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Abstract: The availability of predictions of future system inputs has motivated research into
preview control to improve set-point tracking and disturbance rejection beyond that achievable
via conventional feedback control. The design of preview controllers, typically based upon model
predictive control (MPC) for its constraint handling properties, is often performed in a monolithic
nature, coupling the feedback and feed-forward problems. This can create problems, such as: (i) an
additional feedback loop is introduced by MPC, which alters the closed-loop dynamics of the
existing feedback compensator, potentially resulting in a deterioration of the nominal sensitivities and
robustness properties of an existing closed-loop and (ii) the default preview action from MPC can be
poor, degrading the original feedback control performance. In our previous work, the former problem
is addressed by presenting a modular MPC design on top of a given output-feedback controller,
which retains the nominal closed-loop robustness and frequency-domain properties of the latter,
despite the addition of the preview design. In this paper, we address the second problem; the preview
compensator design in the modular MPC formulation. Specifically, we derive the key conditions
that ensure, under a given closed-loop tuning, the preview compensator within the modular MPC
formulation is systematic and well-designed in a sense that the preview control actions complement
the existing feedback control law rather than opposing it. In addition, we also derive some important
results, showing that the modular MPC can be implemented in a cascade over any given linear
controllers and the proposed conditions hold, regardless of the observer design for the modular MPC.
The key benefit of the modular MPC is that the preview control with constraint handling can be
implemented without replacing the existing feedback controller. This is illustrated through some
numerical examples.

Keywords: model predictive control; preview control; feed-forward control

1. Introduction

In many control applications, preview knowledge is available for improving tracking quality and
disturbance rejection. Model predictive control (MPC) is a popular method for incorporating both
preview knowledge and constraints, because, in principle [1], the information is incorporated in a
systematic fashion. However, a standard preview MPC design is often monolithic in nature, where the
constraint, preview, and feedback information are coupled in the associated optimisation (e.g., [2–5]).
In contrast, large-scale industrial plants are often live systems with an operating feedback controller.
Re-designing the controller within the MPC framework may be costly and impractical. Thus, it is more
attractive to practitioners if the advanced control features, such as preview information and constraint
handling, can be retrofitted into their existing feedback controller (e.g., [6]).
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One of the popular approaches is the reference governor. The reference governor is an add-on
scheme that ensures the satisfaction of the state and control constraints by modifying the set-point to
a well-designed closed-loop system [7]. For example, the work by Gilbert and Ong [8], Borrelli et al.
[9] proposed a reference governor design that satisfies constraints by adjusting the set-point based
on the maximal output admissible set. However, such a design is simple and efficient, but only
employing the set-point as the degree-of-freedom could result in a loss of optimality, where the
degrees-of-freedom are limited to the reference signal only [10]. Much research in recent years has
focused on the development of the reference governor within the predictive control framework.
For example, the work by Aghaei et al. [11] showed an MPC-based reference governor design, where
a couple of exogenous signals, computed by solving an on-line optimisation, were added onto the
reference and control variables of the original closed-loop system for ensuring constraint satisfaction.
Work by Klauco [12] developed another MPC-based reference governor design for which a set of future
references is optimised based on the prediction of the closed-loop system behaviour.

Nonetheless, a large number of these MPC-based reference governor studies employed the
set-point as the only optimisation variable, which could thus lead to a loss in performance and
optimality. In addition, in some studies, the reference signal is assumed to be constant or the existing
control design was based on a state-feedback controller. For some applications, an output-feedback
controller is often employed, which is synthesised using frequency domain techniques for satisfying
some robustness and performance specifications given in the frequency domain. As a consequence, this
begs the question: Is there a systematic way to incorporate the merits of MPC, such as the capability
for handling constraint and preview knowledge, into an existing feedback controller? A simplistic
proposal might involve a standard MPC formulated around the underlying closed-loop dynamics.
However: (i) the MPC computes the decision variables depending on the predictions and current
state of the closed-loop dynamics. Therefore, the constraint handling features of the MPC depend
upon the predictions of the closed-loop dynamics. Thus, optimising such predictions will introduce
an additional feedback loop to the original closed-loop, in turn impacting on the carefully designed
properties of the existing controller [13,14]; (ii) coupling the feedback and feed-forward design in the
standard MPC results in an ’optimal’ feed-forward compensator with respect to the instantaneous
cost function rather than the overall closed-loop behaviour. Consequently, the performance of such a
compensator is often poor, as reported in many studies [4,15,16]. In the context of designing a modular
MPC upon a given feedback controller, if the preview compensator is not carefully designed in a sense
that it only handles the transient of the existing closed-loop, the preview action is then mistakenly
corrected by the pre-determined feedback control law, resulting in a deterioration in the performance.

We addressed the former problem in our earlier work [14] by presenting a preview modular MPC
layer that is based on a known feedback controller. In short, the pre-determined feedback control law
focuses on the frequency domain closed-loop properties, such as sensitivity, whilst the feed-forward
input from the modular MPC is purely based on advance knowledge. Without corrections that are
linked to the measurements from the plant, the MPC module thus does not, unnecessarily, interact
with the feedback loop. In this work, we propose the preview compensator design procedure for the
modular MPC formulation. Specifically, we derive the key conditions that ensure the preview gain is
systematic and optimal in a sense that the preview compensator from the modular MPC formulation
only handles the transient of the closed-loop and, once the steady-state is reached, the preview
perturbation input remains at zero. Moreover, we derive results demonstrating that the modular MPC
can be implemented upon any given linear feedback controller and the use of an observer on the
modular MPC has no effect upon the proposed conditions.

This paper first presents the basic definitions of the model and known output-feedback controller
and also the formulation of the modular MPC in Section 2. In Section 3.1, the conditions that guarantee
the additional MPC design does not influence the nominal stability and robustness of the closed-loop
dynamics are revisited. The novelty of this paper starts in Section 3.2, where we derive a set of
conditions that proves the preview compensator within the modular MPC formulation is well-designed
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and systematic in a sense that the preview compensator only handles the transient of the closed-loop
based on the future reference signals. In the rest of Section 3, we also derive results that show that the
modular MPC is feasible to implement upon any existing linear controller and the proposed conditions
hold, regardless of the observer design for the modular MPC. In Section 4, numerical examples are
presented and followed by conclusions in Section 5.

Notation

Let R and C denote the real and complex fields, respectively, and let s ∈ C denote a complex
variable. The spaceR denotes the space of proper real-rational transfer function matrices and k ∈ Z
denotes a sample variable of a discrete-time signal. Let vT ∈ R1×nv denote the transpose of a vector
v ∈ Rnv and VT ∈ Rny×nz is the transpose of a matrix V ∈ Rnz×ny . The notation v→k

∈ Rnvnp denotes

the future prediction sequence [vT
0|k, vT

1|k..., vT
np−1|k]

T ∈ Rnvnp , where vT
1|k denotes the one-step ahead

predictions at step k. Let λ(V) ∈ C denote the eigenvalues of the matrix V.

2. Preliminaries: Modular MPC Design upon an Existing Controller

This section revisits some preliminaries on the modelling assumption and the modular
MPC design.

2.1. System and the Existing Controller Models

Assume that the linear model of the plant G(s) ∈ Rny×nu is a strictly proper function, which can
be described in discrete-time state-space forms, as follows:

xpk+1 = Apxpk + Bpuk; yk = Cpxpk , (1)

where uk ∈ Rnu , yk ∈ Rny and xpk ∈ Rnxp represent the input, output, and state of the plant,
respectively, whilst the subscript p denotes the plant.

Let the existing output-feedback controller stabilising the linear model (1) and track the set-point
rk ∈ Rny be given by K(s) ∈ Rnu×ny , with its discrete-time state-space form. as follows:

xκk+1 = Aκxκk + Bκ(rk − yk),

uk = Cκxκk + Dκ(rk − yk),
(2)

where the vector xκk ∈ Rnxκ represents the state of the controller and the subscript κ denotes controller.
To achieve offset-free control from the modular MPC, it is convenient to express the system (1)

and controller (2) model in terms of the deviation variables, defined as follows:

x̃pk+1 = Ap x̃pk + Bpũk; ỹk = Cp x̃pk , (3a)

x̃κk+1 = Aκ x̃κk − Bκ ỹk; ũk = Cκ x̃κk − Dκ ỹk, (3b)

where the deviation of the plant state x̃p,k = xp,k − xs
p,k, the controller state x̃κ,k = xκ,k − xs

κ,k,
the input ũk = uk − us

k and the output ỹ = yk − rk are with respect to their steady-state xs
p,k, xs

κ,k, us
k.

The steady-states xs
p,k, xs

κ,k, us
k, that enable y → rk asymptotically, can be calculated from a typical

steady-state target calculator (e.g., [17]), defined as follows:xs
p,k

xs
κ,k

us
k

 =

I − Ap 0 −B
0 I − Aκ 0
C 0 0


−1  0

0
rk

 =

[
Kxr

Kur

]
rk. (4)
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Combining the linear model (3a) and controller (3b), the closed-loop dynamic system model can
be expressed in the following form:[

x̃p,k+1
x̃κ,k+1

]
=

[
Ap 0
−BκCp Aκ

]
︸ ︷︷ ︸

A

[
x̃p,k
x̃κ,k

]
︸ ︷︷ ︸

x̃k

+

[
Bp

0

]
︸ ︷︷ ︸

B

ũk, (5a)

ũk =
[
−DκCp Cκ

]
x̃k = Kx̃k, (5b)

ỹk =
[
Cp 0

]
x̃k = Cx̃k. (5c)

The pairs {A, B} and {A, [C, K]T} are assumed be to controllable and observable, respectively.

2.2. Design of the Modular MPC

The working principle of a typical modular MPC is to compute a future perturbation input
sequence by solving an optimisation problem that takes into account the closed-loop model prediction,
performance index, and constraint. Figure 1 shows the architecture combining the proposed modular
MPC and the separate feedback controller, where u, y and r denote the input, output, and reference
signal of the plant, respectively. The proposed modular MPC optimises the perturbation c to handle
constraints as well as act upon the preview reference signal r→.

System
Existing
Controller−

+
+

+
r − y u yr

Original closed-loop system

Closed-loop
model

Performance
index

Constraint

Optimisation

Modular MPC Layer

c

r→

Figure 1. Schematic of modular model predictive control layer on top of an existing feedback controller.

2.2.1. Augmentation of Perturbation into the Underlying Control Law

The modular MPC formulation in this work adopts a dual-mode closed-loop paradigm
(e.g., [18,19]), whereby the degrees-of-freedom (d.o.f) ck ∈ Rnu within the predictions are defined
around a stabilising feedback control law (5b), such that the input can be parametrised, as follows:

ũi|k =

{
Kx̃i|k + ci|k, ∀i = {0, · · · , nc − 1},
Kx̃i|k, ∀i ≥ nc.

(6)

The premise behind this approach is that the MPC perturbation ck is non-zero if and only if
constraints are active or preview knowledge is available; obviously, when ck = 0 the underlying
feedback controller operates unaffected. Such a feature is particularly useful in formulating a
modular MPC on top of a given feedback controller. Notice that the predicted perturbation sequence
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c→k
= [c0|k, c1|k, ..., cnc−1|k]T ∈ Rnunc is optimised over the control horizon nc, whilst, beyond nc,

the closed-loop dynamics are solely governed by the given feedback control law.

2.2.2. Cost Function and Optimisation Problem

A common cost function is to penalise the weighted squares of the predicted tracking errors and
the deviations in control input from its steady-state (e.g., [19]):

Jk =
∞

∑
i=0

x̃T
i|kQx̃i|k + ũT

i|kRũi|k, (7)

where Q = QT ≥ 0 ∈ Rnx×nx and R = RT > 0 ∈ Rnu×nu denote the weighting matrices on state and
input, respectively.

Subsequently, the associated optimisation problem that minimises the perturbation sequence c→k
is described, as follows:

min
c→k

Jk =
∞

∑
i=0

x̃T
i|kQx̃i|k + ũT

i|kRũi|k, (8a)

s.t. x̃i+1|k = Ax̃i|k + Bũi|k, ∀i ≥ 0, (8b)

ũi|k =

{
Kx̃i|k + ci|k, ∀i = {0, · · · , nc − 1},
Kx̃i|k, ∀i ≥ nc,

(8c)

ri|k =

{
rk+i ∀i = {0, · · · , na − 1},
rk+na−1 ∀i ≥ na

(8d)

us
i|k = Kurri|k, xs

i|k = Kxrri|k. (8e)

The predictions of state, input, set-point, and steady-state are denoted by (8b), (8c), (8d),
and (8e), respectively. The set-point rk is assumed to be known for na steps into the future and
beyond the preview horizon na, the reference prediction is assumed to hold the last available value
rk+i = rk+na−1 ∀i ≥ na.

2.2.3. Autonomous Prediction Model to Simplify the Optimisation Problem

The predictions of state (8b), input (8c), set-point (8d), and steady-state (8e) can be expressed
in a more convenient and compact autonomous prediction model form (e.g., [20]), for which the
state zi|k ∈ Rnz consists of the state xi|k of the model, perturbations c→k

and future reference signal

r→k
= [rk, rk+1, ..., rk+na−1]

T ∈ Rnyna . Thus, the model is defined, as follows:

zi+1|k = Ψzi|k, (9a)

where the initial state z0|k = [x0|k, c→k
, r→k

]T and Ψ are defined as:

Ψ =

Φ BE (I −Φ)KxrE
0 Mc 0
0 0 Mr

 , (9b)

E c→k
= c0|k, E r→k

= r0|k, (9c)

Mc c→
T
k

= [c1|k, . . . , cnc−1|k, 0]T , (9d)

Mr r→
T
k
= [rk, . . . , rk+na−1, rk+na−1]

T , (9e)
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where Φ = A + BK ∈ Rnx×nx and |λ(Φ)| < 1, and the shift matrices Mc ∈ Rnunc×nunc and Mr ∈
Rnyna×ndna are defined as follows:

Mc =


0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
0 0 0 · · · 0

 ; Mr =


0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
0 0 0 · · · I

 , (10a)

and E ∈ Rnx×nunc is described as follows:

E =
[

I 0 0 · · · 0
]

. (10b)

Lemma 1 (e.g., [20]). The MPC optimisation problem (with equivalent cost function to (8)) and using the
autonomous form (9), is given by:

min
c→k

Jk =
∞

∑
i=0

zT
i|k(Γ

T
x QΓx + ΓT

u RΓu)zi|k, (11a)

s.t. zi+1|k = Ψzi|k, ∀i ≥ 0, (11b)

where Γx =
[

I 0 −Kxr

]
∈ Rnx×nz and Γu =

[
K E −KKxr

]
∈ Rnu×nz .

Proof. The result follows from substitution of (9) into (8). See [20].

Corollary 1. The infinite-horizon cost function in (8) (and thus also (11a)) can be compacted into a
finite-horizon form, while using the Lyapunov equation ΨTSΨ = S−W and zi|k = Ψiz0|k:

Jk = zT
0|k

∞

∑
i=0

ΨiT (
ΓT

x QΓx + ΓT
u RΓu

)
︸ ︷︷ ︸

W

Ψi

︸ ︷︷ ︸
S

z0|k, (12a)

=

x0|k
c→k
r→k


T

S

x0|k
c→k
r→k

 =

x0|k
c→k
r→k


T  Sx Sxc Sxr

ST
xc Sc Scr

ST
xr ST

cr Sr


x0|k

c→k
r→k

 , (12b)

= c→
T
k

Sc c→k
+ 2 c→

T
k

ST
xcx0|k + 2 c→

T
k

Scr r→k
+ ε, (12c)

where ε denotes the terms that are independent of c→ and x0|k = xk.

The key point of Corollary 1 is to simplify the infinite-horizon cost function (11a) into the
finite-horizon cost (12).

2.2.4. Constraint Formulations in Terms of Perturbations

Let the system be subject to constraints of the form:

ymin ≤ yi|k ≤ ymax, ∀i ≥ 0, (13a)

umin ≤ ui|k ≤ umax, ∀i ≥ 0. (13b)
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Given that the state and input is captured in terms of the autonomous form (9), thus, the inequalities (13)
can be written, as follows:

Hzi|k ≤ h, ∀i ≥ 0, (14a)

where

Hzi|k =
[
yi|k −yi|k ui|k −ui|k

]T
, (14b)

h =
[
ymax −ymin umax −umin

]T
. (14c)

It is noted that to ensure no constraint violations, possible violations in (14) must be checked over an
infinite prediction horizon, which would appear to be computationally impractical. However, it is
well known [21] that there exists a sufficiently large horizon n∞, where any additional linear equalities
of (14) for i ≥ n∞ become redundant, assuming |λ(Φ)| < 1, ci|k = 0 for i ≥ nc, rk is bounded and the
constraints contain the steady-state within their interior. Thus, the inequalities (14) can be expressed as
a maximal controlled admissible set, as follows:

S = {xi|k| ∃ c→ : HΨiz0|k ≤ h, ∀i = {0, · · · , n∞}},
= {xi|k| ∃ c→ :Mxk +N c→k

+ V r→k
≤ b}, (15)

where the matrices (M,N ,V and b) can be computed off-line by admissible set algorithms [21,22].
To sum up, the proposed modular MPC can be summarised by Algorithm 1.

Algorithm 1: Modular MPC
At each sampling instant k:

1. Perform the optimisation

min
c→k

c→
T
k

Sc c→k
+ 2 c→

T
k
(Scr r→k

+ ST
xcx0|k), (16a)

s.t. Mx0|k +N c→k
+ V r→k

≤ b. (16b)

2. Apply the first block element ck = c0|k of the perturbation sequence c→k
within the

existing control law ũk = Kx̃k + ck, where the perturbation sequence c→k
is the minimiser

of the optimisation problem (16).

Remark 1. The subtle difference between the proposed modular MPC and dual-mode closed-loop paradigm
MPC (e.g., [19]) is the pre-determined feedback controller. In the dual-mode MPC, the pre-determined controller
is state-feedback. In contrast, the modular MPC addresses control problems with an existing output-feedback
controller. The plant and controller states are embedded into the optimisation problem (16).

3. Analysis of the MPC Design upon an Existing Controller

We revisit in Section 3.1 the conditions that ensure the nominal stability and robustness properties
of the original closed-loop are retained. The key novelty of this paper begins from Section 3.2, where
we derive the key conditions that ensure the preview compensator is systematic and well-designed in
a sense that the preview control action only handles the transient of the existing closed-loop dynamics.
Moreover, in the rest of Section 3, other theoretical aspects of the modular MPC formulation, such as
the practicality and tuning, are discussed.
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3.1. Interactions between the Modular MPC and Existing Controller

As discussed in Algorithm 1, the perturbation ck is added into the embedded control law (5b);
hence, the control input now becomes, as follows:

ũk = Kx̃k + ck. (17)

The perturbation ck seems to solely handle the constraints and preview knowledge; however, this
might not be true, as illustrated in the following lemma.

Lemma 2 ([14]). The modular MPC introduces an additional feedback loop to the existing closed-loop system
when constraints are inactive.

Proof. Following an unconstrained optimisation problem (16a) in Algorithm 1, the perturbation to the
control law is:

ck = E c→k
= − E S−1

c ST
xc︸ ︷︷ ︸

Kcx

xk − E S−1
c Scr︸ ︷︷ ︸

Pr

r→k
. (18)

Substituting (18) into (17) yields:

ũk = (K− EKcx)x̃k − EPr r→k
. (19)

Clearly, as the optimum ck depends upon the state xk, the underlying state feedback gain K is implicitly
changed to K− EKcx.

Lemma 2 indicates that the perturbation ck from the modular MPC could potentially change the
nominal stability and robustness properties of the underlying controller, even when constraints are
not active.

In order to retain the nominal closed-loop dynamics, it is required that the perturbation ck becomes
independent of the feedback measurement xk, in other words, the term c→

T
k

ST
xcx0|k in the cost function

of Algorithm 1 needs to be zero.

Theorem 1 ([14]). The unconstrained input perturbation sequence c→ from the additional MPC layer
(Algorithm 1) has no impact on the original unconstrained closed-loop dynamics if and only if ST

xc = 0.
For ST

xc = 0, the cost function (16a) needs to embed some knowledge of the nominal output-feedback control
law (2), such that the weights Q, R, N satisfy the following conditions:

ΦTSxΦ− Sx + Q + KT RK = 0, (20a)

BTSxΦ + RK = 0. (20b)

Proof. See [14].

Theorem 1 demonstrates that the extra control layer that satisfies the conditions (20) will not
impact on the underlying robust output-feedback control law, unless constraints are predicted to be
active. Consequently, in normal operation, the properties of the original closed-loop dynamics are
retained and the additional control layer solely handles the upcoming/preview information.

The reader may wonder whether an alternative form of the cost function, where only the measures
of c→ and r→ are considered, and the term that is linked to Sxc is neglected, could circumvent the need
of the conditions (20). Indeed, the perturbation c from (16a) would then become independent of
xk. However, the preview gain Pr would then become sub-optimal, which is demonstrated in the
following section.
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3.2. Preview Compensator in the Modular MPC Formulation

In Section 2 and 3.1, we revisit the modular MPC design and important conditions. In Section 3.2,
based upon the earlier results, we present the preview compensator design within the modular MPC
formulation, which is the key novelty of this paper.

By inspection of the offset-free control law (17), the perturbation input for handling the preview
knowledge c→k

= Pr r→k
only requires to respond to the transient of the closed-loop systems, whilst

the steady-state is ensured by the embedded control law ũk = Kx̃k. For the perturbation input
only handling the transient, the preview control gain Pr ∈ Rnunc×nyna needs to possess certain matrix
structures. However, first, before the structure of the preview gain is defined, the concept of the tail or
consistency in predictions is revisited [19,23]. The tail or consistency in predictions is known as the
solutions of the input predictions, that are optimised at the previous sample, are extended into the
candidates of the optimisation at the current sample. For example, when considering the perturbation
input predictions c→k

at step k and c→k+1
at step k + 1, defined as follows:

c→k
=


c0|k
c1|k
c2|k

...

 ; c→k+1
=


c0|k+1
c1|k+1
c2|k+1

...

 . (21)

If the predictions are consistent, then the perturbation input prediction c→k+1
at step k + 1 should

possess the following form:

c→k+1
=


c0|k+1
c1|k+1
c2|k+1

...

 =


c1|k
c2|k
c3|k

...

 . (22)

From (22), it is shown that the prediction at step k + 1 is consistent with its corresponding prediction
at step k, for example c0|k+1 = c1|k.

Remark 2. Consistency in predictions are of key importance. The planned preview control actions do not change
over time once the steady-state is known in the reference signal. Thus, the preview control action (or the preview
gain) only handles the transient of the closed-loop.

To fulfil the requirement of consistency in predictions, consider the general form of the preview
gain Pr, as follows:

Pr =

p1,1 p1,2 p1,3 · · · p1,na−2 p1,na−1

p2,1 p2,2 p2,3 · · · p2,na−2 p2,na−1
...

...
...

. . .
...

...

 , (23)

where the elements pi,j ∈ Rnu×ny , i ∈ [1, 2, · · · , nc], j ∈ [1, 2, · · · , na − 1] need to satisfy the
following lemmas.

Lemma 3. When consistency in the prediction holds in (22) (e.g., c0|k+1 = c1|k), if pi,j = 0, ∀i > j.
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Proof. Considering the perturbation prediction c→k
at step k:

c0|k
c1|k

...


︸ ︷︷ ︸

c→k

=

p1,1rk + p1,2rk+1 + · · ·+ p1,na rk+na−1
p2,1rk + p2,2rk+1 + · · ·+ p2,na rk+na−1

...


︸ ︷︷ ︸

Pr r→k

, (24)

and c→k+1
at step k + 1, defined as follows:


c0|k+1
c1|k+1

...


︸ ︷︷ ︸

c→k+1

=

p1,1rk+1 + p1,2rk+2 + · · ·+ p1,na rk+na

p2,1rk+1 + p2,2rk+2 + · · ·+ p2,na rk+na
...


︸ ︷︷ ︸

Pr r→k+1

. (25)

It is clear that, for example, the perturbation input (c0|k+1 in (25)) at step k + 1 does not consist of the
past reference value (rk) from step k, that is because the preview action at step k + 1 shouldn’t act on
the past reference values from step k. Thus, in order for the prediction of the perturbation input (c1|k) at
step k also not consisting of the past reference value rk, (i.e. c0|k+1 = c1|k consistency in predictions),
the element p2,1 needs to be zero and, by induction, pi,j = 0, ∀i > j.

Next, when considering a preview reference signal at steady-state, a well-designed preview
control action and its predictions c→k

should be zero or no impact on the original closed-loop in
nominal case, as the perturbation input only handles the transient of the closed-loop.

Lemma 4. For a constant steady-state reference signal, c→k
= 0 if ∑j pi,j = 0, ∀i.

Proof. Let a constant reference signal be denoted as r→k
= [rss, rss, · · · , rss]. Substituting the constant

reference signal into (24) reveals that for c0|k = 0 and c1|k = 0 to hold only if ∑j p1,j = 0 and ∑j p2,j = 0.
By induction, ∑j pi,j = 0 ∀i.

Lemma 5. When considering a time-varying reference containing the non-zero steady-state, consistency in the
predictions (22) holds if Pr in (23) possesses the following form:

Pr =


p1,1 p1,2 p1,3 · · · p1,na−1 p1,na

0 p1,1 p1,2 · · · p1,na−2 ∑i=0,1 p1,na−i
0 0 p1,1 · · · p1,na−3 ∑i=0,1,2 p1,na−i
...

...
...

. . .
...

...

 . (26)

Proof. Assuming Pr in (26) is true, considering the reference signals containing the steady-state
r→k

= [rk, rk+1, · · · , rk−na−2, rss]T and r→k+1
= [rk+1, rk+2, · · · , rss, rss]T , where rss denotes the

steady-state, and the perturbation input c→k
is defined as follows:


c0|k
c1|k
c2|k

...


︸ ︷︷ ︸

c→k

=


p1,1 p1,2 p1,3 · · · p1,na−1 p1,na

0 p1,1 p1,2 · · · p1,na−2 ∑i=0,1 p1,na−i
0 0 p1,1 · · · p1,na−3 ∑i=0,1,2 p1,na−i
...

...
...

. . .
...

...




rk

rk+1
...

rk−na−2
rss

 , (27)
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and the prediction at step k + 1, c→k+1
is as follows:


c0|k+1
c1|k+1
c2|k+1

...


︸ ︷︷ ︸

c→k+1

=


p1,1 p1,2 p1,3 · · · p1,na−1 p1,na

0 p1,1 p1,2 · · · p1,na−2 ∑i=0,1 p1,na−i
0 0 p1,1 · · · p1,na−3 ∑i=0,1,2 p1,na−i
...

...
...

. . .
...

...




rk+1
rk+2

...
rss

rss

 . (28)

From (27) and (28), it is clear that c1|k = c0|k+1 and by induction, consistency in predictions (22) can
be proven.

To summarise, for the perturbation input c→k
= Pr r→k

from the modular MPC only handling the
transient of the closed-loop and remaining zero whilst the steady-state is reached, the preview control
gain Pr is needed to be of the following form:

Pr =


p1,1 p1,2 p1,3 · · · p1,na−1 p1,na

0 p1,1 p1,2 · · · p1,na−2 ∑i=0,1 p1,na−i
0 0 p1,1 · · · p1,na−3 ∑i=0,1,2 p1,na−i
...

...
...

. . .
...

...

 , (29)

where ∑j pi,j = 0, ∀i. The systematic and well-designed Pr structure (29) ensures the perturbation ck
in the embedded control law (17) possesses the property of consistency in predictions. The question is
now how to obtain the Pr structure (29) from the modular MPC optimisation (8). Thus, the key result
of this work is as follows.

Theorem 2. The preview control gain Pr in (18) is of the form (29) if and only if the following conditions
are satisfied:

ΦTSxΦ− Sx + Q + KT RK = 0, (30a)

BTSxΦ + RK = 0. (30b)

Proof. From (18), it is shown that the preview gain is defined as Pr = S−1
c Scr. In the first part of

this proof, we prove Sc is an block diagonal matrix and then, in the second part, Scr is of the form
similar to (29). The proof is based on inspection of the Lyapunov equation ΨTSΨ = S−W, expressed
as follows: ΦT 0 0

ET BT MT
c 0

ETKT
xr(I −Φ)T 0 MT

r


 Sx Sxc Sxd

ST
xc Sc Scd

ST
xd ST

cd Sd


Φ BE (I −Φ)KxrE

0 Mc 0
0 0 Mr

−
 Sx Sxc Sxd

ST
xc Sc Scd

ST
xd ST

cd Sd

+

 Q + KT RK KT RE −(Q + KT RK)Kxr

ET RK ET RE −ET RKKxr

−KT
xr(Q + KT RK) −KT

xrKT RE ETKT
xr(Q + KT RK)KxrE

 = 0.

(31)

First, in proving Sc being an identity matrix multiplied by a constant, begin from the middle
equality of (31):

ET BTSxBE + ET BTSxc Mc + MT
c ST

xcBE + MT
c Sc Mc = Sc − ET RE. (32)

Suppose the conditions (30) are true, then Sxc = 0 must be true based on Theorem 1. Subsequently,
the equality (32) becomes:

ET(BTSxB + R)E = Sc −MT
c Sc Mc. (33)
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Notice that the vector E = [I, 0, · · · , 0] possesses a special property:

ET(BTSxB + R)E =

BTSxB + R 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

 . (34)

In addition, the matrix Mc also possesses a special property. When considering the term MT
c Sc Mc

in (33), define the general form of Sc ∈ Rnunc×nunc , as follows:

Sc =


S(1,1)

c S(1,2)
c · · · S(1,nc−1)

c

S(2,1)
c S(2,2)

c · · · S(2,nc−1)
c

...
...

. . .
...

 . (35)

The term MT
c Sc Mc in (33) now becomes:

MT
c Sc Mc =


0 0 0 0

0 S(1,1)
c · · · S(1,nc−2)

c

0 S(2,1)
c · · · S(2,nc−2)

c
...

...
. . .

...

 . (36)

Thus, based on the results from (34) and (36), the first row of (33) becomes:

S(1,:)
c = [BTSxB + R, 0, · · · , 0]. (37)

and the second row of (33), by inspection of (34) and (36), is as follows:

S(2,:)
c = [S(2,1)

c , S(2,2)
c , · · · , S(2,nc−1)

c ] = [0, S(1,1)
c , · · · , S(1,nc−2)

c ]. (38)

Repeat the step (38) to other rows of (33), by induction, the term Sc can be proven to be a block diagonal
matrix, as follows:

Sc = diag(BTSxB + R, BTSxB + R, · · · , BTSxB + R), (39)

and, furthermore, the inverse of a block diagonal matrix S−1
c is also a block diagonal matrix.

Next, let us prove Scr is of the form (29). When considering the middle-right equality in (31):

ET BTSx(I −Φ)KxrE + ET BTSxr Mr + MT
c ST

xc(I −Φ)KxrE + MT
c Scr Mr

= Scr + ET RKKxrE + ETSKxrE. (40)

Suppose the conditions (30) are true, then Sxc = 0 from Theorem 1. Subsequently,
the equality (40) becomes:

ET(BTSxKxrE + BTSxr Mr) + MT
c Scr Mr = Scr, (41)

where ET(BTSxKxrE + BTSxr Mr) are simplified, as follows (E = [I, 0, · · · , 0]):

ET(BTSxKxrE + BTSxr Mr) = [BTSxKxrE + BTSxr Mr, 0, · · · , 0]T , (42)
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and the term MT
c Scr Mr possesses some special properties, as follows:

MT
c


S(1,1)

cr S(1,2)
cr · · · S(1,na−1)

cr

S(2,1)
cr S(2,1)

cr · · · S(2,na−1)
cr

...
...

. . .
...

Mr =


0 0 · · · 0

0 S(1,1)
cr · · · S(1,na−2)

cr + S(1,na−1)
cr

0 S(2,1)
cr · · · S(2,na−2)

cr + S(2,na−1)
cr

...
...

. . .
...

 . (43)

Based on (42) and (43), the first row of (41) becomes:

BT(SxKxrE + Sxr Mr) = S(1,:)
cr . (44)

Next, we need to prove S(1,:)
cr r→

ss
k

= 0 is true if Scr possesses the property of the optimal Pr in (26)

(Lemma 4), assuming r→
ss
k

= [rss, rss, · · · , rss]T is a constant vector/reference. That is equivalent to

prove BT(SxKxrE + Sxr Mr) r→
ss
k

= 0.

In finding the condition BT(SxKxrE + Sxr Mr) r→
ss
k

= 0, considering the top-right equality of the
Lyapunov equation (31):

ΦTSx(I −Φ)KxrE + ΦTSxr Mr = Sxr + (Q + KT RK)KxrE. (45)

Suppose that the conditions (30) holds, then we can substitute Q + KT RK = Sx −ΦTSxΦ into (45):

ΦTSxKxrE + ΦTSxr Mr = Sxr + SxKxrE. (46)

When considering (46) multiplied with a constant reference r→
ss
k

, and given that Mr r→
ss
k

= r→
ss
k

,
thus, (46) becomes:

(ΦT − I)SxKxrE r→
ss
k
+ (ΦT − I)Sxr Mr r→

ss
k

= 0. (47)

Thus, extracting the term (ΦT − I) in (47) yields:

(SxKxrE + Sxr Mr) r→
ss
k

= 0. (48)

Consequently, substituting the result from (48) into (44), BT(SxKxrE + Sxr Mr) r→
ss
k

= 0 must hold,

which implies S(1,:)
cr r→

ss
k
= 0 or ∑i S(1,i)

cr = 0.

As for S(2,:)
cr , considering the equality in (41), based on the results from (42) and (43), the second

row of (41) becomes:

S(2,:)
cr = [S(2,1)

cr , S(2,2)
cr , · · · , S(2,na−1)

cr ],

= [0, S(1,1)
cr , · · · , S(1,na−2)

cr + S(1,na−1)
cr ]. (49)

Thus, S(2,1)
cr = 0, S(2,2)

cr = S(1,1)
cr and S(2,na−1)

cr = S(1,na−2)
cr + S(1,na−1)

cr . Repeating the step (49),
by induction, it reveals that Scr possesses a similar structure as the preview gain Pr in (29).
Consequently, based on the earlier result Sc in (39), the structure of Pr = S−1

c Scr is in an equivalent
form of (29) if the conditions (30) hold.

Remark 3. The conditions (30) are equivalent to the conditions (20). Satisfying these conditions is crucial,
which can simultaneously ensure that the modular MPC (i) retains the nominal stability and robustness
properties of the original closed-loop; and, (ii) provides an optimal preview control action that solely handles the
transient closed-loop dynamics.
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3.3. Feasibility of Satisfying the Conditions (20) and (30)

Based upon the conditions (20) and (30), the readers may wonder whether there exist the
weights Q, R for any given feedback controllers K. Indeed, finding a feasible set of Q, R for a stable
controller K to be optimal with respect to the cost function (7) is not always guaranteed. Nonetheless,
if cross-product terms are allowed in the cost function (7), then one is guaranteed to find some feasible
set of Q, R, N ∈ Rnx×nu for any linear feedback controller K. The feedback controller K is optimal with
respect to the cost function, which is summarised in the following Theorem 3.

Theorem 3. If the cross-term N is included in the cost function (7), a set of weights Q, R, N exists, such that
any given linear controller K is optimal with the following cost function:

Jk =
∞

∑
i=0

x̃T
i|kQx̃i|k + ũT

i|kRũi|k + x̃T
i|k Nũi|k + ũT

i|k NT x̃i|k, (50)

and its corresponding conditions in Theorem 1 and 2 are modified, as follows:

ΦTSxΦ− Sx + Q + KT RK + NK + KT NT = 0, (51a)

BTSxΦ + RK + NT = 0. (51b)

Proof. The proof is based on some earlier work on the inverse linear quadratic regulator problem [24].
When considering a control law uk = Kxk, every closed-loop system with such a control law is
optimal with respect to some cost functions:

J =
∞

∑
k=0

(uk − Kxk)
T R(uk − Kxk),

=
∞

∑
k=0

xT
k KT RKxk + uT

k Ruk + xT
k KRuk + uT

k RKxk, (52)

where R > 0 is any positive-definite matrix. The cost function (52) has shown that with the cross terms,
one can always recover the weights for a linear control law uk = Kxk.

Thus, based upon the conditions (51) and given that the stabilising controller K in (5b) is
pre-determined, the weights Q, R, N that satisfy (51) can be computed by solving a linear matrix
inequality (LMI) problem [25]. For example, consider the convex optimisation problem, as
follows [26,27]:

min
Q,R,N,Sx

(R− R∗)T(R− R∗), (53a)

s.t. Sx ≥ 0, R ≥ 0, Q ≥ 0, (53b)

ΦTSxΦ− Sx + Q + KT RK + NK + KT NT = 0, (53c)

BTSxΦ + RK + NT = 0. (53d)

By selecting an arbitrary R∗ > 0 and solving the optimisation problem (53), the inequalities (53b)
and equalities (53c), (53d) enforce the weights Q, R, N to satisfy the proposed conditions (51), for any
chosen R∗ > 0.

3.4. Tuning of the Modular MPC

The preview horizon na can be chosen as large as possible. The number of state in the autonomous
prediction model (9) increases accordingly and so does the computational cost. As for the control
horizon nc, a longer control horizon results in a larger maximal controlled admissible set S (15), which
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implicitly reduces the chance of infeasibility in optimisation (16). Additionally, more computational
power is required for a large nc.

Remark 4. The condition (51) only requires satisfaction of the weights Q, R, N within the cost function (50)
and is independent of the choice of preview and control horizons na, nc.

3.5. The Impact of Observer Design for the Modular MPC on the Proposed Conditions (20) and (30)

So far, it is implicitly assumed that the full-state measurements are available to the modular MPC.
In most applications, the full-state measurements are not typically accessible to the controller. Given
that the modular MPC is formulated based on the state-space design approach that relies upon the
full-state measurements, thus, an observer design is necessary for such applications that without the
full-state measurements. Thus, it raises a question as to whether the modular MPC would affect the
existing closed-loop if an observer is incorporated or, namely, whether the proposed conditions (20)
and (30) hold if the observer is used with the modular MPC. When considering the closed-loop system
model (5), the observer is constructed, as follows:

˙̂xk = Ax̂k + Bũk + L(ỹ− Cx̂k), (54a)

ũk = Kx̂k, (54b)

where L ∈ Rnx×ny denotes the observer gain and the closed-loop control law (54b) is a function of the
estimate x̂k of the state x̃k. Given that the degree-of-freedom of the modular MPC is the perturbation
input ck, which is added upon the existing controller ũk = Kx̂k + ck. Thus, in order to ensure
the modular MPC with an observer does not impact the existing closed-loop in nominal situation,
the perturbation input ck is proved to be independent of the estimated state x̂k, similar to the argument
in Theorem 1, in the following Theorem.

Theorem 4. For a modular MPC incorporating an observer (54), the properties of Theorem 1 and 2 of the
modular MPC hold, regardless of the observer design or the choice of the observer gain L (as long as L is a stable
observer gain).

Proof. When considering the closed-loop system model (5) and the observer system (54),
the augmented closed-loop system is defined, as follows:[

˙̃xk
˙̂xk

]
=

[
A 0

LC A− LC

] [
x̃k
x̂k

]
+

[
B
B

]
ũk, (55a)

ũk =
[
0 K

] [x̃k
x̂k

]
; ỹk =

[
C 0

] [x̃k
x̂k

]
. (55b)

Replacing the closed-loop model matrices (5) with the augmented model (55), one can repeat the steps
in Sections 2 and 3.1 and derive the same conditions as in Theorems 1 and 2. Thus, the conditions on
the weights (20) and (30) are independent of the choice of the observer gain L.

The results from Theorem 4 show that the perturbation input ck in (54b) is independent of the
estimated state x̂k in nominal operation if the conditions (20) are satisfied. However, the accuracy
of the predictions of the closed-loop dynamics depends upon the quality of the state estimation.
The inaccurate predictions could potentially cause the modular MPC falsely expecting constraint
violations, then, the perturbation input ck could become more active than necessary. In such cases,
the modular MPC would affect the sensitivities and robustness properties of the existing closed-loop.
Nonetheless, tuning the observer to achieve accurate state estimation is process dependent; thus,
the readers can refer to [28] for more details on the observer tuning under the MPC framework.
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3.6. Discussions on Stability and Feasibility when Constraints Are Active

It should be emphasised that, when constraints are active, the robustness of the feedback
closed-loop dynamics cannot be retained as the perturbation input ck would then necessarily impact
upon the closed-loop as constraint handling is linked to predictions and predictions are based on the
current state. Techniques to give absolute robust guarantees during constraint handling, such as LMIs
and tube methods [29,30], are known to be cautious as well as computationally challenging and, thus,
are not pursued here.

Nevertheless, the nominal stability of the proposed modular MPC during constraint handling
can be established based upon the use of infinite horizons and invariant sets, but only assuming
the optimisation (8) is feasible at every sample k. The proof is standard in the literature [19],
so it is not expanded here. Assume that at the first sample there exists a perturbation input sequence
c→ that ensures the trajectories of the closed-loop system always satisfy the constraints (13) then,
thereafter, recursive feasibility of this assumption alongside optimisation (8) gives an implicit proof
the perturbation input ck tends to zero and, thus, the control law defaults to the underlying robust
stable feedback.

However, in the presence of model uncertainties, unmodelled disturbances or ambitious constraint
requirements alongside large target changes, there might not exist a perturbation input sequence c→
that satisfies the constraint set (15); this is so-called infeasibility of optimisation (8). In addition,
the steady-state us

i|k, xs
i|k could become unreachable due to active constraints. The focus of this paper

is on a simple MPC formulation on an output-feedback controller, thus, for tackling the infeasibility
in MPC, the readers are referred to some studies, for example, the use of constraint-softening
strategies [31,32] and steady-state target calculators [33,34].

4. Illustrative Examples

In this section, we present numerical examples to demonstrate how easily the modular MPC
algorithm can be implemented upon an existing controller. The plant considered in this work,
as adopted from [35], is the double integrator with a slow process zero, defined as follows:

G(s) =
0.5s + 1

s2 , (56)

and the robust controller is given in [35], as follows:

K(s) = 3628
s + 11.02

(s + 2)(s + 78.28)
. (57)

Subsequently, when considering a reasonable sampling time Ts = 0.02s, the discrete time closed-loop
model is characterised by the matrices:

A =


1 0 0 0

0.02 1 0 0
0.32 −0.63 0.19 −0.10
−0.06 −0.13 0.16 0.98

 ; B =


0.02

0
0
0

 ; (58a)

C =
[
0.5 1 0 0

]
; K =

[
0 0 56.69 39.04

]
. (58b)

Based on the closed-loop model (58), the weights Q, R, N for the MPC cost function (50) can be
computed by performing the optimisation (53). Let the preview knowledge be available up to na = 10
samples and the control horizon is chosen as nc = 10 for demonstration purposes.
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4.1. Example 1: Handling Preview Information

The control task is to track a step reference signal that happens at 2 s. Figure 2a shows that with
the preview knowledge, the proposed modular MPC (the thick solid red line) clearly achieved better
tracking with less overshoot than the system with only the original controller (the thin solid blue
line). The input effort was also lower when the MPC module anticipated the changes in the preview
measurement, as shown in Figure 2b. Furthermore, the perturbation input from the modular MPC
is illustrated in Figure 2c. It is clearly shown that the modular MPC is only active between 1.8s and
2.2 s, where, with the preview horizon na = 10 (that is 0.2 s), the MPC module noticed a sudden
step changes from the preview reference signal and provided additional perturbation input to the
closed-loop system for improving the overshoot.

1.5 2 2.5 3

0

0.5

1

1.5

2

(a) Time series of the output. The dash-dot line denotes the reference signal.

1.5 2 2.5 3

-40

-20

0

20

40

60

80

(b) Time series of the input. The dash-dot line denotes the input constraints |u| ≤ 20.

Figure 2. Cont.
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(c) Time series of the perturbation input from the modular MPC.

Figure 2. Time series of the output, input, and perturbation input trajectories. The thin solid (blue)
lines denote the original closed-loop with the existing controller. The thick (red) solid lines represent
the response of the closed-loop with the modular MPC with the preview measurement, whilst the
dashed lines denote the original closed-loop with the proposed MPC module with the preview and
constraint knowledge.

4.2. Example 2: Handling Preview and Constraint Information

This example shows how the constraint handling feature is incorporated into the existing
controller. The control task is equivalent to the previous example that a step reference is tracked, but,
in this example, a constraint is imposed on the input as |u| ≤ 20. Figure 2a,b show the output and
input of the original closed-loop system and the modular MPC algorithm with preview and constraint
information. In Figure 2a, it is clearly demonstrated that the modular MPC with constraint and preview
knowledge (the dashed line) drove the output into the more opposite direction at the beginning
(around 1.85 s), as comparing to the MPC layer with only the preview measurement (the thick solid
red line). Figure 2b shows how the modular MPC with constraint and preview knowledge (the dashed
line) anticipated constraint violation and reacted more aggressively in advance, in comparison to the
MPC algorithm with only the preview knowledge (the thick solid red line). In addition, in Figure 2c,
it reveals that, when the constraint violation was not expected and the preview signal reached a
steady-state, the perturbation input from the modular MPC always remained at zero.

4.3. Optimality and Consistency in Predictions

Sections 4.1 and 4.2 showed that the preview action from the modular MPC solely handled the
transient of the closed-loop dynamics in the unconstrained case. To demonstrate that the preview
action is optimal, consistency in predictions is examined, as suggested by Remark 2. Figure 3 shows
the predicted sequences and closed-loop trajectory of the perturbation input at different time instant.
At each time instant, the modular MPC predicted the perturbation input sequence (grey solid line) and
the first sample of the sequence (star) was then implemented into the system. By inspecting Figure 3,
the predictions are consistent with the actual closed-loop input trajectory (dash line). In other words,
the tail of the predictions at the previous time sample is included in the predictions at the later time.
Thus, the preview control action is optimal with respect to the overall closed-loop behaviour.
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Figure 3. Time-series of predictions and closed-loop trajectory of the perturbation input. Four diagrams
at a different time, showing that the predicted perturbation sequence (grey solid line) is consistent with
the actual input trajectory (dash line).

5. Conclusions

This paper has first revisited the modular MPC design where the preview measurements and
constraint handling capability are retrofitted into a known output-feedback controller, together with
the conditions to ensure the former does not interfere with the closed-loop dynamics provided by the
latter. Based upon the modular MPC design, this paper has proposed a preview compensator design
procedure within the modular MPC formulation. The key conditions were derived to ensure that the
preview compensator is systematic and well-designed, in the sense that the preview control action only
handles the transient of the existing closed-loop and once the steady-state is reached, the input from the
preview compensator remains at zero. Two key benefits of the modular MPC design were discussed,
namely: (i) the sensitivities and robustness properties of the nominal output-feedback controller
are retained in the unconstrained case and such robust properties are, to some extent, extended to
the constrained case; and, (ii) the preview control with constraint handling can be systematically
incorporated into the existing feedback controller without replacing it. Numerical simulation studies
have been provided in order to illustrate the efficacy of the modular MPC design.
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