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Abstract: The rapid development of renewable energy, represented by wind and photovoltaic,
provides a new solution for island power supplies. However, due to the intermittent and random
nature of renewable energy, a microgrid needs energy-storage components to stabilize its power supply
when coupled with them. The emergence of seawater-pumped storage stations provides a new method
to offset the shortage of island power supply. In this study, an optimal scheduling of island microgrid is
proposed, which uses seawater-pumped storage station as the energy storage equipment to cooperate
with wind, photovoltaic and diesel generator. First, a mathematic formulation of seawater-pumped
storage station with renewable energy is presented. Then, to reach the goal of economic dispatch,
an optimal scheduling model of island microgrid is established with the consideration of both
respective operation constraints and island load requirements. Finally, the effectiveness of the
proposed model is verified by an island microgrid over two typical seasons. The simulation results
show that the proposed framework not only increases the usage of renewable energy, but also
improves the operational reliability and economy of island microgrids.

Keywords: optimal scheduling; island microgrid; seawater-pumped storage station; renewable
energy resources

1. Introduction

As many island micro grids are not connected with the continent [1–3], distributed renewable
power and generators have become the major sources of island power supply. Hence, the reliability
of island microgrid would be affected by random variability of renewable energy and loads [4,5].
To achieve the goal of reliable operation, there is an urgent need to adopt power storage equipment for
regulation [6,7].

Pumped storage is the most widely used power storage technology that combines the advantages
of high efficiency, large capacity, long storage period and maturity all together [8–10]. Since the ocean
may be regarded as an infinite natural reservoir, building seawater-pumped storage stations on islands
has some natural advantages. These pumped-storage stations play an auxiliary role in island power
supply and can be considered as a new type of energy storage system [11,12]. Therefore, it is both
promising and necessary to conduct research on the optimal scheduling of island microgrid with
seawater-pumped storage stations.

In terms of the research on seawater-pumped storage station, Japanese are at the forefront.
They built the first experimental station on Okinawa Island with a total installed capacity of 30 MW in
1999 [13]. In addition, some Japanese scholars have carried out theoretical research in the field of power
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system with seawater-pumped storage stations and renewable energy. For example, a construction
and operation scheme of seawater-pumped storage station is proposed in reference [14]. In this study,
seawater-pumped storage station was regarded as a means to utilize wind power effectively. Based
on the model of renewable energy and seawater-pumped storage station, reference [15] suggested a
scheduling method for island microgrid with wind–light-marine storage. Reference [16] studied the
dispatching model of seawater-pumped storage station with renewable energy and stated a multiple
time scales optimal scheduling method for active distribution network. The coordinate dispatching
method of seawater-pumped storage station and wind farms provides a new idea of improving power
supply capacity is shown in reference [17]. In reference [18], based on the working mechanism of
seawater-pumped storage station, the role it played in improving island power supply capacity is
studied, and the coordinate operation prospect of seawater-pumped storage station and renewable
energy is introduced. References [19,20] summarized the sites where seawater-pumped storage station
can be built in China. In addition, the difficulties during construction process were also investigated.
By taking one island microgrid in Spain as example, reference [21] studied the coordinated optimal
dispatching method with the participation of seawater-pumped storage station. Aiming to solve the
reliable operation problem caused by photovoltaic, reference [22] suggested a coordinated optimal
operation method for photovoltaic generation system with seawater-pumped storage stations, and the
superiority and validity of proposed model were also verified by a simulation of optimal operation
in Italy. In reference [23], the coordinated optimal operation method of seawater-pumped storage
station and offshore wind power generations is studied, while a series of simulations on Rhode Island
were performed to ensure the effectiveness of proposed method. Coordinated operation schemes
of wind-power-generation systems with compressed-air energy storage, seawater-pumped storage
station and heat energy storage system are discussed in reference [24], and the advantages of each
scheme were also tested by simulations of a practical power grid. In reference [25], seawater-pumped
storage stations were used to improve the output of wind power, and an experimental marine storage
power station was chosen to examine the effectiveness.

Many scholars have conducted impressive research on the operation characteristics of island
microgrids with seawater-pumped storage station and renewable energy. However, the research of
seawater-pumped storage station remains in the theoretical stage, as many challenges in the optimal
scheduling of island microgrids with seawater-pumped storage stations and renewable energy are still
ahead of us. Due to the scarcity of optimal scheduling methods for island microgrid systems, some key
technical problems are still waiting to be solved.

This study focuses on the days-ahead optimal scheduling method—as well as the model of island
microgrids that couple with seawater-pumped storage stations and renewable energy. The main
contributions of this article are as follows:

1. Based on the equivalent model of seawater-pumped storage station’s reservoir, the optimal
scheduling method model of seawater-pumped storage station in island microgrid is established
for the first time;

2. A coordinated optimal dispatching model of seawater-pumped storage station and renewable
energy is suggested;

3. An optimal scheduling method for island microgrid with seawater-pumped storage station is
proposed for the first time.

2. Problem Description and Optimization Framework

2.1. Microgrid Description

Electric power supply capacity of island micro grids is relatively weak, as a result of being
separated from the continent. Most of them rely heavily on the distributed generators and renewable
energy generation systems for power supply. In view of the randomness of renewable energy output,
the participation of energy storage equipment is urgently needed.
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The ocean is a natural reservoir for islands. By building seawater-pumped storage stations,
not only can power-supply pressure be alleviated, but also the power-supply capability can be
improved accordingly. A proposed island microgrid system with a seawater-pumped storage station
and renewable energy resources is shown in Figure 1, which is powered by both diesel generators and
renewable energy. To maintain energy balance, the seawater-pumped storage station, renewable energy,
diesel generator and interruptible loads are all involved in the power regulation of the island microgrid.
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Figure 1. Framework of proposed island microgrid system.

2.2. Optimization Framework

In this study, the optimal scheduling of proposed island microgrid was studied. Optimal scheduling
requires input data such as the predictions of renewable energy and load output, parameters of both
seawater-pumped storage station and distributed generators. The input and output data that required by
proposed optimization frameworks are summarized in Figure 2.
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Input data:

• Short-term forecast data of renewable energy and loads;
• Parameters of seawater-pumped storage station;
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• Parameters of interruptible loads, diesel generator, wind turbines and photovoltaic system;

Variables:

• Power outputs of diesel generator and seawater-pumped storage unit;
• State variables of interruptible loads, diesel generator, seawater-pumped storage unit in generating

and pumping status;
• Wind and photovoltaic power curtailments;
• Curtailment of rigid loads.

3. Scheduling Model of the Island Microgrid

The island microgrid system proposed in this study contains seawater-pumped storage stations,
renewable energy and diesel generators. In this section, the scheduling models of these components
are built, respectively, and an optimal scheduling model of island microgrid is established accordingly.
The specific process is detailed below.

3.1. Model of Variable-Speed Seawater-Pumped Storage Station

The structure of a traditional pumped-storage station includes one generator unit, one pumping
station and upper and lower reservoirs. By using variable speed drive equipment, the power-regulation
ability of the pumped storage station is improved, and the curtailments of renewable energy and
rigid load—as well as the use of diesel generators can be further reduced. Since the lower reservoir of
seawater-pumped storage station is the ocean, the water resource is unlimited. Hence, the capacity of
seawater-pumped storage station can be considered as almost infinite, and only the water amount
of the upper reservoir needs to be considered in the optimal scheduling. The operational model of a
variable speed seawater-pumped storage station can be expressed as follows.

3.1.1. Equivalent Reservoir Model of Variable-Speed Seawater-Pumped Storage Station

As the lower reservoir of seawater-pumped storage stations can be treated as infinite, the water
amount of upper reservoir is similar to the state-of-charge (SOC) of chemical-energy storage batteries.
The water level of the upper reservoir in seawater-pumped storage station is denoted by SOCsea in
Equation (1) as follows:

SOCsea(t) =
Qup(t)
Qmax

(1)

where Qup(t) is the seawater quantity stored in the upper reservoir in period t, which is limited by the
maximum storage capacity of the upper reservoir (Qmax).

In period t, the quantity of seawater stored in the upper reservoir is given as Equation (2).

Qup(t) = (1− l) ×Qup(t− 1) +
∫ t

t−1
qpump(t)dt−

∫ t

t−1
qgen(t)dt (2)

where L is the leakage loss coefficient of evaporation, which is equivalent to the self-discharge rate of
chemical energy storage batteries. qpump(t) represents the water flow rate that pumped from the sea in
period t, and the water flow rate that pumped into the turbine in period t can be expressed as qgen(t).

3.1.2. Generating and Pumping Models

The output power of the pumped station under generating mode can be calculated by Equation (3):

Pgen(t) = kgenρgh×
∫ t

t−1
qgen(t)dt (3)
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where kgen is the efficiency of the turbine generator. ρ denotes the density of seawater (1050 kg/m3).
The gravity acceleration (9.8 m/s2) is expressed as g and the drop between generator and the lower
reservoir is represented by h. Given that the drop between the upper and lower reservoirs is much
greater than the water level of the upper reservoir, the impact imposed by the SOC on h is neglected.

When working in pumping mode, the energy requirements of a pumped-storage station are
fulfilled by local active distribution network directly. The water volume sucked from the sea can be
expressed as Equation (4): ∫ t

t−1
qpump(t)dt =

kpumpPpump(t)
ρgh

(4)

where kpump denotes the efficiency of the pump–motor unit, while Ppump(t) represents the input power
of pumping mode in period t.

3.1.3. Operation and Maintenance Costs of Variable-Speed Seawater-Pumped Storage Station

Seawater has a high salt content that is corrosive to pipelines and can increase system maintenance
costs. Hence, the total operation costs of seawater-pumped storage station contain not only the costs
of generating and pumping unit, but also the costs of pipelines and other components. Equation (5)
denotes the total operation and maintenance costs of the seawater-pumped storage station, including
the startup costs of generator (Ccr

gen) and pump–motor unit (Ccr
pump), the maintenance cost of pipelines

and other components in seawater-pumped storage station (Cin
sea), as well as the maintenance costs of

turbine generator and pump–motor unit (Crun
sea ).

Equations (6) and (7) are the startup costs of the turbine generator and the pump–motor unit,
respectively. Here, the startup fees of the turbine generator and the pump–motor unit are denoted
by Cgen and Cpump in sequence, and µgen(t), µpump(t) are binary variables that are, respectively related
to the states of turbine generator and pump–motor unit in period t, while 0 represents shutdown
and 1 represents startup. Equation (8) denotes the maintenance costs of the turbine generator and
pump–motor unit, while the maintenance cost of pipelines and other components can be expressed as
Equation (9). Here, λrun

gen and λrun
pump represent the maintenance cost coefficients of turbine generator and

pump–motor unit, respectively. Moreover, the corrosiveness cost coefficient of pipelines and other
components is denoted by λco

sea.

Csea(t) = Ccr
gen(t) + Ccr

pump(t) + Cin
sea(t) + Crun

sea (t) (5)

Ccr
gen(t) = Cgen × µgen(t) × [1− µgen(t− 1)] (6)

Ccr
pump(t) = Cpump × µpump(t) × [1− µpump(t− 1)] (7)

Crun
sea (t) = λrun

genPgen(t) + λrun
pumpPpump(t) (8)

Cin
sea(t) = λco

sea[Pgen(t) + Ppump(t)] (9)

3.2. Model of Renewable Energy

This study takes the operation costs of renewable energy into consideration; the cost models of
wind turbine and photovoltaic generation system can be expressed as follows [26,27].

3.2.1. Wind Turbine

CW is the running and maintenance costs of wind turbine, which can be calculated by Equation (10).

CW(t) = λrun
w Pmax

WT (t) (10)
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Pmax
WT (t) =


0 0 ≤ v < vc

Pwr
(
awv2 + bwv + cw

)
vc ≤ v < vr

Pwr vr ≤ v < v f
0 v f ≤ v

(11)

where Pmax
WT (t) is the maximum power output of wind turbine that depends on the rated power and

wind speed, and the coefficient of running and maintenance costs is denoted by λrun
w .

The power output of the wind turbine can be expressed as Equation (11). Where aw, bw and cw

are the coefficients of wind turbine that relate to its characters. When the received wind speed (v)
reached the cut-in wind speed (vc), wind turbines start generating electricity and keep increasing until
it reached the rated number (vr). Then, these wind turbines would produce electricity with its rated
power (Pwr). If the received wind speed is smaller than the cut-in wind speed (vc) or bigger than the
cut-out wind speed (vf), wind turbine would suspend its power generation.

3.2.2. Photovoltaic Model

CPV represents the running and maintenance costs of photovoltaic generation system, which can
be obtained by Equation (12).

CPV(t) = λrun
pv Pmax

PV (t) (12)

Pmax
PV (t) = ηpv × Ipv(G, Te) ×Upv(G, Te) (13)

where λrun
pv denote the running and maintenance costs coefficient of photovoltaic system. Pmax

PV (t)
represents the maximum power output of photovoltaic generation system that can be calculated by
Equation (13). Where ηpv is the efficiency of photovoltaic system, G and Te represent the light intensity
and temperature, respectively. In addition, the current and voltage of photovoltaic generation system
under simulation environment are separately denoted by Ipv, Upv.

3.3. Diesel Generator Model

The operation cost model of diesel generator is shown as Equation (14).

CDE(t) =
NDE∑
i=1

[a(i)PDE(i, t)2 + b(i)PDE(i, t) + uDE(i, t)c(i)] (14)

where NDE represents the total number of diesel generator. a(i), b(i) and c(i) are the consumption
coefficients of diesel generator i, respectively. PDE(i,t) denotes the power output of diesel generator i in
period t. Moreover, the running state variable of diesel generator i in period t is marked by uDE(i,t),
while 0 represents shutdown and 1 represents startup.

In the meantime, the startup and shutdown costs—as well as the maintenance cost of diesel
generators that are shown in Equations (15) and (16), respectively—must also be considered in the
optimal scheduling model.

CDEs(t) =
NDE∑
i=1

uDE(i, t)[1− uDE(i, t− 1)]Con(i) +
NDE∑
i=1

uDE(i, t− 1)[1− uDE(i, t)]Co f f (i) (15)

CDEr(t) =
NDE∑
i=1

λrun
DE PDE(i, t) (16)

where Con(i) and Coff(i) represent the startup and shutdown costs of diesel generator i, respectively.
λrun

DE is the unit maintenance cost of diesel generators.
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3.4. Objective Function

The goal of optimization is to minimize the total operation and maintenance costs of island
microgrid (Fday). Cost function of proposed microgrid contains the operation costs of seawater-pumped
storage station, interruptible loads invoking spend, as well as the expenses of renewable energy and
diesel generators. Objective function of proposed optimization framework is shown in Equation (17)
as follow.

min Fday =
T∑

t=1
[CIL

NIL∑
j=1

PIL( j, t) + CW(t) + CPV(t) + Crigid

Nbus∑
k=1

Prigid(k, t) + Csea(t) + CDE(t) + CDEs(t) + CDEr(t)] (17)

where the total number of periods in day-ahead scheduling, interruptible loads and rigid loads are
denoted by T, NIL and Nbus, respectively. CIL and Crigid are the unit compensation fees of interruptible
load and rigid load in sequence, while the interrupted power pertained to the interruptible load j and
rigid load k in period t are, respectively defined as PIL(j,t) and Prigid(k,t).

3.5. Constraints

Constraints included in the optimization framework are categorized into five groups, each of
them are, respectively presented as below.

3.5.1. Power Balance Equality Constraint

Power generation sources in proposed island microgrid system include turbine generator, wind
turbines, photovoltaic generation system and diesel generators. Electricity produced by them can be
consumed in three different ways, including the demand of rigid loads and interruptible loads, as well
as the input power of pumping system. To simplify the calculation process, the power balance between
generation and consumption should be satisfied all time in proposed microgrid. The power balance
equality constraint can be expressed as Equation (18).

Pgen(t) +
NDE∑
i=1

PDE(i, t) + PWT(t) + PPV(t) =
NIL∑
j=1

PIL( j, t) +
Nbus∑
k=1

Prigid(k, t) + Ppump(t) (18)

where PWT(t) and PPV(t) are the power output of wind turbine and photovoltaic generation system in
period t, respectively

3.5.2. Variable-Speed Seawater-Pumped Storage Station Constraints

Power generation and consumption of seawater-pumped storage station should be limited within
a certain range, which is addressed in Equations (19) and (20). Where Pmin

gen , Pmax
gen , Pmin

pump and Pmax
pump

denote the minimum and maximum power of proposed seawater-pumped storage station when
working in its generating and pumping mode, respectively. Equation (21) prevents the simultaneous
occurrence of generating and pumping in period t. To ensure the model has sufficient margin and
capable for further adjustment, the equivalent SOC constraint of seawater-pumped storage station is
introduced and shown as Equation (22). Where the lower and upper bounds of seawater-pumped
station are presented by SOCmin

sea and SOCmax
sea in sequence. In addition, the total water amounts of

generation and evaporation shall be equal to the water amount that pumped from the lower reservoir,
which can be expressed as Equation (23).

µgen(t)Pmin
gen ≤ Pgen(t) ≤ µgen(t)Pmax

gen (19)

µpump(t)Pmin
pump ≤ Ppump(t) ≤ µpump(t)Pmax

pump (20)
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µgen(t) × µpump(t) = 0 (21)

SOCmin
sea ≤ SOCsea(t) ≤ SOCmax

sea (22)

T∑
t=1

[

∫ t

t−1
qpump(t)dt] =

T∑
t=1

[

∫ t

t−1
qgen(t)dt] +

T∑
t=1

[l×Qup(t)] (23)

3.5.3. Diesel Generator Constraints

For each diesel generator, not only the output power, but also the fluctuation of it, should be limited
by the lower and upper bounds. These constrains can be described as Equations (24) and (25), respectively.

u(i, t)Pmin
DE (i) ≤ PDE(i, t) ≤ u(i, t)Pmax

DE (i) (24)

−Rdown
DE (i)∆t ≤ PDE(i, t) − PDE(i, t− 1) ≤ Rup

DE(i)∆t (25)

where Pmin
DE (i) and Pmax

DE (i) are the lower and upper bounds of output power of generator i, respectively.
∆t is the time step, and the shifting up and shifting down limits of diesel generator i are represented by
Rup

DE(i) and Rdown
DE (i) in sequence.

3.5.4. Renewable Energy Constraints

Equations (26) and (27) are the output power constrains of wind turbine and photovoltaic
generation system.

0 ≤ PWT(t) ≤ Pmax
WT (t) (26)

0 ≤ PPV(t) ≤ Pmax
PV (t) (27)

3.5.5. Reserve Capacity Constraint

To ensure the safety operation, reserve capacity of proposed island microgrid should not be too
low to surpass the minimum reserve capacity (Pmin

R ), which is shown in Equation (28).

Pmin
R ≤ PR(t) (28)

where the reserve capacity of island microgrid in period t is marked by PR(t).

3.6. Approach to Solving the Proposed Model

Figure 3 shows the flowchart of optimal scheduling process for proposed island microgrid.
By using Mixed Integer Nonlinear Programming (MINLP) [28] method in the General Algebraic
Modeling System (GAMS) [29], this coordinated optimal dispatching model is solved. All the case
studies were conducted on a 3.8-GHz Lenovo PC with core(TM) i5–7500 CPU and 8 GB of RAM
(Kunming, China) within 28 s.
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4. Case Study

4.1. Framework of Island Microgrid

Distribution network of proposed island microgrid is shown in Figure 4, where the seawater-
pumped storage station, diesel generator, photovoltaic and wind turbines are, respectively allocated to
nodes 0, 1, 3 and 6. In addition, node 1, 5, 7 and 9 is accessed by the interruptible loads with capacity
of 300, 420, 200 and 150 kW, respectively, the compensation fee of each interruptible load curtailment is
0.4, 0.35, 0.3 and 0.3 ¥per kilowatt hour in sequence.Processes 2020, 8, x FOR PEER REVIEW 10 of 17 
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Figure 4. Distribution network of island microgrid.
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The load curve of experimental microgrid under different season is shown in Figure 5. Some typical
data are collected in the south of China, based on these records, the power-output prediction of
renewable energy is calculated and shown in Figure 6. Parameters of seawater-pumped storage station,
diesel generator, wind turbine and photovoltaic generation system are listed in Tables 1–3, respectively.
The costs of wind power, photovoltaic and rigid load curtailment are 0.3, 0.25 and 4 ¥per kilowatt hour
in sequence.
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Figure 5. Load curve of the experimental microgrid. (a) load curve of the experimental microgrid in
summer; (b) load curve of the experimental microgrid in winter.Processes 2020, 8, x FOR PEER REVIEW 11 of 17 
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Figure 6. Power-output prediction of renewable energy resources. (a) power-output prediction of
renewable energy resources in summer; (b) power-output prediction of renewable energy resources
in winter.

Table 1. Parameters of seawater-pumped storage station.

Pmax
gen /P

max
pump (kW) kgen/kpump Cgen/Cpump (¥) λrun

gen/λ
run
pump (¥/kW) λco

sea (¥/kW)

Generating mode 4000 0.92 300 0.15
0.05Pumping mode 4000 0.78 400 0.15

Table 2. Parameters of diesel generator.

a b c Pmin
DE (kW) Pmax

DE (kW) Con (¥) Coff (¥) NDE λrun
DE (¥/kW)

0.0015 0.348 228 50 500 50 5 4 0.1

Table 3. Parameters of wind turbine and photovoltaic.

vc (m/s) vr (m/s) vf (m/s) aw bw cw Pwr (kW) λrun
w (¥/kW) ηpv λrun

pv (¥/kW)

3.5 17.5 18 3.4 −12 9.2 130 0.12 0.9 0.1

Three different conditions were conducted in two typical seasons (summer and winter) to analyze
the effectiveness of proposed methodology, where the cases simulated under summer load curve
were marked by Case 1 to 3, and the Cases of 4 to 6 were performed in winter. The working status
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of seawater-pumped storage station and interruptible loads under different cases are, respectively
summarized and listed as below:

Case 1 and 4: Seawater-pumped storage station is in the offline mode and interruptible loads are
not implemented;

Case 2 and 5: Seawater-pumped storage station keeps in the offline mode while interruptible
loads are implemented;

Case 3 and 6: Seawater-pumped storage station is switched into the operating mode and the
interruptible loads are implemented.

4.2. Results and Discussion

In Case 1, 2, 4 and 5, seawater-pumped storage station did not participate in the optimal scheduling.
Hence, Case 3 and 6 are chosen as the benchmark. GAMS is used to calculate the power output of
seawater-pumped storage station, based on the output of GAMS and Equation (1), the equivalent
SOC of seawater-pumped storage station can be further calculated. Corresponding figures of these
parameters under different cases are shown in Figures 7 and 8, respectively.
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Figure 7. Power output of seawater-pumped storage station. (a) Power output of seawater-pumped
storage station in summer; (b) power output of seawater-pumped storage station in winter.
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Figure 8. Equivalent state-of-charge (SOC) of seawater-pumped storage station. (a) Equivalent SOC of
seawater-pumped storage station in summer; (b) equivalent SOC of seawater-pumped storage station
in winter.

The optimal state variables of interruptible loads in Case 3 are listed in Table 4, where 0 denotes
the interruption. In addition, the name of interruptible load x is represented by the abbreviation of ILx
in this table. As there is no interruption happened in Case 6, the corresponding states of interruptible
load under this case are not given in the study.
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Table 4. Optimal state variables of interruptible loads of Case 3.

Period IL1
(Node1)

IL2
(Node5)

IL3
(Node7)

IL4
(Node9) Period IL1

(Node1)
IL2

(Node5)
IL3

(Node7)
IL4

(Node9)

1 1 1 1 1 13 1 1 1 1
2 0 1 1 1 14 1 1 1 1
3 0 1 1 1 15 1 1 1 1
4 0 1 1 0 16 1 1 1 1
5 1 1 1 1 17 1 1 1 1
6 1 1 1 1 18 1 1 1 1
7 1 1 1 1 19 1 1 1 1
8 1 1 1 1 20 0 1 1 1
9 1 1 1 1 21 0 1 1 1

10 1 1 1 1 22 0 1 1 1
11 1 1 1 1 23 1 1 1 1
12 1 1 1 1 24 1 1 1 1

Figures 7 and 8 suggest that the seawater-pumped storage station would work in pumping mode
if the power output of renewable energy is high or the load level of microgrid is low. On the contrary,
if the load level is high or the power output of renewable energy is low, it would release the electricity
that stored before. Thus, the load curve of experimental microgrid would become flatter. In addition,
the fluctuation of power output and equivalent SOC curve is bigger in summer (Figures 7a and 8a)
when compared with winter (Figures 7b and 8b), which means that the seawater-pumped storage
station could adjust its power out according to the variety of load curve. In addition, the result in
Figure 8 also shows that the equivalent SOC of seawater-pumped storage station meets the upper and
lower bound constraints, which means that the pumped storage station still has the ability for further
adjusting process.

The power demand of interruptible loads is fully satisfied in Case 6—and according to Table 4—
only in some special periods of Case 3 that the interruptible loads were cut. The reason of the
interruption happened is that the power demand is low in these period, if the diesel generators is
called, the compensation fees of interruptible load could not offset the cost of diesel generators and
the economy of proposed microgrid would be affected. In the meantime, it is worth mention that
the seawater-pumped storage station is working in the pumping mode during these special periods
in Case 3, which means that the seawater-pumped storage station could arrange its working status
reasonably to ensure the power supply of rigid load in the future and avoid the costly compensation
fees to enhance the economy of proposed island microgrid.

The power output of diesel generators in Case 1 to 5 are shown in Figure 9, as no diesel generator
is called in Case 6, the corresponding figure is removed. In these figures, the power output of diesel
generator in Case 2 (Figure 9b) is smaller than Case 1 (Figure 9a), and the diesel generator was called
only in the periods of 10, 14 and 15 in Case 3 (Figure 9c) which takes seawater-pumped storage station
into consideration. Accordingly, the scheduling model proposed in this study could reduce the costs of
diesel generator effectively in summer.
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Figure 9. Power output of diesel generator under different cases. (a) Power output of diesel generator
in Case 1; (b) power output of diesel generator in Case 2; (c) power output of diesel generator in Case 3;
(d) power output of diesel generator in Case 4; (e) power output of diesel generator in Case 5.x

Due to the decline of wind and photovoltaic in winter, the power output of diesel generators
increased remarkably in Case 4 and 5 (Figure 9d,e). However, these diesel generators were abandoned
in Case 6, which mean that the seawater-pumped storage station could further reduce the total costs of
diesel generator in the seasons with less renewable energy resources, lower load demand and smaller
load fluctuation.

Figures 10 and 11 show the rigid load and renewable energy curtailments under different cases,
respectively. The compensation fee of rigid load curtailment is presented in Figure 12, which can be
calculated by summing the interrupted power of the rigid load at each time period and multiplying
the result with the unit rigid load compensation cost. Since there are no curtailments of renewable
energy and rigid load in Case 3 and 6, Figures 10–12 do not give the corresponding figures.
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Figure 10. Rigid load curtailment under different cases. (a) Rigid load curtailment in Case 1; (b) rigid
load curtailment in Case 2; (c) rigid load curtailment in Case 4; (d) rigid load curtailment in Case 5.
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Figure 11. Renewable energy curtailments under different cases. (a) Renewable energy curtailments
in Case 1; (b) renewable energy curtailments in Case 2; (c) renewable energy curtailments in Case 4;
(d) renewable energy curtailments in Case 5.
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The operation and maintenance costs of proposed island microgrid without rigid load
compensation is given in Figure 13, which is related to the rest part of the objective function in
Equation (17) except the rigid load compensation cost, and can be calculated by using the output
result of GAMS minus the data of Figure 12. Comparing with the aforementioned figures and
tables, the conclusion can be drawn that the model proposed in this study could reduce a large
amount of renewable energy and rigid load curtailments with efficiency. Especially in Case 3 and 6,
where the power output of renewable energy is fully utilized while the rigid loads remain the same.
Thus, the power supply reliability of proposed island microgrid is improved accordingly both in
summer and winter.
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Furthermore, due to the costly compensation fee of rigid loads, as well as the costs of diesel
generators, the operation cost of proposed microgrid would be expensive. However, by introducing
seawater-pumped storage station, the curtailments of rigid loads and renewable energy were reduced,
and the expense growth of island microgrid would become slower. Hence, the scheduling model
proposed in this study could reduce the total operation and maintenance costs of island microgrid
system obviously.

5. Conclusions

The optimal scheduling of island microgrids with seawater-pumped storage stations and renewable
energy is studied in this study, in which the power supply is fulfilled by the power output of renewable
energy and diesel generators. By adding interruptible loads and seawater-pumped storage stations into
the power regulation process, the load curve flattens and an optimal scheduling method is accordingly
established. To verify the validity of proposed model and method, simulation verification under three
different conditions in two typical seasons was carried out.
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Simulation results show that the participation of interruptible loads and seawater-pumped
storage stations in dispatching could reduce the operation and maintenance costs of microgrids—as
well as the curtailments of renewable energy and rigid loads. Particularly, with the participation of
seawater-pumped storage station, rigid loads would not be cut during the dispatching periods, so the
power supply reliability of island microgrid is improved obviously. In addition, the equivalent SOC
of seawater-pumped storage station meets the upper and lower bound constraints simultaneously,
which means that the seawater-pumped storage station could satisfy the power regulation of proposed
island microgrid in the future without expansion. In summary, the optimal scheduling model and
method proposed in this study could improve the reliability and economy of island microgrid system
both in summer and winter remarkably.
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