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Abstract: A convolutional neural network (CNN) has been used to successfully realize end-to-end
bearing fault diagnosis due to its powerful feature extraction ability. However, the CNN is prone
to focus on local information, ignoring the relationship between the whole and the part of the
signal due to its unique structure. In addition, it extracts some fault features with poor robustness
under noisy environment. A novel diagnosis model based on feature fusion and feature selection,
GL-mRMR-SVM, is proposed to address this problem in this paper. First, the model combines the
global features in the time-domain and frequency-domain of the raw data with the local features
extracted by CNN to make full use of the signal information and overcome the weakness of traditional
CNNs neglecting the overall signal. Then, the max-relevance min-redundancy (mRMR) algorithm is
used to automatically extract the discriminative features from the fused features without any prior
knowledge. Finally, the extracted discriminative features are input into the SVM for training and
output the fault recognition results. The proposed GL-mRMR-SVM model was evaluated through
experiments on bearing data of Case Western Reserve University (CWRU) and CUT-2 platform.
The experimental results show that the proposed method is more effective than other intelligent
diagnosis methods.

Keywords: bearing fault diagnosis; global feature; local feature; convolutional neural network (CNN);
max-relevance min-redundancy (mRMR)

1. Introduction

Rolling bearings play an important role in maintaining the stability of the mechanical system, but
they are extremely susceptible to damage. The proportion of rolling bearing faults exceeds 40% based
on statistics of mechanical faults [1,2]. The damage of rolling bearings will lead to the shutdown of
mechanical systems, which will cause significant economic losses and personnel safety problems.

Due to the richness and variability of natural data, early pattern recognition algorithms have
difficulty directly utilizing raw data, thus most fault diagnosis algorithms adopt a fault diagnosis mode
in which feature extraction is performed first and then input into the machine learning algorithm.
Many signal processing methods have been developed to extract discriminative features from complex
non-stationary signals, such as empirical mode decomposition (EMD) [3], wavelet transform [4],
Fourier transform [5], Hilbert transform [6], etc. Then, the extracted features are used for training the
machine learning models such as K-nearest neighbor [7], decision tree [8], support vector machine [9],
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etc. However, fault features extraction requires researchers to have prior knowledge, and artificially
extracted features are often only sensitive to specific datasets [10].

Various deep learning methods have been successfully applied in the field of fault diagnosis with
the development of intelligent fault diagnosis technology. The convolutional neural network (CNN) is a
commonly used deep learning method, which directly acts on the original signal through weight sharing
and local connection to achieve end-to-end fault diagnosis. In recent years, scholars have developed
many fault diagnosis methods based on CNN. Liu et al. [11] extracted periodic fault information between
nonadjacent signals by inputting dislocation time series into CNN, which improved the accuracy of
the model. Jiang et al. [12] used multiscale learning in CNN, which greatly improved the model’s
ability to learn fault features and achieved better diagnostic performance. Gong et al. [13] proposed
an improved CNN-SVM method and inputted multiple sensors data to the model. Wang et al. [14]
proposed a method of converting vibration signals of multiple sensors into images. By this method,
CNN can extract richer features. Liu et al. [15] solved the problem of performance degradation of the
model in noisy environment by using random destroyed signals as training samples, and 1DCNN
was combined with one-dimensional (1D) denoising convolutional autoencoder (DCAE) to construct
a noise reduction model. Although CNN has made some achievements in fault diagnosis, there are
still two problems. The first is that CNN pays more attention to local features. Convolutional and
pooling layers of CNN may result in the loss of some fault information, and the relationship between
the whole and local region of the original signal is easily ignored by CNN [16]. The second is that the
bearing working condition is affected by different loads, environmental noise, etc. in real industry,
resulting in differences in the distribution of training data and test data, which severely affects the
validity of CNN [17–19].

To overcome the problems above, inspired from the work of Yan et al. [20], an intelligent fault
diagnosis model (GL-mRMR-SVM) based on feature fusion and feature selection is proposed. The local
and global features can be effectively used by the model. The main contributions of this paper are
as follows.

(1) This paper proposes a new diagnostic model in which feature fusion and feature selection are
applied. The model is relatively easy to implement, and the information of the raw signal can be
fully utilized by the model.

(2) This model performs well in noisy environment and can process the raw data directly without
any pre-denoising method.

(3) The model has good generalization ability, thus it can achieve high accuracy in the face of
compound faults diagnosis.

The rest of this paper is arranged as follows. The basic knowledge of CNN and mRMR is
explained in Section 2. The proposed GL-mRMR-SVM architecture is described in detail in Section 3.
The experimental settings, time-domain and frequency-domain global features, and the experimental
results based on Case Western Reserve University (CWRU) and CUT-2 platform bearing data are
described in Section 4. The conclusion and the research direction of future work are given in Section 5.

2. Fundamental Theories

2.1. CNN Model

CNN originated from experiments in neuroscience, mainly influenced by Hubel and Wiesel’s
early work on the vision cortex working mechanisms of mammalian brain [21,22]. As an important
method of deep learning, CNN has good effects in speech and image processing. The input layer,
convolutional layer, pooling layer, fully connected layer, and output layer are the main structures of
CNN. A typical CNN model is shown in Figure 1. The convolution layer and pooling layer are mainly
responsible for feature extraction, and the fully connection layer is mainly responsible for classification.



Processes 2020, 8, 784 3 of 15

Processes 2020, 8, x FOR PEER REVIEW 3 of 16 

 

 
Figure 1. A typical architecture of CNN. 

The input image is convoluted in the convolution layer using different convolution kernels. With 
bias, the corresponding feature map can be obtained by activation function. The mathematical 
expression for the convolution operation is as follows: 

௝௟ݔ  =  ݂ ቌ ෍ ௜௟ିଵݔ ∗ ݇௜௝௟ + ௝ܾ௟௜∈ெೕ ቍ (1
)

where l is the l layer; ܾ݆݈ is the bias; ݆݈݇݅ is the weight matrix; ݈݆ݔ is the output of the l layer; ݔ௜௟ିଵ is the 
input of the l layer; ݆ܯ is the j convolution area of the l-1 layer feature map; and ݂(•) is the nonlinear 
activation function. In CNN, the activation function usually uses ReLU, and its mathematical 
expression is: ݂(ݔ)  = ,0)ݔܽ݉  (ݔ (2)

The feature map after the convolution operation usually needs to go through the pooling layer. 
Its function is to keep the valid information while reducing the amount of data processing. Maxing 
Pooling, Average Pooling, and Stochastic Pooling are commonly used pooling methods. The 
mathematical expression for the pooling operation is as follows: ݔ௜ାଵ  = (௜ݔ)݊ݓ݋݀ߚ)݂  + ܾ) (3)

where ݅ݔ is the input; 1+݅ݔ is the output; β is multiplicative bias; b is additive bias; ݀݊ݓ݋(•) is pooling 
function; and ݂(•) is the nonlinear activation function. As shown in Figure 2, the single convolutional 
neural network uses a pooling layer with a window size of 2 × 2 and a step size of 2 to down-sample 
the feature map after convoluted, reducing the dimension of the feature map while retaining the valid 
information. After a series of convolution pooling operations, the high-level features of the input 
image can be obtained. These advanced features are weighted by the fully connected layer, and then 
activated using the activation function to get the output. The mathematical expression of the fully 
connected layer is defined as follows:  ݕ௞  =  ݂(߱௞ݔ௞ିଵ + ܾ௞) (4)

where ݇ݕ is the output of the fully connected layer; ݂(•) denotes the activation function; ߱݇ is the 
weight of the fully connected layer; 1−݇ݔ is the input of the fully connected layer; ܾ݇ is the bias of the 
fully connected layer; and k is the network layer number. The fully connected layer usually uses the 
Softmax activation function to achieve multi-classification tasks. 

 
Figure 2. Single Convolutional Neural Network. 

2.2. Feature selection algorithm mRMR  
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The input image is convoluted in the convolution layer using different convolution kernels.
With bias, the corresponding feature map can be obtained by activation function. The mathematical
expression for the convolution operation is as follows:

xl
j = f

∑
i∈M j

xl−1
i ∗ kl

i j + bl
j

 (1)

where l is the l layer; bl
j is the bias; kl

i j is the weight matrix; xl
j is the output of the l layer; xl−1

i is
the input of the l layer; Mj is the j convolution area of the l − 1 layer feature map; and f (•) is the
nonlinear activation function. In CNN, the activation function usually uses ReLU, and its mathematical
expression is:

f (x) = max(0, x) (2)

The feature map after the convolution operation usually needs to go through the pooling
layer. Its function is to keep the valid information while reducing the amount of data processing.
Maxing Pooling, Average Pooling, and Stochastic Pooling are commonly used pooling methods.
The mathematical expression for the pooling operation is as follows:

xi+1 = f (βdown(xi) + b) (3)

where xi is the input; xi+1 is the output; β is multiplicative bias; b is additive bias; down(•) is pooling
function; and f (•) is the nonlinear activation function. As shown in Figure 2, the single convolutional
neural network uses a pooling layer with a window size of 2 × 2 and a step size of 2 to down-sample
the feature map after convoluted, reducing the dimension of the feature map while retaining the valid
information. After a series of convolution pooling operations, the high-level features of the input
image can be obtained. These advanced features are weighted by the fully connected layer, and then
activated using the activation function to get the output. The mathematical expression of the fully
connected layer is defined as follows:

yk = f
(
ωkxk−1 + bk

)
(4)

where yk is the output of the fully connected layer; f (•) denotes the activation function; wk is the weight
of the fully connected layer; xk−1 is the input of the fully connected layer; bk is the bias of the fully
connected layer; and k is the network layer number. The fully connected layer usually uses the Softmax
activation function to achieve multi-classification tasks.
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2.2. Feature Selection Algorithm mRMR

Peng et al. first proposed max-relevance and min-redundancy (mRMR) in 2005 [23]. mRMR has
been successfully applied to the field of mechanical fault diagnosis as a new feature selection algorithm,
showing its superiority [24–26]. Compared with other feature selection algorithms, mRMR has the
advantages of fast calculation speed and strong robustness, because it automatically selects important
features according to the maximum correlation and minimum redundancy criteria.

Mutual information can be used to measure the correlation between features and categories for
classification problems. The mathematical expression of mutual information is as follows:

I(X; Y) =
∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
(5)

where X and Y are two random variables; p(x, y) is the joint probability mass function of (X, Y);
p(x) and p(y) are the marginal probability mass functions of X and Y, respectively; and I(X; Y) is the
mutual information of X and Y. Regard categories as variables and features as random variables. Then,
(X; C) can be seen as the mutual information between feature X and category C. Max-relevance criterion
is to select the feature that has greater mutual information with the category from the feature subset.
The mathematical expression of the process is as follows:

maxD(S, c), D =
1
|S|

∑
xi∈S

I(xi; c) (6)

where S is the seeking feature subset and |S| is the number of features. However, the max-relevance
criterion will fail when there is a high dependency between features, which also means that the features
selected after the max-relevance criterion have rich redundancy. Therefore, the min-redundancy
criterion is implemented between features. The mathematical expression of this process is as follows:

minR(s), R =
1

|S|2
∑

xix j∈S

I
(
xi, x j

)
(7)

Combining D criterion with R criterion, the process is defined as follows:

maxΦ(D, R), Φ = D−R (8)

The main task of mRMR is to select the mth features from the set {X − Sm−1}. The criterion for
selecting m − 1 features are as follows:

max
x j∈Sm−1

I(x j; c
)
−

1
m−1

∑
xi∈Sm−1

I
(
x j; xi

) (9)

3. GL-mRMR-SVM Model

In GL-mRMR-SVM model, firstly, the global features from time-domain and frequency-domain
statistical features are combined with the local features extracted by CNN from vibration signals.
These global features can further enhance the model’s ability to identify different faults and make full
use of the information in the raw data. It is worth noting that, in CNN, the extracted local features are
not activated by the Softmax function. Then, the mRMR algorithm is used to automatically extract the
discriminative features from the fused features without any prior knowledge. Through the mRMR
algorithm, we can eliminate local features with poor robustness and global features that do not well
characterize fault information. This will further improve the classification accuracy and reduce the
training time of the model. Finally, the selected discriminative features are input into support vector
machines (SVM). Although we introduce the handcrafted features into the proposed model, we do not
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need any prior knowledge due to the existence of feature selection algorithms. The architecture of the
GL-mRMR-SVM model is shown in Figure 3.Processes 2020, 8, x FOR PEER REVIEW 5 of 16 
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The CNN consists of one input layer, two convolution layers, two pooling layers, one fully
connected layer, and one output layer (Figure 3). Dropout [27] is used after the pooling layer to prevent
overfitting. The input of CNN is usually two-dimensional grid data or three-dimensional data [28].
A data reconstruction method that reconstructs one-dimensional time series of vibration signals into
two-dimensional feature maps is used in this paper. Figure 4 shows the process of data reconstruction.
Table 1 shows the detailed parameters of the GL-mRMR-SVM model.
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Table 1. GL-mRMR-SVM parameters.

CNN SVM

Layers Hyper-Parameter Settings Training Parameters

The penalty factor
C = 128;

Kernel function is Gaussian
Radial basis function (RBF);

Kernel function parameters = 0.5

Input layer 32 × 32 inputs
Adam Batch size = 64
Learning rate = 0.003

Epoch = 20
Dropout = 0.3

(Ks is kernel size, Kn is
kernel number, S is

sub-sampling rate, N is
number of hidden layer

neuron nodes)

C1 Ks = 5 × 5, Kn = 32, Stride =
2, activation = ReLU

P2 S = 2

C3 Ks = 3 × 3, Kn = 64, Stride =
1, activation = ReLU

P4 S = 2
F5 N = 128, activation = ReLU

Output layer The output is the number of
classes, activation = Softmax

As shown in Figure 3, the main parameters in GL-mRMR-SVM are m, n, and k. n is the number of
categories. m affects the effect of the proposed method. The larger the m is, the more statistical features
from time-domain and frequency-domain are candidates, the greater is the probability of occurrence of
robust features, thus the more accurate are the results. However, as m increases, the computational
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capacity also increases. Fortunately, m does not need to be very large in most case if the value of k
is appropriate. There is no accurate way to determine the value of k. However, when the statistical
features from time-domain and frequency-domain inputted into the model are the same, the value of k
is relatively determined for similar classification problems.

In GL-mRMR-SVM model, the forward and backward propagation of CNN is implemented by the
CNN-Softmax model. Figure 5 shows the intelligent fault diagnosis process of the GL-mRMR-SVM model.
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4. Experimental Evaluation

Experiments were carried out on the bearing data platform of CWRU to verify the robustness of
the proposed method. The generalization of the proposed method was verified on the bearing data
platform of CUT-2.

4.1. Robustness Experiment

Open bearing data of CWRU were used for the experiment [29]. The experimental platform is
shown in Figure 6. The left side of the diagram is a 1.5-kW motor, the middle is a torque sensor, and the
right side is a dynamometer. The experimental bearing is 6205-2RS JEM SKF deep groove ball bearing,
which was installed in the drive end of the motor housing to support the motor shaft.
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Figure 6. CWRU bearing experimental platform.

The motor load is about 1 horsepower and the bearing speed is 1772 r/min. Single faults were
placed on the inner race, the ball, and the outer race of the experimental bearing by electric discharge
machining (EDM) technology. The diameter of faults were 0.007, 0.014, and 0.021 inches, respectively.
The fault location of the outer race of the bearing was six o’clock and the sampling frequency was 12 K.
The dataset size of each fault type was determined based on sampling without replacement, and the
sampling length was set to 1024 unit. The specific experimental sample information is shown in Table 2.

Table 2. Composition of CWRU experimental samples.

Fault Location Fault Diameter
(Inches) Training Testing Condition Label

Normal None 150 50 0
Inner Race 0.007 150 50 1

Ball 0.007 150 50 2
Outer Race 0.007 150 50 3
Inner Race 0.014 150 50 4

Ball 0.014 150 50 5
Outer Race 0.014 150 50 6
Inner Race 0.021 150 50 7

Ball 0.021 150 50 8
Outer Race 0.021 150 50 9

When a mechanical equipment fails, the probability distribution of its time-domain and
frequency-domain signals change accordingly. Therefore, the fault information of mechanical equipment
can be reflected by global features from time-domain and frequency-domain. The global features from
time-domain and frequency-domain used in this work are shown in Table 3.
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Table 3. Global features in the time-domain and frequency-domain [30,31].

Features in Time-Domain Features in Frequency-Domain

f0 =
∑N

n=1 x(n)
N

f6 =
∑N

n=1(x(n)− f0)
4

(N−1) f 4
2

f12 =
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x(n) is the time-domain signal sequence, n = 1, 2, . . . , N,
N is the number of each sample points.

s(k) is the frequency-domain signal sequence,
k = 1, 2, . . . , K, K is the number of spectral lines.

In this experiment, m was set to be 25. k was chosen based on its uncertainty and importance.
k was set to be 8, 10, 12, 14, 16, 18, and 20, respectively. The precision ratio p, recall ratio r, accuracy,
and F1 measure f 1 are used for model performance analysis, and their corresponding mathematical
expressions are as follows: 

p = TP
TP+FP

r = TP
TP+FN

accuracy = TP+TN
TP+FP+TN+FN

f 1 = 2
1
p+

1
r

(10)

where TP is the number of true positive samples, TN is the number of true negative samples, FP is
the number of false positive samples, and FN is the number of false negative samples. To rule out
contingency, 10 random trials were performed for each model; all trials in this study used this standard.
The average test accuracy and standard deviation of different values of k are illustrated in Figure 7.
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Figure 7. Accuracy and standard deviation of different k values.

First, as shown in Figure 7, GL-mRMR-SVM obtains similar results and excellent accuracy with
different k values except k = 8. When k = 8, the average accuracy of the model is only 94.26%. The reason
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for this situation is that, when k = 8, the number of features selected is less than the dimension of CNN
model output, which will inevitably lead to the loss of effective local features, and the global features
that can represent fault information cannot be well utilized. When k ≥ 10, the average accuracy of
the model is above 98.78%, which indicates that the proposed GL-mRMR-SVM model has excellent
performance in fault diagnosis. In addition, Figure 7 also shows that the average accuracy of the
model increases first and then decreases with the increase of k value. With the increase of k, the feature
selection algorithm can select more discriminative features from the fused features, thus increasing the
accuracy of the model. However, when k is increased to a certain extent, if k continues to increase, then
the feature selection algorithm has to select some features with relatively poor robustness from the
fused features. These indiscriminative features will inevitably lead to the decline of model accuracy.
When k = 12, the average accuracy of the model reaches 99.68% and the standard deviation of accuracy
reaches the minimum, which shows that the features selected by GL-mRMR-SVM have robustness.

Considering comprehensively, k was determined to be 12 in this experiment. Table 4 lists the
precision rates, recall rates, and f 1 of the final experimental results of the proposed GL-mRMR-SVM
method. In Table 4, the precisions of all labels except Label 8 are 100%. To further evaluate the
classification of the faults of each type of GL-mRMR-SVM model, the confusion matrix is introduced
for a detailed quantitative analysis. The confusion matrix shown in Figure 8 corresponds to the results
in Table 4. In Figure 8, the x-axis andy-axis represent the labels predicted by GL-mRMR-SVM model
and the actual labels of rolling bearing condition, respectively. Among 500 test samples, only one
prediction result of GL-mRMR-SVM model is wrong. The actual label of the misclassified sample is 5
(Location: Ball; Diameter: 0.014), while the label predicted by GL-mRMR-SVM model is 8 (Location:
Ball; Diameter: 0.021). Therefore, the model GL-mRMR-SVM is only likely to be confused when the
severity of the fault is predicted.

Table 4. Test results of the proposed GL-mRMR-SVM model.

Condition Label Precision Rate Recall Rate F1 Measure Sample Amount

0 100% 100% 100% 50
1 100% 100% 100% 50
2 100% 100% 100% 50
3 100% 100% 100% 50
4 100% 100% 100% 50
5 100% 98.00% 98.99% 50
6 100% 100% 100% 50
7 100% 100% 100% 50
8 98.04% 100% 99.01% 50
9 100% 100% 100% 50

Average/Total 99.80% 99.80% 99.80% 500
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To illustrate the superiority of GL-mRMR-SVM, two intelligent fault diagnosis algorithms were
used for comparison: CNN and GL-SVM. The input of CNN was reconstructed vibration signal, and its
parameters were consistent with the previous description. In GL-SVM, the input of the classifier SVM
was a fusion feature that combines local features and global features.

Comparing CNN with GL-mRMR-SVM can prove the effectiveness of introducing statistical
features in time-domain and frequency-domain into bearing fault diagnosis. The advantages of
feature selection can be highlighted by comparing GL-SVM with GL-mRMR-SVM. Because F1 measure
is a commonly used comprehensive metric to measure the performance of a classification method,
average value and standard deviation of F1 measure f 1 was used as the evaluation metric of the model.
The experimental results are presented in Figure 9, which shows that the proposed GL-mRMR-SVM
has the best classification performance on each type of fault, with an average f 1 score of 99.68%. Thus,
the proposed GL-mRMR-SVM can learn more robust and discriminative features from vibration signals
than others methods. It is worth mentioning that the GL-SVM model incorporating global features also
performs well, which may be due to the less noise contained in the bearing data of CWRU, resulting in
better robustness of global features.
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In practical applications, the working environment of the bearing is usually complicated, and the
measured bearing vibration signal also contains noise. For this reason, Gaussian white noise is added
to the original signal to construct noise signals with different signal-to-noise ratios (SNR). SNR is
defined as follows:

SNRdB = 10log10
psignal

pnoise
(11)

where Psignal is the effective power of the signal and Pnoise is the effective power of the noise.
To further illustrate the robustness and reliability against noise of GL-mRMR-SVM, we used

noisy signals with different SNRs from −4 to 14 dB to evaluate the proposed method. Figure 10
shows the evaluation results of CNN, GL-SVM, and GL-mRMR-SVM, where the average results of F1
measures for all ten conditions were calculated as the evaluation metric. It is clear that the proposed
GL-mRMR-SVM significantly outperforms CNN and GL-SVM, with over 93% test performance in
terms of F1 measure at all considered SNR levels. When the power of the noise is equal to that of the
vibration signal, where SNR is 0 dB, the test performance of GL-mRMR-SVM is over 97%. Specifically,
when SNR is greater than 0, the test performance of GL-mRMR-SVM even increases to 98% at a stable
level. In short, the proposed GL-mRMR-SVM presents superior robustness against noisy situations,
which means that GL-mRMR-SVM can select discriminative features from local features and global
features. In addition, the performance of GL-SVM combined with global features does not perform as
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well as traditional CNN in noisy situations. This is because a large amount of noise is incorporated
into the global features, which results in the performance degradation of the model.Processes 2020, 8, x FOR PEER REVIEW 12 of 16 
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4.2. Generalization Experiment

Composite fault recognition experiments were carried out on the bearing data platform of CUT-2
to verify the generalization performance of the proposed method. The bearing data platform of CUT-2
is shown in Figure 11. The experimental bearing is 6900ZZ deep groove ball bearing, and faults
with diameters of 0.0787 and 0.1181 inches were arranged on the inner race, the ball, and the outer
race of the experimental bearing by EMD technology. The location of the bearing faults is shown
in Figure 12. The vibration signal of bearing compound fault was collected at the motor speed of
2000 r/min, the sampling frequency of 2K, and the sampling length of 1024. The specific experimental
sample information is shown in Table 5.
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Figure 12. The location of the bearing faults: outer race fault (a); inner race fault (b); ball fault (c); and
combination of parts (d).

Table 5. Composition of CUT-2 experimental samples.

Compound Fault Location and Diameter

Training Testing Condition
Label

Outer Race Fault
Diameter
(inches)

Inner Race Fault
Diameter
(inches)

Ball Fault
Diameter
(inches)

0.0787 0.0787 Null 150 50 0
0.1181 0.0787 Null 150 50 1
Null 0.0787 0.0787 150 50 2
Null 0.1181 0.0787 150 50 3

0.0787 Null 0.0787 150 50 4
0.0787 Null 0.1181 150 50 5
0.0787 0.0787 0.0787 150 50 6
0.0787 0.0787 0.1181 150 50 7

In this experiment, m was set to 25 as before, and k was set to 8, 10, 12, 14, 16, 18, and 20,
respectively. The experimental results with different k are shown in Figure 13. The seven overall
accuracies are all larger than 97.95% even if the fault is on different parts of the bearing at the same time.
The performance of the GL-mRMR-SVM model is best when k = 12. As mentioned above, when the
statistical features from time-domain and frequency-domain inputted into the model are the same,
k does not change much for similar classification problems.
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Figure 13. GL-mRMR-SVM results with different k under compound fault.

For comparison purposes, the CNN and GL-SVM models were compared with the proposed
method, and the model parameters remained the same as described above. The results of different
models according to F1 measure are shown in Table 6, and the classification results of each fault are
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shown. Table 6 shows that the average performance of the proposed GL-mRMR-SVM model for eight
failures reaches 99.22%, which is better than the other two models. For each condition, GL-mRMR-SVM
obtains the over 98.40% F1 measure, and a smaller standard deviation, which corresponds to more
stable performance. In addition, the overall performance of GL-SVM is 97.41%, which is lower than
the 98% of CNN. This is because the components of compound fault signal are complex, and some
global features cannot well characterize the compound fault, thus the accuracy of the GL-SVM model
integrated with global features decreases.

Table 6. Experimental results with different models in term of F1 measure for each condition (%).

Condition Label
Models

CNN GL-SVM GL-mRMR-SVM

0 97.88 ± 0.0243 97.53 ± 0.0266 98.40 ± 0.0085
1 97.89 ± 0.0556 99.59 ± 0.0046 99.60 ± 0.0024
2 99.03 ± 0.0201 90.97 ± 0.1292 99.41 ± 0.0024
3 96.15 ± 0.0388 95.49 ± 0.0347 98.70 ± 0.0141
4 98.66 ± 0.0308 98.77 ± 0.0189 99.80 ± 0.0016
5 99.12 ± 0.0104 99.60 ± 0.0045 99.70 ± 0.0021
6 96.43 ± 0.0538 97.83 ± 0.0277 98.48 ± 0.0174
7 99.40 ± 0.0064 99.49 ± 0.0047 99.70 ± 0.0041

Average 98.07 97.41 99.22

The t-distributed random neighborhood embedding (t-SNE) method of manifold learning was
used for feature visualization to verify the learning ability of the proposed GL-mRMR-SVM for different
compound fault categories. The feature visualization results of the raw samples and the extracted
fusion feature are shown in Figure 14. As shown in Figure 14a, the eight categories of complex faults
in the original sample are completely confused and difficult to distinguish between the categories.
In Figure 14b, after feature fusion and feature selection of model GL-mRMR-SVM, eight samples of
different categories are completely distinguished without intersecting the heterogeneous samples,
which proves the good feature extraction ability of the model.
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5. Conclusions and Future Work

A new framework (GL-mRMR-SVM) is presented for fault diagnosis of rolling bearing. Different
from shallow classification models, which depend greatly on the handcrafted features and traditional
deep learning models, the developed GL-mRMR-SVM system can combine the statistical features
extracted from the time-domain and the frequency-domain with the local features extracted by the
CNN, and the mRMR feature selection technique is used to extract discriminative features for model
classification without any prior knowledge. The performance of the proposed GL-mRMR-SVM for
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single faults and compound faults was tested on CWRU and CUT-2 bearing datasets. The experimental
results show that the proposed GL-mRMR-SVM model significantly outperforms the traditional deep
learning model in terms of robustness against noise and classification performance, which is crucial for
bearings that can make the mechanical system run steadily. More importantly, it provides a new idea
and a general diagnostic framework for fault diagnosis, which can be easily extended to deal with
different machines and industrial systems.

In future work, we will verify the scalability of the proposed GL-mRMR-SVM under different
bearing experimental conditions, such as rotor unbalance and variable speed. In addition, the main
parameters in GL-mRMR-SVM are m, n, k, and k, which decide the final results. There is no good
way to optimize parameter k, which needs further research. However, for the same diagnosis object,
the value of k is relatively certain, which we verified on two different bearing datasets.
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