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Abstract: A mathematical model composed of two non-linear differential equations that describe the
population dynamics of CD4 T-cells in the human immune system, as well as viral HIV viral load,
is proposed. The invariance region is determined, classical equilibrium stability analysis is performed
by using the basic reproduction number, and numerical simulations are carried out to illustrate
stability results. Thereafter, the model is modified with a delay term, describing the time required for
CD4 T-cell immunological activation. This generates a two-dimensional integro-differential system,
which is transformed into a system with three ordinary differential equations. For the new model,
equilibriums are determined, their local stability is examined, and results are studied by way of
numerical simulation.
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1. Introduction

Acquired Immunodeficiency Syndrome (AIDS) represents a risk for a large part of the global
population because it affects both people with the virus, as well as, indirectly, their families and friends.
Historically, AIDS has been among the most-significant public health problems worldwide, owing to
the number of people it has infected and the deaths it has caused. Additionally, it constitutes a social
problem, as it has inhibited poverty reduction efforts. Since its emergence in the 1980s, AIDS has
generated considerable challenges for the scientific community, which include understanding its
dynamics and the search for a definitive cure [1–3].

Acquired Immunodeficiency Syndrome is a group of clinical symptoms produced as a result of the
immune system’s destruction caused by the Human Immunodeficiency Virus (HIV). The virus makes it
impossible for the body to defend itself and facilitates the emergence of opportunistic illnesses. For this
reason, AIDS has caused a considerable number of human deaths, primarily in regions with inadequate
prevention mechanisms [3,4]. The Joint United Nations Programme on HIV/AIDS (UNAIDS) reported
in 2018 the estimated number of people (all ages) living with HIV at 37.9 million [32.7–44.0] of which,
23.3 million people were receiving antiretroviral treatment by the end of 2018, equivalent to 62%
of people living with HIV. However, it is cause for concern that 1.7 million [1.4–2.3] new cases are
reported, implying a rate of 0.24 [0.18–0.31] new HIV infections (per 1000 uninfected population) [5].

To date, no cure has been found for HIV infection, which makes relevant the development
of strategies that impede the virus’ dispersion. Undoubtedly, the greatest risk of infection stems
from sexual intercourse. However, other contagion factors exist, including blood transfusions,
inadequate use of surgical materials (needles, scalpels, etc.), and vertical transmission (from mother to
child) [6].
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To briefly explain the dynamics of the HIV virus at cellular level, it must be mentioned that
infection begins when the virus crosses the body’s physical barriers and it is detected by dendritic
cells (leucocytes that play an important role in the body’s immunity) and macrophages, which are
antigen-producing cells (antigens are substances that trigger antibody formation and may cause
immune response). Once the virus is identified, CD4 T-cells come into play; they specialize in
recognizing viral proteins and are tasked with activating humoral and cellular immune responses to
fight infection. It is precisely the CD4 T-cells that are the virus’ main target, which become infected
and lose the ability to recognize vital proteins. This, together with the virus’ high replication rate and
its evasion strategies (use of reservoirs, sanctuaries, or dormant states), causes the body to gradually
lose its ability to control the HIV infection [7].

A wide variety of mathematical models has been formulated to study HIV infection at cellular
level [8–27], as well as its spread in uninfected populations [28–33]. Such models address the
study of infection from different perspectives and have made it possible to evaluate the possible
effect of preventive measures or prophylaxis and diagnosis on reducing transmission [29,31,34–37].
Concerning the effectiveness of antiretroviral medications in controlling viral loads, optimal control
models have been very important tools [11,13,17,25,32,36–38]. Finally, any study must begin with
knowledge of the virus and how it interacts with the host’s immune system. Particularly, a more
relevant topic is latent infection in people who are unaware of its serological status. One of the reasons
for the slow development of the infection in people carrying the virus is the state of latency in which
a proportion of the infected cells is found; indeed, this cell population consists of resting T cells
that have not been immunologically activated, different from the activated T cells, also known as
helper T-lymphocytes. The importance of this distinction is that HIV infects resting lymphocytes,
but only 1% actively replicate viruses, which indicates that in 99% the pro-viral genome is housed and
dormant [7–9,15–18,21,26,27,39].

Considering the above, and with the goal of studying CD4 T-cell interaction with viral HIV
particles, two mathematical models, based on ordinary differential equations, are proposed here and
will be studied from a qualitative perspective. First, the HIV infection dynamics at cellular level is
addressed, without considering immunological activation, which implies that it is assumed that viral
replication begins immediately after cell infection; then, these results are compared with those from a
second model, incorporating a delay time that considers immunological activation as a determining
factor in the dynamics of cell-to-cell HIV infection. Although the results obtained do not constitute a
definitive solution to the problem, they do contribute theoretically to its comprehension.

The model stability analysis allows for concluding conditions on the parameters that would
guarantee reduction of the viral load to undetectable levels, fundamentally reducing the value of the
basic reproduction number R0. This reduction can be achieved with adequate antiretroviral therapy
strategies. Additionally, it is illustrated that under certain parameter values, the system may present
Hopf bifurcation, which implies alternation, sustained over time, of high and low levels of viremia in
the host, significantly affecting their quality of life. These cyclical scenarios should be avoided; in this
sense, the results of this work study one of the parameters of the model that relates cyclical behavior to
the CD4 T-cell activation time.

2. Model without CD4 T-Cell Activation Time

2.1. Model Formulation

Formulation of this model is based on predator-prey dynamics, supposing that increased viral
load depends on the number of infected T cells that later die. This is a legitimate consideration
due to the virus’ high replication rate. The assumption is made that infected cells are instantly
activated and produce viral particles, which are simplifications considered in studies including [13,20].
However, in Section 3, this assumption is weakened when time delay, which describes the time cells
require to activate (a waiting time which implies a delay in the onset of viral replication) is included.
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Let T = T(t) be the average concentration of CD4 T-cells in a time t and V = V(t) be the average
viral load in a time t. The constant rate of CD4 T-cell release is indicated by σ and µ represents the rate
of natural death. Additionally, the fact that proliferation of CD4 T-cells in response to the infection
follows that the logistic law of growth is considered, where α is the proliferation rate (in general, it is
α > µ [40]) and k is the carrying capacity. The effective contact rate between CD4 T-cells and virus
is denoted by β, such that the βTV (by the mass action law) represents the average concentration of
infected T cells created in a given time t. Thus, the differential equation for the uninfected CD4 T-cell
population is:

Ṫ = σ + αT
(

1− T
k

)
− βTV − µT.

A simplification considered in studies, such as [11,13,14] that consists of excluding an explicit state
variable for the infected cell population, will be considered here. Thus, in each instant t, an average
of βTV cells become infected. The constant death rate of infected cells, owing to causes associated
with viral replication, is indicated by δ and it is assumed that the number of infected cells that die
in instant t is proportional to those created. As such, the average concentration of infected cells that
die in each instant t is δ(βTV). That said, if each infected cell produces N viral particles during its
infectious period, the expression N (δβTV) represents the average viral load produced in instant t.
If η = Nδβ, then ηTV determines the number of free viral particles produced in a time t. This η

parameter is comparable to the biomass conversion rate (growth rate) seen in predator-prey models.
Finally, it is assumed that viral particles are eliminated at proportionality rate c. The model takes the
following form:  Ṫ = σ + αT

(
1− T

k

)
− βTV − µT

V̇ = ηTV − cV,
(1)

where the parameters σ, α, k, β, µ, η and c are positive. System (1) has non-negative initial conditions
T(0) and V(0). Table 1 contains a description of state variables and model parameters.

Table 1. Description of state variables, initial conditions, and parameters used in simulations and the
respective references.

State Variables Initial Conditions Reference

T Uninfected CD4 T-cell concentration 500 mm−3 [13,19]
V Infectious viral load 1 mm−3 [13,19]

Parameters Value Reference

σ Constant CD4 T-cell production 10 mm−3d−1 [17,22,41]
α Uninfected CD4 T-cell proliferation rate 0.03 d−1 [19,40]
µ Uninfected CD4 T-cell natural death rate 0.01d−1 [17,22,41]
δ Infected CD4 T-cell death rate 0.26 d−1 [17,40]
β Effective contact rate between CD4 T-cells and virus 6× 10−6 and 4× 10−5 mm3d−1 [13,17,19,40]
N Number of viral particles produced per infected cell 1000 [41]
c Viral elimination rate 2.4 d−1 [17,19]
k CD4 T-cell carrying capacity 1500 mm−3 [19,40]

Now that the model has been described, a proposition corresponding to the invariance region is
enunciated and demonstrated; it corresponds to a set of biological interest, where the solutions are
bounded and preserve their positivity over time.

Proposition 1. If initial conditions T(0) and V(0) are non-negative, then the solutions to system (1) are
limited to the positively invariant region given by:
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Ω =

{
(T, V) ∈ R2 | 0 ≤ T ≤ k, 0 ≤ V ≤ Mη

cβ

}
with M = σ + kα

4 + ck.

Proof. This demonstration was carried out by considering procedures similar to those in [19,42],
which suggest certain restrictions on the parameters to ensure that the model describes a realistic
population dynamic. Particularly, it is assumed that k > σ

µ . When this not the case, the population
could grow beyond k. Considering this from the first equation in System (1),

Ṫ = σ− µT + αT
(

1− T
k

)
− βTV

≤ σ− µT + αT
(

1− T
k

)
.

As such, in T = k,

Ṫ ≤ σ− µk < 0,

therefore, in the case of HIV infection, the T cell population is limited by k. Further, by defining function

ω(t) = T(t) +
β

η
V(t),

and calculating the derivative of ω with respect to time along the trajectories of system (1), the following
is obtained:

ω̇ = Ṫ + β
η V̇

= σ + αT
(

1− T
k

)
−
(

µT + β
η cV

)
≤ σ + αT

(
1− T

k

)
.

As the maximum value of the quadratic expression σ + αT
(

1− T
k

)
is σ + α

4 k when 0 < T ≤ k, then,

ω̇ + cω = σ + αT
(

1− T
k

)
− µT − β

η cV + c
(

T + β
η V
)

= σ + αT
(

1− T
k

)
+ cT − µT

≤ σ + αT
(

1− T
k

)
+ cT

≤ σ + kα
4 + ck = M,

therefore, when t→ ∞, 0 ≤ ω ≤ M
c [43]. Thus,

ω ≤ M
c ⇔ T + β

η V ≤ M
c

⇒ β
η V ≤ M

c

⇒ V ≤ Mη
cβ .

As such, V → Mη
cβ , when t → ∞. In other words, the solutions to system (1) are limited to the

positively invariant region Ω.

2.2. Stability Analysis

2.2.1. Virus-Free Equilibrium

It is now sought to qualitatively study the system (1), that is, without the explicit knowledge of
its solutions, determine the behavior of these solutions after a long period. To do so, it is necessary
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to determine the equilibrium solutions or stationary solutions (which do not change over time),
this requires solving the algebraic system,{

σ + αT(1− T
k )− βTV − µT = 0

ηTV − cV = 0,
(2)

whose trivial solutions are given by E0 =
(
T0, 0

)
and E−0 =

(
T−0 , 0

)
, which correspond to the absence

of infection, where

T0 =
kµ

2α

[
(ξ0 − 1) +

√
(ξ0 − 1)2 +

4ασ

kµ2

]
and

T−0 =
kµ

2α

[
(ξ0 − 1)−

√
(ξ0 − 1)2 +

4ασ

kµ2

]
with ξ0 = α

µ is the ratio between the uninfected CD4 T-cell proliferation rate and natural death rate.
So far, two virus-free equilibria have been found, but now it is necessary to establish conditions

that guarantee the biological meaning or ecological coherence of this virus-free equilibria, done in
Propositions 2 and 3, stated and demonstrated ahead.

Proposition 2. equilibrium E0 =
(
T0, 0

)
makes biological sense, i.e., T0 > 0.

Proof. Taking into account that all parameters considered are positive, the expression 4kασ > 0 is
valid. Then,

4kασ > 0 ⇔ (kα− kµ)2 + 4kασ > (kα− kµ)2

⇔
√
(kα− kµ)2 + 4kασ > kµ− kα

⇔ kα− kµ +
√
(kα− kµ)2 + 4kασ > 0

⇔ kµ

 α
µ − 1 +

√
k2µ2

(
α
µ−1

)2
+4kασ

kµ

 > 0

⇔ kµ
2α

[
(ξ0 − 1) +

√
(ξ0 − 1)2 + 4ασ

kµ2

]
> 0.

As such, T0 > 0.

This result is important to the extent that it establishes that E0 is an equilibrium with biological
sense; therefore, considering that there is no cure for HIV infection, it could be associated with
undetectable viral load levels.

Proposition 3. Equilibrium E−0 =
(
T−0 , 0

)
does not make biological sense, i.e., T−0 < 0.

Proof. Taking into account that all parameters considered are positive, 4ασ
kµ2 > 0 is satisfied. Then,

4ασ
kµ2 > 0 ⇔ (ξ0 − 1)2 + 4ασ

kµ2 > (ξ0 − 1)2

⇔
√
(ξ0 − 1)2 + 4ασ

kµ2 > (ξ0 − 1)

⇔ 0 > (ξ0 − 1)−
√
(ξ0 − 1)2 + 4ασ

kµ2

⇔ 0 > kµ
2α

[
(ξ0 − 1)−

√
(ξ0 − 1)2 + 4ασ

kµ2

]
.

As such, T−0 < 0.
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From the previous proposition, we discarded E−0 as a constant solution of the system and,
therefore, it will not be discussed in the following.

It is important to investigate the conditions under which the infection enters the HIV+ patient’s
immune system and potentially establishes in it, i.e., the conditions that promote continued infection.
This information is obtained partially by the study of E0 stability. In general, the basic reproduction
number denoted by R0 acts as a threshold, which determines the conditions with no risk of outbreak.
Theoretically, if R0 < 1 the virus is eliminated, but if R0 > 1 an infection outbreak occurs. The R0 is tied
both to the strength of the means of viral infection transmission and the duration of epidemiological
periods. As such, it is defined as the average concentration of secondary infections caused by a
single infected CD4 T-cell in a population of entirely uninfected CD4 T-cells throughout its infectious
period [12,23–25].

In order to determine R0, consider that in an entirely uninfected T-cell population a small initial
virus load (V > 0) is introduced. Conditions under which said virus concentration increases is obtained
by imposing the condition V̇ > 0, then from the second equation in (1),

V (ηT − c) > 0 ⇔ ηT − c > 0

⇔ ηT
c

> 1.

Considering that T0 = kµ
2α

[
(ξ0 − 1) +

√
(ξ0 − 1)2 + 4ασ

kµ2

]
is the uninfected cell population in the

absence of infection, and η = Nβδ, then R0 is defined as,

R0 =
Nβδ

c
T0. (3)

To study the stability of the virus-free equilibrium E0, we begin by a linearizing system (1) through
the Jacobian matrix,

A(T, V) =

α− 2αT
k − βV − µ −βT

ηV c
( η

c T − 1
)
 . (4)

The matrix (4) is evaluated at E0, and the sign of the real part of its eigenvalues is studied,
as shown in the following proposition’s proof.

Proposition 4. The virus-free equilibrium E0 from system (1) is locally asymptotically stable if and only if
R0 < 1.

Proof. Evaluation of the Jacobian matrix (4) in the virus-free equilibrium E0 = (T0,0) results in
the following:

A0 = A(E0) =

(
α− µ− 2αT0

k −βT0

0 c
( η

c T0 − 1
)) .

As A0 is a superior triangular matrix, its eigenvalues are λ1 = α− µ− 2αT0
k and λ2 = c

( η
c T0 − 1

)
.

Firstly, λ1 < 0 will be demonstrated, based on the equivalence of the following inequalities:
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√
(kα−kµ)2+4kασ

kα > 0 ⇔ µ
α −

kµ
kα +

√
(kα−kµ)2+4kασ

kα + 1 > 1

⇔ µ
α +

kα−kµ+
√
(kα−kµ)2+4kασ

kα > 1

⇔ µ
α + 2

k

(
kα−kµ+

√
(kα−kµ)2+4kασ

2α

)
> 1

⇔ µ
α + 2T0

k > 1

⇔ µ + 2αT0
k > α.

Thus, it is revealed that α− µ− 2αT0
k < 0 and so, λ1 < 0. On the other hand, it is evident that

λ2 = c
( η

c T0 − 1
)
= c (R0 − 1) < 0, if and only if R0 < 1. Given that both eigenvalues are negative,

it is concluded that the virus-free equilibrium E0 is locally asymptotically stable.

The result just demonstrated refers to the hypothetical situation under which the virus is
completely removed from the immune system. However, it is known that HIV infection, even today,
does not have a cure that allows reaching a stage of definitive viral elimination. In this sense, from a
clinical point of view, condition R0 < 1 should be interpreted as that scenario in which a patient
carrying the virus reaches an undetectable viral load.

2.2.2. Endemic Equilibrium

In this subsection, we determined the endemic equilibrium at which the infection is present,
i.e., a constant solution with V > 0. From system (2), T is cleared from the second equation and the
equilibrium coordinate is,

T1 =
c
η

,

which is replaced into the first equation of system (2) to obtain

σ + α
c
η

(
1− c

ηk

)
− β

c
η

V − µ
c
η
= 0,

then, the V coordinate at the equilibrium is given by

V1 = 1
β

(
η
c σ + α

(
1− c

kη

)
− µ

)
= 1

β

(
kη2σ+ckαη−(c2α+ckηµ)

ckη

)
= (cα+kηµ)(ξ1−1)

kβη ,

where

ξ1 =
kη(cα + ησ)

c(cα + kηµ)
, (5)

therefore, the endemic E1 = (T1, V1) equilibrium is given by

E1 =

(
c
η

,
(cα + kηµ) (ξ1 − 1)

kβη

)
. (6)

Note that equilibrium E1 makes biological sense when ξ1 > 1, case in which V1 > 0. The intention
now is to study the stability of the endemic equilibrium E1, which is done in Proposition 5 from the
basic reproduction number R0, but whose demonstration requires the following Lemma:

Lemma 1. R0 > 1 if and only if ξ1 > 1.
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Proof. Indeed,

R0 > 1 ⇔ η
c

kµ
2α

[
(ξ0 − 1) +

√
(ξ0 − 1)2 + 4ασ

kµ2

]
> 1

⇔
√
(ξ0 − 1)2 + 4ασ

kµ2 > 2cα
kηµ − (ξ0 − 1)

⇔ (ξ0 − 1)2 + 4ασ
kµ2 >

[
2cα
kηµ − (ξ0 − 1)

]2

⇔ 4ασ
kµ2 > 4c2α2

k2η2µ2 − 4cα
kηµ (ξ0 − 1) .

When both sides are multiplied by kµ2η
4α and considering that ξ0 = α

µ ,

R0 > 1 ⇔ ση >
αc2

kη
− cµ

(
α
µ − 1

)
⇔ ση − αc2

kη
+ cα− cµ > 0

⇔ σηkη − αc2 + cαkη − cµkη > 0

⇔ kη(ση + cα)− c(cα + µkη) > 0

⇔ c(αc + µkη)
(

kη(ση+cα)
c(αc+µkη)

− 1
)
> 0

⇔ kη(ση+cα)
c(αc+µkη)

> 1

⇔ ξ1 > 1.

Proposition 5. The endemic equilibrium E1 from system (1) makes biological sense and it is locally
asymptotically stable, if and only if R0 > 1.

Proof. By evaluating the Jacobian matrix (4) in the endemic equilibrium E1 as described in (6) results in

A1 = A(E1) =

(
α− µ− 2αT1

k − βV1 −βT1

ηV1 0

)
.

From which the trace and determinant of A1 are, respectively,

tr(A1) = α− µ− 2αT1
k − βV1

det(A1) = βηT1V1.

Firstly, tr(A1) < 0, a result obtained by replacing T1 and V1 and simplifying, as shown:

tr(A1) = −
(

αc2 + η2σk
ηck

)
< 0.

Secondly, it is clear that T1 = c
η > 0 and according to (6) and Lemma 1, it is verified that V1 > 0

if and only if R0 > 1, thus det(A1) > 0. Then, by the trace-determinant criteria, the proposition
is proven.

2.3. Simulation without CD4 T-Cell Activation Time

For the model without CD4 T-cell activation time described in (1), two numerical simulations
are performed to graphically illustrate the stability results obtained analytically. These two scenarios
are associated with the basic reproduction number R0, specifically R0 < 1 in Figure 1 and R0 > 1 in
Figure 2. In both cases, the solution curves associated with the CD4 T-cell populations T and viral
load V are shown in the top panels and the corresponding (T, V)–phase space in the bottom panel.
The numerical value of R0 is shown to notice the incidence it has on the system’s behavior. The initial
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conditions considered for the simulation are T(0) = 500 and V(0) = 1 and the parameter values are
shown in Table 1, while different values for the effective contact rate between CD4 T-cells and the virus
β are assigned.
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Figure 1. Numeric solutions vs. time (top panels) and phase space (bottom panel), corresponding to
uninfected CD4 T-cells and viral load in model (1), with β = 6× 10−6 and R0 = 0.8953 are shown.
In this scenario the virus-free equilibrium E0 is locally asymptotically stable.

For the first simulation in Figure 1, β = 6× 10−6 was used to have R0 = 0.8953. Given that
R0 < 1, the virus-free equilibrium E0 = (1366, 0) is locally asymptotically stable. Note that CD4 T-cells
achieve equilibrium after 150 days, approximately, while the viral load is immediately eliminated.
The phase portrait in the bottom panel shows, in dashed magenta and dashed yellow, the null-clines
Ṫ = 0 and V̇ = 0, respectively; therefore, the black intersection point at (1366, 0) corresponds to the
virus-free equilibrium E0. Several numerical solutions are shown and depicted by means of solid
black lines that describe the state trajectories toward E0. In this scenario, the virus-free equilibrium
presents a stable node behavior [44]. As discussed above in the virus-free equilibrium stability analysis,
this scenario, while desirable, cannot be definitively achieved, i.e., the virus cannot be eliminated from
the organism of an HIV+ patient. However, it is clear that antiretroviral treatment therapies must be
focused on reducing the value of R0 to bring the HIV+ patient to undetectable viral load levels.

In Figure 2 the simulation for R0 > 1 is shown. The values mentioned in Table 1 were considered
again, but the value of the effective contact rate between CD4 T-cells and the virus was increased,
specifically β = 4× 10−5, to have R0 = 5.0175. As R0 > 1, the endemic equilibrium E1 = (231, 1468),
is locally asymptotically stable. Indeed, in both, the CD4 T-cell concentration T and viral load V,
oscillations were present until achieving the corresponding equilibriums, as illustrated in the top panels.
It is noteworthy that for uninfected CD4 T-cells (left), the value 231/mm3 is reached, corresponding
to a very low T-cell concentration and leading to the patient’s need to initiate antiretroviral therapy.
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Furthermore, it is important to underscore that viral concentration grows extremely quickly from
the initial condition point V(0) = 1 until achieving a maximum of approximately 30,000 viral load
per mm3. From there, a set of damped oscillations follows until reaching equilibrium. In the bottom
panel, the phase portrait shows the stable spiral-type behavior of the solution (solid black line) [44].
As in the previous case, in dashed magenta and dashed yellow, the null-clines Ṫ = 0 and V̇ = 0,
respectively, are shown; therefore, the intersection points between those lines correspond to the
system’s equilibria.
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Figure 2. Numeric solutions vs. time (top panels) and phase space (bottom panel), corresponding to
uninfected CD4 T-cells and viral load in model (1), with β = 4× 10−5 and R0 = 5.0175 are shown.
In this scenario, the endemic equilibrium E1 is locally asymptotically stable.

3. Model with CD4 T-Cell Activation Time

3.1. Model Formulation

The uninfected CD4 T-cell population consists of resting T cells that have not been
immunologically activated and of activated T cells, also known as helper T-lymphocytes.
The importance of this distinction is that HIV infects resting lymphocytes, but only 1% actively
replicate, which indicates that in 99% the pro-viral genome is housed and dormant [7,16,17,21,39].

Assume, then, that τ is the average time that immunological activation of resting T cells requires
converting into active HIV replicators. In system (1), it was assumed that ηTV was the average
concentration of viral particles produced in a time t, with η = Nδβ. Consider that the number of new
virions produced depends on the T cells previously infected, which permits considering those infected
during their idle state. One way to enact this consideration in a differential equation system is by
incorporating a continuous delay term, as proposed by Volterra, and given by
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ηV
∫ t

−∞
F(t− τ)T(τ)dτ,

where F is a factor considering the emphasis that should be given to the T cell population size in the
recent past. According to this, system (1) adopts the integro-differential form shown below:Ṫ = σ + αT

(
1− T

k

)
− βTV − µT

V̇ = ηV
∫ t
−∞ F(t− τ)T(τ)dτ − cV.

(7)

Function F in (7) is called kernel and has been used by authors, including [45–47], in the context of
predator-prey models, but with different forms. On the topic, Ref. [48] states that F’s general form is

Fm(t) =
am

(m− 1)!
tm−1e−at, (8)

with a > 0 and m ∈ N. In [49], it is warned that cases different from m = 1 and m = 2 are minimally
objective from the point of view of expected results, as from m = 3 significant changes in function
behavior are not observed. Further, when m tends toward infinity, the Fm function tends toward the δ

function. In our case, m = 1 is considered, then (8) takes the form,

F(t) = ae−at; a > 0.

Therefore, system (7) can be written as,Ṫ = σ + αT
(

1− T
k

)
− βTV − µT

V̇ = ηV
∫ t
−∞ ae−a(t−τ)T(τ)dτ − cV.

(9)

One way to study the integro-differential system (9) is to transform it into an ordinary differential
equation system via the introduction of a new variable, suggested by [46] and defined by,

W(t) =
∫ t

−∞
ae−a(t−τ)T(τ)dτ; t ≥ 0.

Expressing again, in equivalent form, the following results:

W = a
[∫ s

−∞
e−a(t−τ)T(τ)dτ +

∫ t

s
e−a(t−τ)T(τ)dτ

]
,

with s ≤ t. Deriving W with respect to t:

Ẇ = a
[∫ s
−∞

∂
∂t

[
e−a(t−τ)T(τ)

]
dτ + d

dt

∫ t
s e−a(t−τ)T(τ)dτ

]
= a

[
−
∫ s
−∞ ae−a(t−τ)T(τ)dτ + T(t)

]
= a

[
T(t)−

∫ s
−∞ ae−a(t−τ)T(τ)dτ

]
= a(T −W).

As such:

Ẇ = a(T −W).

Thus, the integro-differential system (9) is transformed into a system of ordinary differential
equations, which will be the object of study in the following sections and which is shown ahead,
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
Ṫ = σ + αT

(
1− T

k

)
− βTV − µT

V̇ = ηVW − cV

Ẇ = a(T −W).

(10)

The theory on the topological equivalence of systems (9) and (10) may be consulted in [46].

3.2. Stability Analysis with CD4 T-Cell Activation Time

In order to find System (10)’s stationary solutions, the algebraic system that results from
equaling the derivatives to zero is solved and two equilibriums are obtained: trivial and endemic.
The virus-free equilibrium is denoted by E0, corresponding to the absence of viral load and given by
E0 = (T0, V0, W0), where:

T0 =
kµ

2α

[
(ξ0 − 1) +

√
(ξ0 − 1)2 +

4ασ

kµ2

]
V0 = 0

W0 =
kµ

2α

[
(ξ0 − 1) +

√
(ξ0 − 1)2 +

4ασ

kµ2

]
.

This equilibrium makes biological sense because T0 = W0 and the positivity of T0 was previously
studied in Proposition 2. Further, E0 may be expressed in terms of R0, as follows:

E0 = (T0, V0, W0) =

(
c
η

R0, 0,
c
η

R0

)
.

Moreover, endemic equilibrium E1 = (T1, V1, W1), where a non-zero viral load exists, presents the
following coordinates:

T1 =
c
η

, V1 =
cα + kηµ

kβη
(ξ1 − 1) and W1 =

c
η

.

It is observed that the first two coordinates T1 and V1 coincide with those shown in (6),
which correspond to the endemic equilibrium of system (1), whose biological sense was previously
discussed with the help of Lemma 1. As W1 = c

η > 0, it is concluded that E1 = (T1, V1, W1) also
makes biological sense.

We now analyze the stability of the virus-free equilibrium E0 and endemic equilibrium E1 in
Propositions 6 and 7, respectively. In both cases, the Jacobian matrix given in (11) is required,

J(T, V, W) =


α− 2αT

k − βV − µ −βT 0

0 ηW − c ηV

a 0 −a

 . (11)

Proposition 6. The virus-free equilibrium E0 in system (10) is locally asymptotically stable, if and only if
R0 < 1.
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Proof. Evaluating the Jacobian matrix (11) in the virus-free equilibrium E0 results in

J(E0) =


α− µ− 2αT0

k −βT0 0

0 ηW0 − c 0

a 0 −a

 ,

whose characteristic equation is given by

(λ + a)(λ− ηW0 + c)(kλ− kα + kµ + 2αT0) = 0,

then, the corresponding eigenvalues are

λ1 = −a

λ2 = ηW0 − c = ηT0 − c = c
(η

c
T0 − 1

)
= c(R0 − 1)

λ3 = α− µ− 2αT0

k
.

Clearly, λ1 < 0. For λ2 one has λ2 < 0, if and only if R0 < 1 and for λ3 < 0 it must be ensured that
α− µ− 2αT0

k < 0, which was previously verified in the proof of Proposition 4. Thus, it is concluded
that virus-free equilibrium E0 is locally asymptotically stable, if and only if R0 < 1.

Proposition 7. If R0 > 1 and a > a0 = c2(cα+kηµ)(ξ1−1)
c2α+kη2σ

, endemic equilibrium E1 in system (10) is locally
asymptotically stable.

Proof. Evaluating the Jacobian matrix (11) in endemic equilibrium E1 results in

J(E1) =


α− 2αT1

k − βV1 − µ −βT1 0

0 0 ηV1

a 0 −a


whose characteristic equation is given by:

λ3 + b1λ2 + b2λ + b3 = 0

where coefficients b1, b2, and b3 correspond to:

b1 = a + µ− α +
2cα + (cα + kηµ) (ξ1 − 1)

kη

b2 = a
[

µ− α +
2cα + (cα + kηµ) (ξ1 − 1)

kη

]
b3 =

ac (cα + kηµ) (ξ1 − 1)
kη

and where it is observed that:

b1 = a +
1
a

b2. (12)

If in b1 and b2, ξ1 is replaced as in (5), the following is obtained:
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b1 =
c2α + ackη + kη2σ

ckη
> 0

b2 =
a
(
c2α + kη2σ

)
ckη

> 0.

In addition, it is observed that ξ1 > 1 implies b3 > 0. As in Lemma 1, it was demonstrated that
R0 > 1, if and only if ξ1 > 1, and so it is concluded that R0 > 1 implies b3 > 0. Conversely,

a > c2(cα+kηµ)(ξ1−1)
c2α+kη2σ

⇔ a(c2α + kη2σ) > c2(cα + kηµ)(ξ1 − 1)

⇔ a
[

a(c2α+kη2σ)
ckη

]
> ac(cα+kηµ)(ξ1−1)

kη

⇔ ab2 > b3

⇒ ab2 +
1
a b2

2 > b3

⇔
(

a + 1
a b2

)
b2 > b3.

If on the left side of the last inequality, expression (12) is replaced, b1b2 > b3 is obtained.
Then, based on the Routh-Hurwitz criteria [50], it is concluded that the equilibrium E1 is locally

asymptotically stable whenever R0 > 1 and a > a0 = c2(cα+kηµ)(ξ1−1)
c2α+kη2σ

.

3.3. Simulation with CD4 T-Cell Activation Time

To graphically illustrate the stability results obtained analytically for the model for CD4 T-cell
with activation time described in (10), two numerical simulations were performed, again using the
parameter values from Table 1. The state W does not appear explicitly in the simulation, but it requires
an initial condition, for which W(0) = 0 was considered. In this case, two scenarios associated with the
threshold value a from Proposition 7 are shown, specifically a = 5 and a = 2, displaying the numerical
solutions associated with CD4 T-cell populations and viral load, in addition to phase-space depictions.

From the parameter values in Table 1, a numerical value for the threshold a0 from Proposition 7
was obtained,

a0 =
c2(cα + kηµ)(ξ1 − 1)

c2α + kη2σ
= 2.9390374331550797,

therefore, in Figure 3, we set a = 5 > a0, T(0) = 500 and V(0) = 1 are used as initial conditions;
additionally, β = 4× 10−5 was considered as in Figure 2 to compare both dynamics without and with
CD4 T-cell activation times. As stated before, considering the parameters in Table 1, we get R0 = 5.0175;
therefore, the endemic equilibrium E1 is locally asymptotically stable for both models. A numerical
solution with CD4 T-cell activation time (delayed model (10)) is shown in solid orange, while a
numerical solution without CD4 T-cell activation time (model (1)) is shown in dashed blue. As expected,
both solutions tend towards the endemic equilibrium E1. This coincides with the stability results
from Propositions 4 and 7. It is important to note that the model considering CD4 T-cell activation
time implies wider oscillations in both concentrations, which also implies that more time is needed
to reach equilibrium state (a longer transient). It can also be observed that solutions with activation
time are slightly delayed with respect to the solutions not considering activation time. Certainly,
the magnitude of this delay is controlled by the value of parameter a. In particular, regarding the viral
load concentration, it can be observed that it grows very quickly from the initial condition V(0) = 1,
but reaches an approximate maximum average concentration >45,000 cells per mm3; whereas, in the
scenario without activation time that maximum was slightly >30,000 cells per mm3 (see Figure 2,
right top panel). In the bottom panel, the phase portrait is shown for T, V and W from the model
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with CD4 T-cell activation time, in which the blue trajectory tends toward the endemic equilibrium,
corresponding to an attractor spiral.
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Figure 3. Numeric solutions vs. time (top panels) and phase space (bottom panel), corresponding to
uninfected CD4 T-cells and viral load for the model without CD4 T-cell activation time (1) in dashed
blue, and with CD4 T-cell activation time (10) in solid orange are shown. Both solutions are obtained for
β = 4× 10−5 to get R0 = 5.0175, the parameters in Table 1 and a = 5 (a > a0, as stated in Proposition 7).
The initial conditions are T(0) = 500 and V(0) = 1. In this scenario, the endemic equilibrium E1 is
locally asymptotically stable.

For the simulation in Figure 4, we use a = 2 < a0, case in which Proposition 7 does not decide
on the stability of E1. As in the previous cases, β = 4× 10−5 and R0 = 5.0175 > 1. The numerical
results from model (10) are shown in solid blue. No equilibria stability is observed, indeed, the main
characteristic related to this simulation is the periodic behavior. In the bottom panel, two solutions
in the phase space are shown for T(0) = 500, V(0) = 1 and W(0) = 0 in solid blue and T(0) = 230,
V(0) = 1467 and W(0) = 0 in solid orange. These solutions are not attracted by an equilibrium,
but by a limit cycle surrounding the endemic equilibrium E1. This situation reflects a critical state
of the patient’s immune system due to the alternation between moments of high immunodeficiency
(which would require a strong intervention with antiretroviral treatments) and moments of relative
immune strength.
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Figure 4. Numeric solutions vs. time (top panels) and phase space (bottom panel), which correspond
to uninfected CD4 T-cells T and viral load (V) from Model (10), with a = 2, β = 4 × 10−5 and
R0 = 5.0175. In this scenario, the virus-free equilibrium E1 is unstable. In the phase space, the initial
conditions for the blue curve are T(0) = 500 and V(0) = 1, and the initial conditions for the orange
curve are T(0) = 230 and V(0) = 1467.

4. Conclusions

The study of the model without CD4 T-cell activation time allowed knowing the local stability
conditions of the system depending on the value of the basic reproduction number. Certainly, it is
enough to bring that value <1 for the viral load of the HIV+ patient to be controlled. This viral load
control may be done by using antiretroviral therapy and it should focus on reducing the value of the
model’s own parameters, such as the rate of effective contact between CD4 T-cells and the virus, or the
number of viral particles produced per infected cell.

The study of models for infection with HIV, with and without activation time, contributes to
understanding the effect that this activation time has on the T cells and viral load dynamics. In general,
considering that activation time delays the time of successive infection peaks, and wider oscillations are
observed if compared with a scenario without activation time, which indicates a more profound lack
of stability on the HIV+ patient’s immunological system. It is important to highlight that the threshold
value a0, given in Proposition 7, corresponds to a bifurcation parameter. Indeed, for R0 > 1 and a > a0,
the endemic equilibrium is locally asymptotically stable, i.e., sustained viremia levels are reached
by the host. However, for R0 > 1 and a < a0, a more in-depth analytical study can be performed;
however, it was shown numerically that the endemic equilibrium was unstable. Indeed, according
to [51], if the kernel in model (7) has the form (8), a Hopf bifurcation happens. This is verified, at least
numerically, with the phase portrait shown in Figure 4, where a limit cycle is observed.

Mathematical models permit implementing different theories, which help to interpret and analyze
an epidemiological problem, such as HIV infection. Our work presents a simple model, with only two
state variables, that allows reflecting on the importance of considering intracellular activation times
when modeling HIV infection. Although the study of HIV dynamics using simple models (like the one
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presented here) is desirable, most robust models, involving the most crucial aspects of cell biology, can
provide better predictions about the infection’s dynamics. Finally, it should be considered that this
type of model is quite sensitive to the parameter values, and thus, its use by decision makers should
always be supported by clinical evidence and expert criteria.
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