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Abstract: Unfavorable prognoses and low survival rates are specific features of metastatic melanoma
that justify the concern for the development of new therapeutic strategies. Lately, nanotechnology
has become an attractive field of study due to recent advances in nanomedicine. Using a chick
chorioallantoic membrane (CAM) implanted with xenografts harvested from C57BL/6 mice with
B16F10 melanoma cells, we studied the effects of iron oxide nanoparticles functionalized with salicylic
acid (SaMNPs) as a form of therapy on the local development of xenotransplants and CAM vessels.
The SaMNPs induced an anti-angiogenic effect on the CAM vessels, which accumulated preferentially
in the melanoma cells and induced apoptosis and extensive xenograft necrosis. As a result, this slowed
the increase in the xenograft volume and reduced the melanoma cells’ ability to metastasize locally
and distally. Further, we demonstrate the use of the chick CAM model as a tool for testing the action
of newly synthesized nanocomposites on melanoma xenotransplants. The SaMNPs had a therapeutic
effect on B16F10 melanoma due to the synergistic action of the two components of its structure:
the coating of the salicylic acid with antiangiogenic and chemotherapeutic action and the core of iron
oxides with cytotoxic action.
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1. Introduction

Melanoma is the deadliest and most aggressive form of skin cancer with poor prognosis,
low survival rates, susceptibility to relapse, and multidrug resistance tendency [1,2]. Nonmetastatic
melanomas benefit from basic therapeutic options such as surgery, radiotherapy, and chemotherapy.
However, combined therapeutic approaches are implemented in metastatic melanomas, including
immunotherapy, photodynamic therapy, targeted therapy, or hormonal therapies [3,4]. The low survival
rate of these cases requires the development of new therapeutic strategies, such as nanotherapy, which
is becoming more attractive due to recent advances in nanomedicine [5–7]. Promising results have been
obtained in experimental melanoma therapies that use nanoparticle systems for targeting melanoma
cells as drug and gene carriers and protectors in photothermal and photodynamic therapy [8,9].
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Several studies have highlighted both the links between cell elasticity and the invasive phenotype
of cancer cells [10], and the role melanin has in establishing cell elasticity and the metastatic phenotype
of melanoma cells [11–13]. Due to its abilities [8], nanotechnology can be a vital factor in the process of
modulating the nanomechanical phenotype of melanoma cells.

Functionalized iron oxide nanoparticles offer a low cost and easy-to-process work platform, as its
magnetic and toxicity properties allow their use in a wide range of biomedical applications [8,14].
Magnetic iron oxide nanoparticles have been used in cancer diagnostics and therapies as magnetically
targeted drug transporters, contrast agents in MRIs [8], theragnostic agents [15], and magnetic
hyperthermia agents [16].

The purpose of this work was to study the effects of SaMNP therapy on the murine melanoma
nontransplant growths and on the local development of the vessels. First, we used CAMs implanted
with tumor xenografts harvested from C57BL/6 mice with B16F10 melanoma. We chose to use salicylic
acid as a surface coating for iron oxide nanoparticles owing to the numerous laboratory studies and
clinical observations from recent years that have pointed to the anticancer activity of salicylates and the
multitude of mechanisms through which salicylates exert their effects in chemoprevention, including
the induction of apoptosis [17], the inhibition of angiogenesis [18], the inhibition of cyclooxygenase
activity [19,20], the suppression of cyclooxygenase-2 gene transcription [21], the inhibition of NF-κB
activation [22], alterations in mitochondrial function [23,24], the inhibition of 6-phosphofructo-1-kinase
activity [25], the perturbation of epidermal growth factor pathway [26], etc.

The CAM model represents a powerful and widely used tool for studying tumor growth and
the metastasis of cancer cells, angiogenesis, or drug delivery systems [27–31]. Due to its natural
immunodeficiency during the first two weeks of its development and the accessibility offered to its
rich vascularization, CAM proved to be a versatile platform for both tumor xenografts, including in
cases of melanoma [32,33], and for studying pharmaceutical and biomedical applications for newly
synthesized nanocompounds [34–36].

2. Materials and Methods

2.1. Functionalized Nanoparticles Dispersion

The functionalized Fe3O4/salicylic acid magnetic nanoparticles were synthesized and characterized
by methods previously reported by some of us [37]. The nanoparticles used in this study all had the
following: (a) a hydrodynamic diameter of around 50 nm, (b) a core diameter in the 10–12 nm range,
(c) a zeta potential of +39.3 mV, and (d) an iron concentration of 0.356 mg/mL.

2.2. Cell Preparation

The B16F10 melanoma cells (obtained from The Institute of Biology of the Romanian Academy)
that were involved in this study were grown at 37 ◦C and were humidified in an atmosphere with
5% CO2 in specific cell culture plates containing DMEM (Dulbecco’s Modified Eagle’s Medium,
Sigma-Aldrich®) that was supplemented with a 10% fetal bovine serum, 100 U/mL penicillin,
and 100 mg/mL streptomycin. The melanoma cells were harvested from the culture by trypsinization
and were suspended before subcutaneous injection in a cold saline with a concentration adjusted to
1 × 106 cells/mL.

2.3. Animals

The experimental protocol followed the rules of the Committee of Ethics and Scientific Deontology
of the University of Medicine and Pharmacy of Craiova (identification code: 139; date of approval:
20 December 2019). Eight-week-old female mice (n = 3) (C57BL/6) that were obtained from the
University of Medicine and Pharmacy of Craiova Animal Facility were used as melanoma xenograft
donors. They were kept in individual cages on a 12/12 h light/dark cycle at 21 ◦C and had free access
to water and standard laboratory chow. The mice were shaved at the right lateral flank and were
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injected subcutaneously with 0.2 mL of the B16F10 cell suspension (2 × 105 cells) under Sevorane®

anesthesia. The local tumor growth at the injection site was assessed twice a week for four weeks
by using a caliper to measure the diameter of the tumor. After four weeks, the malignant melanoma
tissues from Sevorane®-anesthetized mice were harvested by suction with an 18 G needle assembled
onto a 2 mL syringe and were used as xenografts to be implanted on CAM models. The anesthetized
mice were sacrificed and autopsied for local tumor growth and distal metastasis assessment.

2.4. CAM Model

Fertilized White Leghorn eggs (n = 25) were incubated (at 37.5 ◦C and 70% relative humidity)
and windowed on day three. A batch of 10 eggs was used to evaluate the effects of SaMNPs on the
CAM’s vessel development. On day 7, each CAM was implanted with 2 blank discs (Bioanalyse®):
one impregnated with saline and the other with an SaMNP aqueous dispersion. After 5 days, the discs
and surrounding CAMs were harvested and fixed for histological analysis. The remaining eggs were
divided into 3 batches and on the 9th day, each egg was implanted with a xenograft of melanoma
tissue (0.1 mL). This tissue was harvested by fine needle aspiration from the three C57BL/6 mice
under sterile conditions. After the xenograft implantation, the CAMs were examined daily with
an operator microscope equipped with lateral illumination and a digital camera system. Two days
after the implantation of the melanoma xenografts, 3 CAMs randomly selected from each group
were intravenously injected with a 0.25 mL dose of the SaMNP aqueous dispersion with an iron
concentration of 0.356 mg/mL. This dose did not induce hemodynamic effects or changes in the normal
evolution of the chicken embryo [38]. All eggs were incubated until day 15, when the melanoma
xenografts were then harvested with the surrounding CAMs and were fixed within 48 h in 10% neutral
buffered formalin.

2.5. Histological Analyses

Formalin fixed melanoma xenografts and antibiogram discs with surrounded CAM samples
were processed using standard histological methods for paraffin embedding. Tissue sections in 5 µm
thicknesses were stained by conventional (hematoxylin and eosin, and azan trichrome) or specific
(Perl’s Prussian blue for Fe3+ ion evidence) techniques and were examined under light microscopy for
morphological and semi-quantitative morphometric evaluation. To determine the vascular density,
we divided each harvested disc into a randomly chosen diameter (with a length of 6 mm) and all the
vessels present on the CAM below the test discs were counted under 20×microscope magnification.
The thickness of the CAM was measured at the edges of each test disc. For control values, we randomly
selected sections 6 mm long through the CAM located outside the tested area. We counted the vessels
and measured the thickness of the CAM at the extremities of each selected area. The data obtained were
statistically processed using SPSS software. The number of vessels per the disc diameter and CAM
thickness were averaged for each experimental setup and were compared using a one-way ANOVA
with Tukey’s post hoc analysis. In all cases, P < 0.05 was used to indicate a statistical significance.

3. Results

3.1. Morphological Effects of SaMNPs on the CAM Assay

Changes in the morphology of the CAM that surrounded the test discs were observed under a
stereomicroscope three days after implantation. A pro-angiogenic effect (an increase in the number
of CAM vessels and wheel-spoke patterns of the vessels converging toward the implanted disc) was
recorded in the CAM surrounding the saline-impregnated discs. In contrast, an anti-angiogenic effect
(lack of new blood vessel formation) on the CAM vessels around the SaMNP-impregnated discs was
observed (Figure 1a–c).
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Np-disc; (e) histological section through the Sa-disc; thickness (h) and counted vessels (i) variations 

on the normal CAM (Ctrl), Np-disc, and Sa-disc underneath the CAM (* p < 0.05; ** p < 0.001). 

Hematoxylin & eosin (e), Perl’s Prussian blue (d,g) and Trichrome azan (f) staining; Bar = 5 mm (a–c); 

100 µm (d,e); 10 µm (f,g). 

Unlike the normal membrane that had a thickness of 27.3 ± 13.8 µm and 36.8 ± 3.3 vessels with a 

length of 6 mm, we found a thickness of 130.7 ± 88.3 µm and 61.27 ± 14.1 vessels/6 mm in the CAM 

below saline-impregnated discs 174.7 ± 78.2 µm and 34.7 ± 8.9 in the CAM below SaMNP-

impregnated discs, respectively. We observed a significant global difference in the CAM thickness 
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Figure 1. The morphological effects of SaMNPs on the CAM assay. (a) Discs where implantation
occurred were pre-soaked with saline (Sa) and SaMNPs (Np) on a seven-day-old CAM; (b,c) Formalin
fixed discs with surrounding a CAM (top and bottom view); (d,f,g) Histological sections through the
Np-disc; (e) histological section through the Sa-disc; thickness (h) and counted vessels (i) variations on
the normal CAM (Ctrl), Np-disc, and Sa-disc underneath the CAM (* p < 0.05; ** p < 0.001). Hematoxylin
& eosin (e), Perl’s Prussian blue (d,g) and Trichrome azan (f) staining; Bar = 5 mm (a–c); 100 µm (d,e);
10 µm (f,g).

Unlike the normal membrane that had a thickness of 27.3 ± 13.8 µm and 36.8 ± 3.3 vessels with a
length of 6 mm, we found a thickness of 130.7 ± 88.3 µm and 61.27 ± 14.1 vessels/6 mm in the CAM
below saline-impregnated discs 174.7 ± 78.2 µm and 34.7 ± 8.9 in the CAM below SaMNP-impregnated
discs, respectively. We observed a significant global difference in the CAM thickness F(2,21) = 9.741,
p < 0.001, and post hoc comparisons indicated a relevant difference between control and saline values
(p = 0.017), and between control and SaMNP values (p < 0.001) (Figure 1h). We found a significant
global difference between the number of vessels per disc diameter, F(2,30) = 24.909, p < 0.001; the post
hoc comparisons indicated an important difference between saline and control values, and saline and
SaMNP values (p < 0.001) (Figure 1i).

In addition, saline-impregnated discs induced the thickening of the underlying CAM mainly by
increasing the number and diameter of the vessels, as opposed to SaMNP-impregnated discs that
determined an increase in the density of collagen fibers, among which nanoparticle deposits were
identified (Figure 1d–g).

3.2. Macroscopic Assessments of B16F10 Xenografts

The volume of murine melanoma xenografts began to increase from the second day following the
implantation on the CAM. No angiogenesis was observed in the CAM around the implanted xenograft.
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3.2.1. Untreated Xenografts

The continuous increase in xenograft volume, the formation of metastases both near and at a
distance from the site of implantation, and occasionally the appearance of small hemorrhages in the
thickness of the CAM around the implanted area were all main morphological features of the untreated
melanoma xenografts (Figure 2d–f).
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Figure 2. Macroscopic features of treated (a–c) and untreated (d–f) B16F10 xenografts implanted on
nine-day-old CAM. Recent implanted (a), two-day-old (b,d), and five-day-old (c,e,f) B16F10 xenografts.
Local ((f), white arrows) and distant ((f), black arrow) metastases arising from an untreated xenograft
(formalin fixed CAM, bottom view). Bar = 5 mm (a–e); 1 mm (f).

3.2.2. SaMNP Treated Xenografts

The effects of slowing tumor growth and reducing the melanoma cells’ ability to locally metastasize,
along with its lack of distant metastases and bleeding in the CAM surrounding the implanted area
were observed in murine xenografts treated by intravenous injections of SaMNP aqueous dispersions
(Figure 2a–c).

3.3. Microscopic Assessments of B16F10 Xenografts

3.3.1. Untreated Xenografts

Heterogeneous melanoma cells with an epithelioid or spindle type and a high mitotic index and
occasional areas of focal necrosis were morphological features observed in the untreated xenografts.
Other features included the development of large intratumoral cavernous vascular spaces delimited by
tumor cells that were filled with the chick’s blood (nucleated erythrocytes). There were no structural
changes in the CAM underlying the implant. Numerous vessels originating in the CAM’s vessels
entered the thickness of the xenograft to come into close contact with the lacunar system formed by the
tumor cells. In some tumor areas, there was a rich hematic infiltrate between the tumor cells, which
seemed to be an initial stage of the formation of intratumor blood canaliculi (Figure 3a–c). No direct
connections between the CAM vessels and the intratumor blood canaliculi were identified in the
studied sections.
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Figure 3. Histopathology of the five-day-old untreated B16F10 xenograft (a–c), and the local metastasis
(d–f). Tumor areas with blood infiltrate (circle area) interposed between CAM vessels (black stars) and
intratumoral cavernous vascular spaces filled with nucleated erythrocytes (white arrows). In the local
metastases, a CAM vessel (white star) entering between the tumor cavernous vascular spaces can be
observed. Black arrows show CAMs located underneath xenografts. Hematoxylin and Eosin staining.
Bar = 25 µm.

The processes of the tumor invasion by the CAM vessels and the formation of blood-filled vascular
spaces delimited by the tumor cells were observed in the metastases around the implant (Figure 3d–f).

3.3.2. SaMNP-Treated Xenografts

Extensive tumor necrosis, atypical tumor cells, a lack of formation in intratumoral cavernous
vascular spaces, chicken blood infiltrates, and vessels of CAM origin were the main morphological
features that distinguished the treated xenografts from the untreated ones. Rare nests of melanoma
cells, some with plasma membrane blebbing and pyknotic or fragmented nuclei, apoptotic bodies and
extracellular exudates were observed scattered in the tumor necrosis mass and located mainly in the
CAM vicinity (Figure 4a). Most of these tumor cells had intracytoplasmic deposits of SaMNPs with a
perinuclear disposition highlighted by Perl’s Prussian blue staining (Figure 4b).
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Figure 4. Histopathology of a B16F10 xenograft three days after SaMNP treatment. Area of tumor necrosis
(a) with foci of melanoma cells presenting pyknotic (black arrows) or fragmented (black arrowheads)
nuclei, apoptotic bodies (white arrows), and extracellular exudates (black star). Intracytoplasmic Perl’s
positive iron deposits with perinuclear disposition in the tumor necrosis area (b). Hematoxylin & eosin (a)
and Perl’s Prussian blue (b) staining. Bar = 25 µm.

4. Discussion

The increase in the number of vessels can be considered an angiogenic effect induced by the saline
pre-loaded discs, which represents an inflammatory response of the CAM to a foreign body [38,39].
The decrease in the number of vessels in the area of the SaMNP pre-soaked discs can be produced by the
salicylate coating of the nanoparticles that has a well-known antiangiogenic effect produced by several
mechanisms, such as the modulation of the circulating angiogenic proteins [40], the down-regulation
of the glucose transporter 1 [41], the inhibition of the endothelial cells remodeling or apoptosis of
microvascular endothelial cells [42], the perturbation of the EGFR axis [26], the inhibition of the COX
isoforms [43], etc.

The quantitative modification of the collagen tissue observed in the case of SaMNP pre-soaked
discs is due to the stimulation of the extracellular matrix production [44] and most likely the fibroblast’s
proliferative activities [45] exhibited by iron oxide nanoparticles.

The growth pattern of xenografts implanted on the membrane is similar to that described for other
tumors [28,36,46]. Penetration of proliferating CAM vasculature into the B16F10 xenograft correlates
with the beginning of its volume increase and marks the end of the avascular phase of xenograft
growth [28]. In our study, this took about two days, thus determining the moment of intravenous
administration of the SaMNP aqueous dispersion.

The slowing or stopping of the tumor growth observed in the B16F10 xenografts treated with
an SaMNP aqueous dispersion can be attributed to the antiangiogenic effects of the salicylate coating
of the nanoparticles. By blocking the entry of the CAM vessels inside the implanted xenograft,
the salicylic acid became responsible for the appearance of the extended areas of intratumor necrosis
and autolysis. Tumor regression in the treated xenografts was accompanied by apoptosis, which was
present especially in the areas with melanoma cells loaded with SaMNP. Melanoma cell apoptosis can
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be induced by multiple mechanisms manifested by each of the components of the SaMNP structure:
the salicylic acid coating [17,23] and the iron oxide core respectively [47,48].

The enhanced permeability and retention effect [8,16] can explain the preferential accumulation of
SaMNPs within B16F10 xenografts and their absence from normal CAM structures.

5. Conclusions

This study demonstrated the availability of the CAM model as a tool for testing the therapeutic
properties of newly synthesized nanocomposites on melanoma xenotransplants.

The iron oxide nanoparticles functionalized with salicylic acid had a therapeutic potential in
B16F10 melanoma due to the synergistic action of the two components of its structure: the coating
of salicylic acid with anti-angiogenic and chemotherapeutic action and the core of iron oxides with
cytotoxic action.
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