. Reagents

Deionized water (>18 Ω/cm, Milli-Q) was used throughout this work for the solutions and DSP
preparations. A stock solution of 1000 ppm Ni(II) ions was prepared using NiNO3 (LOBA Chemie,
Laboratory Reagents and fine Chemicals, Mumbai, India).

2.3. Batch Adsorption

Adsorption batch experiments were conducted at different operating conditions (pH, time,
adsorbent dosage, adsorbent particles size, and temperature) by adding the desired amount of DSP to
50 mL of Ni(II) ion solution under each particular condition. NaOH (0.25 M) and/or HCl (0.25 M) were
used to control the pH value. Mechanical thermostated shaker (WSB, Witeg, Belrose, Germany) was
used throughout all the experiments. The solutions were filtered and then analyzed using Atomic
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Absorption Spectroscopy (AAS) (SpectrAA 220, Varian, Australia) to measure the remaining Ni(II)
ions concentrations. The removal efficiencies (R%) were calculated using Equation (1).

R% =
Co − Ce

Co
× 100 (1)

where C0 and Ce are the initial and equilibrium Ni(II) ion concentrations, respectively.

2.4. Characterization of Biosorbent

The Brunauer–Emmett–Teller (BET) surface area, pore size and pore volume after and before
the adsorption process were investigated using Quanta Chrome NOVA 4200E Surface Area Analyzer.
The morphology of the DSP was investigated using a scanning electron microscope technique (SEM)
JEOL 6360 (Japan). Accelerating voltage of 20 kV was used. The functional groups of DSP before
and after the adsorption process were investigated by ATR-FTIR (Cary 630 FTIR from Agilent) in
the range of 4000–400 cm−1 at a spectral resolution of 8 cm−1. DSP samples were analyzed without
any pretreatment.

3. Results and Discussion

3.1. Characterization of the DSP

Table 1 displays the results of the analysis of DSP by surface area analyzer. Results prove that
DSP poses a mesoporous arrangement. Mesopores are detected over the entire sample surface forming
a highly uniform and interpenetrating permeable media. Moreover, results also confirm that DSP has a
large surface area compared to some other adsorbents used to adsorb Ni(II) ions [13].

Table 1. Properties of the DSP surface.

Surface Area (m2/g) Total Pore Volume (cm3/g) Average Pore Diameter (A◦)

124 46.9 × 10−2 98

3.2. ATR—FTIR Spectrum

Investigations of the ATR-FTIR spectra from DSP after and before the adsorption process
(Figure 1) proves the presence of functional groups, which are among the major characteristic to DSP.
The presence of developed aliphatic groups was identified by the absorption band ascribed to the
stretching vibrations of carbon-hydrogen bonds in the range between (2980–2840 cm−1). OH functional
groups were recognized by the broad band ascribed to stretching vibrations of oxygen-hydrogen bonds
in the range from 3600 to 3100 cm−1, whereas, ether structures were identified by the band ascribed to
stretching vibrations of carbon-oxygen in the range (1100–1000 cm−1). Moreover, CO groups were
also detected by the band ascribed to stretching vibrations of C=O bonds in the range from 1750 to
1500 cm−1. On the other hand, the bands of aromatic compounds bond groups overlay with those
obtained by the bonds of other structures. Generally, the FTIR spectrum proves the multiplicity of the
structure of DSP. The presence of these aforementioned functional groups on the DSP surface indicates
its potential ability to act as a promising adsorbent [14].

3.3. Scanning Electron Microscope Technique (SEM)

The SEM technique investigations provided an insight into the diverse morphology of the DSP
where some larger constituents show asymmetrical form, some other constituents have an extended
rod-like construction whereas other smaller constituents display rectangular form. Overall, most of
the constituents have a reedy and coarse structure with irregular ends. Particle size of the DSP ranges
from 5–15 µm. It can be noted from Figure 2a the availability of numerous available cavities and holes
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enabling Ni(II) ions to be adsorbed, while Figure 2b shows that these holes are occupied by Ni(II) ions
indicating good adsorption capacity for DSP.Processes 2020, 8, x FOR PEER REVIEW 4 of 16 
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3.4. Effect of pH Values

A pH range of 1–11 was assessed to define the optimum value for the removal of Ni(II) ions by
adsorption. Results are presented in Figure 3. It has been noted that the adsorption efficiency increases
with increasing pH value up to 7, after which no alteration was noted with further increase in the
pH value. These results attributed to the competition between Ni(II) ions and H+ ions for adsorption
spots on the DSP surface at low pH values [15]. As the pH value increases, less H+ ions are present;
hence, more adsorption sites are available for Ni(II) ions. The optimal pH value was defined as 7; thus,
been used throughout this work.
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3.5. Effect of Adsorbent Particle Size

Different particle sizes ranging from 100, 150, 250, 400, and 600 µm have been examined and the
obtained results (Figure 4) showed that as the particle size decreases, the removal amount increases
from 82% to 90%. This is due to the availability of more surface area obtainable for the removal of
Ni(II) ions as the particle size decreases. However, no difference in adsorption was observed with
particle sizes of 100 and 150 µm. Particle size of 100 µm was used throughout the study.
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3.6. Effect of Adsorbent Mass

The dependence of the adsorption efficiency on DSP mass was studied to determine the optimal
mass. Results displayed in Figure 5 show that the removal efficiency of Ni(II) ions increased as the DSP
mass increases from 0.05 g to 0.30 g. Increasing the DSP mass to more than 0.30 g has no significant
effect on adsorption effectiveness. This is due to the fact that the surface area of the adsorbent increases
with its mass. The optimal DSP mass (0.30 g) was throughout this study.

Processes 2020, 8, x FOR PEER REVIEW 6 of 16 

 

 
Figure 4. Effect of particle size of the DSP on the efficiency of removal of Ni(II) ions. 

3.6. Effect of Adsorbent Mass 

The dependence of the adsorption efficiency on DSP mass was studied to determine the 
optimal mass. Results displayed in Figure 5 show that the removal efficiency of Ni(II) ions 
increased as the DSP mass increases from 0.05 g to 0.30 g. Increasing the DSP mass to more than 
0.30 g has no significant effect on adsorption effectiveness. This is due to the fact that the surface 
area of the adsorbent increases with its mass. The optimal DSP mass (0.30 g) was throughout this 
study. 

 
Figure 5. Effect of the DSP mass on the removal efficiency of Ni(II) ions. 

  

Figure 5. Effect of the DSP mass on the removal efficiency of Ni(II) ions.

3.7. Effect of Contact Time

In typical contaminant removal experiments, the contact time is considered a significant feature
because it directly influences the adsorbent lifetime and the adsorption efficiency. Figure 6 shows
the results obtained at different time intervals while all the other conditions (pH = 7.00, particle
size = 100 µm, adsorbent mass = 0.30 g and temperature = 25.0 ◦C, revolutions per minute (rpm) = 150)
were kept constant. It was found that the DSP reached the maximum adsorption of 90% for Ni(II) after
30 min.
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3.8. Adsorption Kinetics

Kinetics of the adsorption process is the key feature for designing efficient adsorption experiments
and this requires the use of proper kinetic model. Several kinetic parameters values are shown in
Table 2. Adsorption kinetics control the rate, g the efficacy of DSP [16]. Several kinetic models were
examined such as intraparticle diffusion, pseudo-second-order model, and pseudo-first-order.

Table 2. Kinetic parameters for the removal of Ni(II) ion by DSP.

Kinetic Models Parameters

Pseudo-first-order model
qe (mg/g) 12.2
k1 (min−1) 4.0 × 10−4

R2 0.6988

Pseudo-second-order model
qe (mg/g) 3.1

k2 (g/mg min) 0.3
R2 0.9937

Intraparticle diffusion model
kid (mg/g. min(1/2)) 0.056

I 2.6
R2 0.7978

3.8.1. Pseudo-First-Order Model

This model is denoted by Equation (2) [17].

ln
(
qe − qt

)
= ln qe − k1t (2)

The pseudo-second order kinetic model is denoted by Equation (3).

t
qt

=
1

k2q2
e
+

t
qe

(3)

where qe and qt are the equilibrium and adsorption capacities at time (t) and equilibrium, and k1,
k2 are rate constants for pseudo-first-order and pseudo-second-order, respectively. Moreover, 0.6977
and 0.9937 are values of correlation coefficients (R2) for pseudo-first-order and pseudo-second-order
models (Table 2), respectively. Figure 7 proves that the system obeys the pseudo-second-order kinetics
model. This is in good agreement with previous studies [12,13,15].
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3.8.2. Intra-Particle Diffusion Kinetic Model

Intra-particle diffusion kinetic model is displayed by Equation (4)

qt = kid t1/2 + I (4)

kid is the intra-particle diffusion rate constant (mg/g. min(1/2)) and I is a constant that associated to the
boundary layer thickness (mg/g). The value of (kid) was determined from the slope of Equation (4) and
presented in Table 2. The relationship between qt and t1/2 was non-linear, demonstrating that several
processes are governing the adsorption process. The initial curved portion of the plot is due to the
impact of boundary layer diffusion. The curved portion denotes that the intra-particle diffusion is
controlled by the rate of constant kid.

3.9. Adsorption Isotherm

Adsorption models are frequently exploited to explain the adsorbate/adsorbent interactions to
determine the adsorption capacity of the adsorbent. To evaluate the adsorption isotherms for the DSP,
Freundlich, Langmuir, Temkin, and Dubinin–Radushkevich (D–R) adsorption models were examined.

3.9.1. Langmuir Model

Equation (5) presents the Langmuir linear equation

Ce

qe
=

Ce

qm
+

1
bqm

(5)

where qe is the equilibrium quantity of Ni(II) ions adsorbed on the DSP surface at equilibrium (mg/g),
Ce is the equilibrium concentration of Ni(II) ions in solution (mg/L), qm is the maximum adsorption
of Ni(II) ions (mg/g), and b (L/mg) is the Langmuir constant. According to Equation (4), values of
Ce/qe were plotted against Ce and the results are displayed in Figure 8a. Values of qm and b were
obtained from the slope and intercept, respectively. The b value refers to the adsorption binding
energy [14], whereby a higher b value means more binding affinity between adsorbent and adsorbate.
The parameters (qm, b and R2) are displayed in Table 3.

Table 3. Parameters obtained from various isotherm models.

Adsorption Model Isotherm Constants Value

Langmuir
qmax (mg/g) 40.8

KL (L/g) 0.029
R2 0.887

Freundlich
N 0.67

Kf ((mg/g)/(mg/L) n) 4.6
R2 0.9981

Temkin
A (L/g) 2.1

bt (kJ/mol) 370.3
R2 0.899

D-R
β 2.0 × 10−7

qm (mg/g) 7.18
R2 0.846
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3.9.2. Freundlich Model

This is an experimental association relating the adsorption of solutes from a liquid onto an
adsorbent surface and adopts that various adsorption layers with a number of adsorption energies
are involved. This model describes the affinity between the quantities of Ni(II) ions adsorbed per the
dosage of the DSP, qe, and the concentration of the Ni(II) ions at equilibrium, Ce. Linear Freundlich
model is represented by Equation (6) [12].

ln qe = ln Kf +
1
n

ln Ce (6)

where n and Kf represent Freundlich constants describe the process intensity capacity. Values of Kf

and n are obtained from the intercept and slope of Figure 8b, respectively. Value of n is an indicator to
the adsorption nature according to the following way: if n < 1, adsorption is classified as a physical
process, if n = 1, adsorption is linear and if n > 1, adsorption is considered as a chemical process.
The range of n values and Kf value are given in Table 3. Results indicate that adsorption of Ni(II) ion
on the surface of the DSP is a physical process [13].

3.9.3. Temkin Isotherm

Temkin model proposes that the adsorption heat of all particles in the layer decrease sharply,
rather than logarithmic with coverage [18]. The adsorption potential of DSP to Ni(II) ions can be
verified by applying Temkin isotherm model. The linear formula of Temkin is shown in Equation (7):

qe =
RT
bt

ln A +
RT
bt

ln Ce (7)
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where R is the universal gas constant, T is the absolute temperature, bt is Temkin constant associated
with adsorption heat, and A is a constant related to adsorption capacity. A and bt values are found
from the slope and intercept of Figure 8c and given along with R2 in Table 3.

3.9.4. Dubinin–Radushkevich (D–R) Isotherm Model

This model estimates the energy of adsorption. It is commonly used to understand the mechanism
of adsorption [19]. This isotherm is not proposed only for constant adsorption potential or homogeneous
adsorbent but also for both heterogonous surfaces. The linear equation of this model is presented in
Equation (8):

ln qe = ln qm −β ε
2 (8)

ε is given by Equation (9):

ε = RT ln
(
1 +

1
Ce

)
(9)

β is a constant associated with the adsorption free energy, qm is the theoretical saturation capacity
based on D–R isotherm (mg/g). Values of β, qm and R2 are obtained from Figure 8d and shown in
Table 3. The free sorption energy Es, is the change in free energy when one mole of adsorbate is
stimulated to the solid surface and is calculated by Equation (10).

Es =
1
√

2β
(10)

The adsorption type can be deduced from the Es value. The adsorption process is considered
chemical when Es value is in the range 8.0 to16.0 kJ/mol and physical when Es is less than 8.0 kJ/mol.
In this work, the Es value was determined as 2.24 kJ/mol concluding that the adsorption taking action
is of physical nature.

3.10. Effect of Temperature

Figure 9 displays the influence of temperature on the adsorption of Ni(II) ions onto the DSP
surface. The adsorption efficiency decreases as the temperature increases. This is justified due to the
damage of some adsorption sites at elevated temperatures.Processes 2020, 8, x FOR PEER REVIEW 12 of 16 
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3.11. Adsorption Thermodynamics

Thermodynamical parameters are vital in any adsorption investigations as the temperature is
strongly connected to the kinetic energy of adsorbate. In this study, adsorption tests were performed at
different temperatures, viz. 298, 308, 318 and 328 K for the sorption of initial Ni(II) ion concentration
(50 mg/L) on DSP at their particular optimum pH values, DSP mass and contact time. Entropy (∆S◦),
enthalpy (∆H◦), and Free energy (∆G◦) change are governed by Equations (11) and (12).

∆ Go = RT ln KD (11)

ln KD =
−∆Ho

RT
+

∆So

R
(12)

where KD value were calculated by Equation (13)

KD =
qe

Ce
(13)

The thermodynamical parameters are listed in Table 4. Negative signs of ∆G◦ indicate that the
process is spontaneous. It is clear that the negative values of ∆G◦ decrease as the temperature increases.
This is attributed to the fact that additional positions on the surface of the DSP are destroyed at elevated
temperatures. Values of ∆G◦ for Ni(II) ions adsorption onto the DSP were found in the range of −3.5
to −5.7 kJ/mol. It is well established that physical adsorption free energy change (∆G◦) is ranging
between −20 and 0 kJ/mol and chemical adsorption between −400 to −80 kJ/mol [13]. Thus, adsorption
process is mainly a physical sorption process. This finding is in good agreement with the parameters
obtained from Freundlich, Dubinin–Radushkevich (D-R) and Temkin models. ∆S◦ and ∆H◦ were
calculated from the intercept and slope of Figure 10 and presented in Table 3. The negative value of
∆H◦ (−27.0 kJ/mol) proves that the adsorption is an exothermic process. The positive value of ∆S◦
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Values of sticking probability (S*) and activation energy (Ea) were calculated by applying the
modified Arrhenius equation that shown in Equations (14) and (15) [19]:

S∗ = (1− θ)e
−Ea
RT (14)

θ =

(
1−

Ce

Ci

)
(15)

where θ is the surface coverage, Ci represents the original concentration of Ni(II) ions, Ea is the
activation energy of the system and S* is the sticking probability.

The sticking probability, S*, is a function of the adsorbent/adsorbate adsorption process but should
fulfil the circumstance 0 < S* < 1 and depends on the temperature of the process. Ea and S* values
were obtained from the slope and intercept of Figure 10, and are recorded in Table 4. The Ea value is
very low (−2.01 kJ/mol) demonstrating the facile adsorption process and the negative charge of Ea

value indicates an exothermic process. This is in good agreement with the negative value of ∆H◦ [15].
Since the value of S* <<< 1, therefore, the probability of Ni(II) ion to stick on the DSP is very high and
thus the adsorption process is favorable [18].

Table 4. Values of thermodynamic parameters.

T, K KD
∆G◦

(kJ/mol)
∆S◦

(J/mol K)
∆H◦

(kJ/mol)
Ea

(kJ/mol)
S*

(J K/mol)

298 10.0 −5.7

71.7 −27.0 −2.01 0.002308 6.7 −4.9

318 5.0 −4.2

328 3.6 −3.5

3.12. Comparisons with Other Adsorbents

Table 5 presents the results of this study compared with other biosorbents. Under the same
experimental conditions in terms of optimum pH, temperature, DSP proved high adsorption efficiency
in contrast to the chosen biosorbents. It is interesting to note that the DSP was used without any further
chemical or thermal modifications. This reduces its cost and hazard to the minimum.

Table 5. Comparison of the DSP with other biosorbents used for the removal of Ni(II) ions.

Biosorbent qm (mg/g) Isotherm Model Kinetic Model Optimal pH Reference

Date seeds powder 41.0 Freundlich 2nd order 7.00 This study
Aloe barbadensis Miller leaves 10.0 Freundlich 2nd order 3.00 [20]
peel of Artocarpus nobilis fruit 12.1 Langmuir ** 4.00 [21]

Modified Aloe barbadensis leaves 29.0 Langmuir 2nd order 7.00 [22]
brown algae Sargassum sp. 1.3 Langmuir 2nd order 6.50 [23]

Calotropis procera roots 0.6 Langmuir ** 3.00 [24]
Peat 61.3 Langmuir 2nd order 9.00 [14]

Barely straw 35.8 Langmuir ** 4.85 [25]
Orange peel 162.6 Langmuir 2nd order 5.50 [26]

Tea factory waste 18.4 Langmuir ** 4.00 [27]

** not reported.

4. Conclusions

In this study, the powder obtained from date seeds has been tested as a competent (removal
effectiveness > 90%), inexpensive, eco-friendly and natural material for adsorption of Ni(II) ions
from artificial wastewater. The date seeds powder retained significant amounts of Ni(II) readily.
The maximum adsorption capacity for DSP was found to be 41 mg/g. The optimal conditions for
efficient removal of 50 ppm of Ni(II) ion were found to be 0.30 g of DSP after 30 min of shaking time
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at pH 7.00. This adsorbent has positive characteristics making it appropriate to purify wastewater.
Such characteristics include (i) cost-effective material: date seeds powder is an expensive material.
The only cost of this material would be for the collection, transportation and grinding. It does not
need any further chemical or thermal modification (ii) availability: date seeds are abundantly existing
in Saudi Arabia (iii) efficiency: date seeds powder can remove more than 90% of Ni(II) ions, which
present in artificial wastewater.
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