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Abstract: Experimental data of thermal conductivity, thermal stability, specific heat capacity, viscosity,
UV–vis (light transmittance) and FTIR (light absorption) of Multiwalled Carbon Nanotubes (MWCNTs)
dispersed in glycols, alcohols and water with the addition of sodium dodecylbenzene sulfonate
(SDBS) surfactant for 0.5 wt % concentration along a temperature range of 25 ◦C to 200 ◦C were
verified using Artificial Neural Networks (ANNs). In this research, an ANN approach was proposed
using experimental datasets to predict the relative thermophysical properties of the tested nanofluids
in the available literature. Throughout the designed network, 65% and 25% of data points were
comprehended in the training and testing set while the other 10% was utilized as a validation set.
The parameters such as temperature, concentration, size and time were considered as inputs while the
thermophysical properties were considered as outputs to develop ANN models of further predictions
with unseen datasets. The results found to be satisfactory as the (coefficient of determination) R2

values are close to 1.0. The predicted results of the nanofluids’ thermophysical properties were then
validated with experimental dataset values. The validation plots of all individual samples for all
properties were graphically generated. A comparison study was conducted for the robustness of the
proposed approach. This work may help to reduce the experimental time and cost in the future.

Keywords: thermophysicalproperties; ArtificialNeuralNetworks; experimentaldata; nanofluids;prediction

1. Introduction

In many industrial heating and cooling applications, convective heat transfer is very important.
By changing the boundary conditions, flow geometry or fluids’ thermophysical properties can enhance
the convective heat transfer rate of a thermal system. The addition of nanoparticles to the base fluids
is one of the promising ways of improving the thermophysical properties of fluids. Such kinds of
suspensions are named as nanofluids. Nanofluids have attracted several researchers from all over
the world because they have the ability to improve the heat transfer rate for different applications
including electrical and electronics. Since nanofluids are considered to be the next generation
coolants, researchers are focused on developing nanofluids with ultrahigh cooling performance,
thus representing a significant cooling technology for cross-cutting applications. The main aim of
nanofluid is to achieve the best thermal properties in the lowest concentrations with uniform dispersion
and stable suspension of nanoparticles in base fluids. Numerous experimental [1–5] and theoretical
analyses [6–10] of nanofluids’ thermophysical properties were conducted by many scientists. In general,
the temperature and volume fraction were considered as important factors for developing the classical
models of thermophysical properties especially thermal conductivity and viscosity [11–14]. Other than
temperature and volume fraction, parameters such as particle shape, particle type and mixing ratio
also influence the thermophysical properties of nanofluids. Accurate thermophysical properties
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of nanofluids under various parameters cannot be predicted easily. Furthermore, in terms of the
conventional particle–liquid suspensions models, the heat transport mechanism for nanofluid is hard
to understand. Currently, most of the available models are applicable for nanofluids with a lower
concentration of nanoparticles (0.01 to 0.5 vol %) and uniform dispersion. Nevertheless, these models
do not represent the correlation between thermophysical properties and shape; temperature and the
high cost is the obstacle for practical applications. The measurement of thermophysical properties of
nanofluids for a specific temperature, concentration, size and shape requires a lot of time, huge data and
money. In order to overcome these issues, many scholars have suggested computational frameworks
or empirical models for the prediction of nanofluid properties. The easiest way to determine the
thermophysical properties of various nanofluids is by utilizing soft computational approaches such as
Artificial Neural Networks (ANNs) and Genetic Algorithms (GA) which require a massive quantity of
data for analysis.

Computational networks that involve the simulation of nerve cells or neurons of the network
that mimic the central biological nervous system are known as Artificial Neural Networks. These are
incredibly easy in computation and algorithmic types and have a self-organizing function that helps
them to solve several problems. One of the important roles of ANNs is that they enable high-level
programming in their gross imitation of a biological network to facilitate the solution of complex
issues especially nonanalytical, nonlinear and nonstationary in a self-organizing way that can be
implied to resolve a large number of problems. Ma et al. [15] developed ANN models of viscosity
and thermal conductivity based on the distribution of nanoparticles in nanofluids that can also be
termed as Uniformity Coefficient of Nanoparticles Distribution (UCND). Authors found that the
results projected by the ANN models are compatible with the experimental values with R2 values
of more than 0.97 for viscosity and thermal conductivity. Toghraie et al. [16] predicted the viscosity
of silver/EG nanofluids using the ANN technique that comprised data points of 42 samples at
various temperatures (25–55 ◦C) and volume fractions (0.25–2%) and validated with the correlation
method where they obtained a maximum deviation of 0.0858. A dissimilar ANN was proposed by
Akhgar et al. [17] to determine the thermal conductivity of hybrid nanofluids (MWCNT-TiO2/Water-EG)
through sensitivity analysis which proved that the empirical results obtained by the ANN technique
were better than the correlation-based results. Sadeghi et al. [18] utilized the ANN technique to
verify the experimental results of thermal characteristics (energy and exergy) of Copper oxide/Water
nanofluid in an evacuated tube solar collector via multilayer perceptron (MLP) and radial basis
function (RBF). Authors observed that the MLP models’ maximum error rate was smaller than the
RBF model. A multiobjective optimization model comprising an ANN and GA was developed by
Bagherzadeh et al. [19] to predict the thermophysical properties and heat transfer coefficient (HTC) of
CuO/Paraffin nanofluid with a view on increasing the HTC and decreasing the pressure drop ratio.
Finally, they concluded that the multiobjective optimization test results from the genetic algorithm
revealed the optimal front of Pareto was responsible for enhancing the heat transfer coefficient.
The effects of temperature and volume fraction on the thermal conductivity of MWCNT-CuO/Water
nanofluid were considered for the development of an ANN and SVR (Support Vector Regression) to
compare the persistence of accuracy, precision and generalization. They clearly demonstrated that the
generalization of SVR is more useful than the ANN because it requires only fewer parameters with
better endurance to overfitting. Naphon et al. [20] investigated the heat transfer and flow characteristics
of titanium/deionized water nanofluids numerically (Eulerian two-phase approach), experimentally
and with ANN (Levenberg–Marquardt back-propagation training algorithm). In all the cases, the
average variance between the calculated and forecasted data was 1.25%.

As discussed above, several researchers have investigated the thermophysical properties of
nanofluids in different systems. In addition, many researchers focused on the application of ANNs
to nanofluid-based thermal systems due to their complex problem-solving capacity with less cost
and time. In the present work, experimental data are obtained from the available literature [21]
where the thermophysical properties of six different nanofluids containing Multiwalled Carbon
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Nanotubes (MWCNT) nanoparticles dispersed in propylene glycol, ethanol, ethylene, polyethylene
glycol, methanol and water with SDBS surfactant at 0.5 wt % nanoparticle concentration was studied.
No general model is currently available to reliably estimate a broad variety of effective parameters
for MWCNT nanofluids. While various researches were performed to predict the thermophysical
properties of nanofluid using ANN, those were only for thermal conductivity and viscosity. Along with
thermal conductivity and stability, properties such as specific heat capacity, thermal stability, light
absorption and transmission were also investigated using ANN in this research. The purpose of this
study is to evaluate the thermophysical properties of MWCNT nanofluids with ANN. The results
acquired from the experimental data are verified with ANN and compared with regression analysis.

2. Methodology

2.1. Experimental Process

MWCNT nanoparticles with 10 nm diameter and 98% purity were used in this study. Six types of
nanofluids were prepared by combining 0.5 wt % MWCNT nanoparticles with six different kinds of
solvents namely propylene glycol, ethanol, ethylene glycol, polyethylene glycol, methanol and water
in the presence of SDBS surfactant. The proportion of nanoparticles and surfactants was in the ratio of
10:1. In order to obtain a stable nanofluid, surfactant was added to the studied samples and it was
subjected to a magnetic stirring of 15 min. Each mixture was ultrasonicated for about 150 min with 60%
amplitude. Figure 1 depicts the process of synthesizing MWCNT nanofluids via a two-step method
where S1 (Sample 1), S2 (Sample 2), S3 (Sample 3), S4 (Sample 4), S5 (Sample 5) and S6 (Sample 6)
represent MWCNT/PG, MWCNT/Ethanol, MWCNT/Ethylene glycol, MWCNT/Polyethylene glycol,
MWCNT/Methanol and MWCNT/Water nanofluids, respectively.
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To measure the thermal conductivity of the samples as a function of temperature, a KD2 pro
thermal conductivity meter was utilized. A constant temperature water bath was used to control
the temperature of the samples. Differential scanning calorimeter, Thermogravimetric analyzer,
viscometer, FTIR (Fourier Transform Infrared Spectroscopy) and UV–vis spectrophotometer were used
to characterize the required properties of the formulated samples. All the equipment was calibrated
with distilled water to ensure the accuracy of the results. The data obtained from these experiments
were taken as datasets to develop the proposed ANN model.

2.2. ANN Model Development

ANNs are artificial biological brain network-based machine systems inspired by animal brain
networks. These programs learn to do tasks by taking examples into account, typically without
complex programming. ANN also has self-learning capabilities that enable it to produce better results
as more data becomes available.

The methodology of the present work started with the data collected from the experimental
results conducted in the previous study [21]. The collected data were analyzed; the inputs and outputs
were selected accordingly. The parameters such as temperature, concentration, size, and time were
selected as inputs whereas the thermophysical properties such as thermal conductivity, thermal stability,
specific heat capacity, viscosity, light absorption and transmission were considered as outputs for the
neural network development. The overall experimental data were divided for training, testing and
validation purposes with percentages of 65% training dataset, 25% testing dataset and 10% validation
datasets, respectively. The proposed ANN models were trained based on the Levenberg–Marquardt
(LM) algorithm using the divided training datasets. Later the models were tested and validated
with divided testing and validation datasets. The proposed neural network (NN) results were then
compared with other statistical regression techniques for the performance evaluation of the current
study. The complete method of the present study is presented in Figure 2.
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During the development of the NN model, the parameters such as diameter, material type
(MWCNT), concentration, temperature and time were given as inputs whereas the properties of
nanofluid were taken as outputs. The typical ANN architecture is represented in Figure 3. The first
layer consists of input parameters considered for the study, the hidden layer consists of hidden neurons
and the output layers consist of the properties of tested nanofluids.
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In the present work, MATLAB R2019a software was used for model development. The algorithms
such as Levenberg–Marquardt (LM) and Bayesian Regularization (BR) were selected in order to obtain
the maximum coefficient of determination (R2) value. The proposed models were trained with the
selected algorithms for the least possible error [22–25]. The LM algorithm resulted in better accuracy
and is described as an iterative process that locates the smallest of a multivariate function that is stated
as the sum of squares of nonlinear real-valued functions. The LM algorithm is suitable for nonlinear
problems and applicable to various disciplines. Here, the weights of the neurons play a major role to
get the desired output with the least possible error. The weight values were multiplied with input
values and added with bias as given in Equation (1) [26]. Upon the completion of the training, the
testing and validation of the model using the divided training, testing and validation datasets were
utilized to predict the properties; and the results were compared with other regression techniques.
Finally, the comparative analysis was carried out with better performing regression techniques such as
linear regression, regression tree, support vector regression and Gaussian process regression. The better
regression technique based on the results provided, the selected regression technique, was considered
in comparison with the proposed ANN approach.

xnew = wx + b (1)
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where Xnew is new value of a variable, w is the weight value, x is initial value and b is bias.

3. Results and Discussion

An artificial network was developed based on the experimental data of the available literature.
These experimental data were divided into three groups as discussed earlier. For training, 65% was
taken, 25% was used for testing and 10% was utilized for validation. The trial and error method was
carried out to select the best values for the numbers of neurons and hidden layers. Various numbers of
layers and neurons were checked, and their statistical metrics were determined. It was found that the
network with 10 hidden neurons gave the best-desired outputs. The Mean Square Error (MSE) and
coefficient of determination (R2) values were calculated using Equations (2) and (3) [27] and the results
are presented in Table 1.

R2 = 1−
n∑

i=1

 (yi
p − yi

a)
2

(yavg.a − yi
a

 (2)

MSE =
1
n

∑
(yi

p − yi
a)

2
(3)

where n is number of sample values, yi
p is predicted value, yi

a is actual value and yavg is average of
actual values.

Table 1. MSE and R2 values of the studied samples.

Property Stage No. of Hidden
Layers

No. of
Neurons MSE R2 Overall R2

Thermal
stability

Training
1 10

0.000059 0.999000
0.9947Validation 0.005710 0.986000

Testing 0.004510 0.982000

Thermal
conductivity

Training
1 10

9.850000 0.970000
0.9697Validation 8.360000 0.974000

Testing 10.400000 0.967000

FTIR
Training

1 10
0.333000 0.973000

0.96893Validation 0.351000 0.970000
Testing 0.541000 0.943000

UV–vis
Training

1 10
0.415000 0.964000

0.96238Validation 0.491000 0.965000
Testing 0.529000 0.957000

Specific heat
capacity

Training
1 10

0.743163 0.937000
0.93674Validation 0.756101 0.932000

Testing 0.672000 0.940000

Viscosity
Training

1 10
0.000000 1.000000

0.99723Validation 0.000000 0.991000
Testing 0.000002 0.975000

The performance of ANN models during the training process for all thermophysical properties
can be seen in Figure 4. It was observed that the best performance during the training of proposed
models for all properties has varied. The best performance for properties such as thermal conductivity,
thermal stability, specific heat capacity, viscosity, transmittance and absorption was observed at
9, 168, 975, 11, 53 and 131 epochs, respectively. It was also recorded the best performance with
MSE values of 0.00075529, 0.00000056813, 0.000015205, 0.0000000019822, 0.82242 and 12.8467 for the
properties of thermal conductivity, thermal stability, specific heat capacity, viscosity, transmittance and
absorption, respectively.
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3.1. Thermal Conductivity

The significance of thermal conductivity in nanofluids has increased in recent years due to
the need for an appreciable level of thermal conductance in circuit boards, heat exchangers and
machinery. Due to these needs, theoretical developments were revisited and new data generated to
eliminate some of the questions raised regarding the accuracy of measured data using ANN. The data
used for the present study were tested with different regression techniques that are available in the
MATLAB 2019a software. The results obtained with the values of RMSE (Root Mean Square Error),
R2 (coefficient of determination), MSE (Mean Square Error), MAE (Mean Absolute Error) for thermal
conductivity using different techniques are summarized in Table 2. It was found that the regression
techniques resulted in weird results when compared to the proposed ANN approach in terms of
thermal conductivity prediction.

Table 2. Comparison of thermal conductivity validation results with other techniques.

Technique RMSE R2 MSE MAE Prediction
Speed (obs/s)

Training
Time (s)

Linear Regression 0.080711 0.1 0.0065143 0.058212 1300 4.5195
Regression Tree 0.082347 0.06 0.006781 0.059078 1500 3.36787
Quadratic SVM 0.081394 0.08 0.006625 0.056909 2600 8.2585

Gaussian Process Regression 0.083004 0.05 0.0068897 0.060257 2900 5.9507

The tested NN model is given a random data number of values to predict the behavior of
individual sample properties. The experimental input values were given to a model that are unknown
to a model for estimating the thermal conductivity property. The plots were generated for each sample
to identify the variations in thermal conductivity. A summary of all validation plots for six samples is
presented in Figure 5. The black line represents the experimental dataset of values and the red dotted
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line represents the predicted values. It can be seen from the plots that the error is smaller between the
actual and predicted values as shown in Figure 5. Among all the samples, the major error is observed
in Sample 4 (MWCNT/PEG), as the variations between the actual and predicted values are slightly
higher when compared with other samples. From the results, it was clear that the obtained ANN
outputs were in good agreement with the experimental data which illustrated the accurate prediction
of thermal conductivity for the studied MWCNT nanofluids.
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Figure 5. Thermal conductivity validation plots of ANN end experimental data.

3.2. Thermal Stability

Under high-temperature ranges, the nanoparticle core undergoes irreversible changes that result in
the transition of structural, electrical and phase properties. Thermogravimetric analysis was performed
to evaluate the loss of mass as a function of temperature where thousands of data were generated.
With different techniques, the thermal stability data were verified and its results are summarized in
Table 3. It was observed that the regression techniques provided acceptable results when compared to
the proposed ANN approach in predicting the thermal stability of all the six samples.

Table 3. Comparison of thermal stability validation results with other techniques.

Technique RMSE R2 MSE MAE Prediction
Speed (obs/s)

Training
Time (s)

Linear regression 85.78 −248 7358.1 4.761 14,000 5.1088
Regression Tree 0.493 0.99 0.24342 0.245 120,000 3.2331

SVM 2.139 0.85 4.5738 1.683 37,000 110.7
Gaussian Process Regression 0.194 0.99 0.0003776 0.007 17,000 72.658
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In order to optimize it, the proposed NN model was given a set of data numbers to predict the
behavior of thermal stability. More than 50 sets of values are introduced to the model to predict the
output. It is found that the model predicted the actual values most accurately with minor errors in all
samples. However, there is a slight variation in Sample 6 (MWCNT/Water) case as the error is slightly
more when compared to other samples. The red dotted line represents the predicted behavior while
the black line represents the actual behavior of thermal stability. A summary of all validation plots for
thermal stability is shown in Figure 6.
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Figure 6. Thermal stability validation of experimental and ANN values.

3.3. Specific Heat Capacity

The quantity of heat required to raise the temperature of a substance is known as heat capacity
and it acts as a relation for the input of heat and increase in temperature. At present, no empirical
relationships were successful in providing reliable estimates of heat capacities for nanofluids. In order
to verify the measured specific heat capacity data, many techniques were followed, and its results are
presented in Table 4. From the results obtained using different regression techniques, the results are
found to be consistent in terms of specific heat capacity prediction.

Table 4. Comparison of specific heat capacity validation results with other techniques.

Technique RMSE R2 MSE MAE Prediction
Speed (obs/s)

Training
Time (s)

Linear Regression 0.00094 1 8.88103 × 10−7 0.000771 13,000 40.3836
Regression Tree 0.004707 1 0.000022514 0.004081 95,000 3.2647

SVM 0.00822 0.99 0.000067573 0.007778 30,000 22.879
Gaussian Process Regression 0.000085 1 7.3207 × 10−9 6.65 × 10−5 17,000 59.86984
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Accurate experimental data for the heat capacities of nanofluids are therefore essential. The ANN
model is allowed to predict a set of values for a given experimental set of values. A summary of
all validation plots of specific heat capacity for all the samples is represented in Figure 7. From the
figure, it can be observed that the error deviation between the actual and ANN value of Sample 2
(MWCNT/Ethanol) was higher than the other samples.
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Figure 7. Specific heat capacity validation with the ANN and measured values.

3.4. Viscosity

When the temperature gradient is present in a substance, it is well understood that a transportation
process takes place with this material. This transport mechanism is a permanent mechanism in which
the property will change over time where structural differences occur within the material. Viscosity is
the well-known transportation process of momentum, mass and energy that should be given significant
importance. The deviation of results with other techniques for viscosity is depicted in Table 5. It can be
clearly seen that the regression techniques provided acceptable results for the viscosity prediction.

Table 5. Comparison of viscosity validation results with other techniques.

Technique RMSE R2 MSE MAE Prediction
Speed (obs/s)

Training
Time (s)

Linear Regression 1.0793 × 10−7 1 1.1648 × 10−14 2.648 × 10−14 1000 4.9623
Regression Tree 0.0031162 0.85 9.7106 × 10−6 0.0020282 1400 3.8103

SVM 0.002006 0.94 4.0239 × 10−6 0.0009599 6400 6.6934
Gaussian Process Regression 0.00006843 1 4.6835 × 10−9 3.0375 × 10−5 3200 8.1799

This section explains the accuracy of the experimental data resulting from the momentum transport
process that occurred in nanofluids when inflicted on certain shear stress via the ANN technique.
The proposed ANN model performed well in predicting the new values for a given set of samples.
A summary of all the validation plots is shown in Figure 8. Meanwhile, Sample 4 (MWCNT/PEG) and
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Sample 6 (MWCNT/Water) showed a slight variation between the experimentally measured actual
value and the predicted ANN value while other samples have not revealed any appreciable changes.
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Figure 8. Viscosity validation of ANN and experimental data.

3.5. UV–Vis Spectroscopy

One of the most popular methods for analyzing the type of molecule or elements present in
a sample is UV–vis spectroscopy; here, light is passed through a sample and the absorbed light is
measured. At different wavelengths, the sample exhibits a different absorbance spectrum illustrating
the structure of a molecule. Furthermore, light absorbance can be used to detect the functional groups
and different components of a sample. The data obtained from UV–vis were analyzed with different
techniques and their results are portrayed in Table 6.

Table 6. Comparison of UV–vis validation results with other techniques.

Technique RMSE R2 MSE MAE Prediction
speed (obs/s)

Training
Time (s)

Linear Regression 1.427 0.63 20.364 1.144 7600 5.725
Regression Tree 0.6471 0.92 0.45524 0.43872 9100 4.0321

SVM 0.94518 0.84 0.89336 0.64953 15,000 10.062
Gaussian Process Regression 0.024129 1 0.00058221 0.01604 14,000 25.1

The predictions by ANN for all samples are represented graphically as shown in Figure 9.
The variations can be observed from sample to sample. However, the proposed ANN model
predicted the new values accurately for a given experimental dataset. Fluctuations are observed in
the experimental (actual) value of all the samples which may be due to the high concentration of
nanoparticles that does not allow light to pass through the samples effectively.
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Figure 9. Validation of experimental UV–vis data with ANN.

3.6. Fourier Transform Infrared Spectroscopy

The molecules of materials undergo vibration when they are irradiated with infrared radiation
at different wavelengths that can be analyzed by Fourier Transform Infrared Spectroscopy (FTIR).
Here, the intensity of reflected or transmitted light can be measured precisely to identify the molecular
structure of samples. The energy difference between the constant and excited vibrational states of
molecules results in the transmittance of light. The resulting FTIR values were predicted with other
techniques to ensure their accuracy, as shown in Table 7.

Table 7. Comparison of FTIR validation results with other techniques.

Technique RMSE R2 MSE MAE Prediction
speed (obs/s)

Training
Time (s)

Linear Regression 11.322 0.17 135.07 9.296 190,000 1.4285
Regression Tree 2.2826 0.96 7.1966 1.2525 140,000 1.6019

SVM 4.3274 0.89 18.726 2.0408 58,000 2.5962
Gaussian Process Regression 0.030351 1 0.00092116 0.01323 5000 549.77

For the given experimental values, the proposed ANN model is able to predict the new values
accurately. A summary of all the predicted vs. actual values plots for all samples is shown in Figure 10.
Significant changes are observed in Sample 1 (MWCNT/PG) while other the samples’ actual values are
inconsistent with the ANN values.
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Figure 10. FTIR spectra experimental results compared with ANN result.

3.7. Comparison with Gaussian Process Regression Analysis

It is important to check the performance and robustness of a proposed model. From the comparison
results of Tables 2 and 7, it was found that Gaussian Process Regression (GPR) performed better than
the other techniques in predicting the target values. Hence, a comparison analysis is performed to
identify the behavior change of all the individual properties. Some random data numbers are picked
from the experimental values and given to a proposed model to predict the new values. The same
values are given to a GPR regression model to predict the new values because of the reason that GPR
performed better among the other techniques in comparison to a given training data. The comparison
test is conducted for all thermophysical properties taking random values from all the six samples. It is
identified that ANN predicted better than the GPR technique as the errors between the actual and
predicted values are less when compared. It is also important to mention that GPR consumed more
time for training and validation when compared with ANN. Therefore, ANN is found to be more
appropriate and suitable for the present study. The red line represents the ANN predicted values,
the navy blue line represents the experimental set of values and the sky-blue line represents the GPR
predicted values as shown in Figure 11.
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Figure 11. Thermo physical properties comparison plot of ANN vs. Regression vs. experimental.

4. Conclusions

The major conclusions of this research are summarized as follows:

• The properties of MWCNT nanofluids are predicted using ANN that resulted in an average
accuracy of 97.03%. Furthermore, viscosity obtained a maximum prediction accuracy of 99% while
specific heat capacity resulted in a minimum accuracy of 93.7%. Moreover, the other properties
such as thermal stability, FTIR, thermal conductivity, UV–vis showed an accuracy of 98.1%, 97.3%,
97.7% and 96.4%, respectively.

• The abnormal variation of the thermophysical properties of MWCNT nanofluids with different
artificial techniques in the temperature ranged from 25 to 200 ◦C with 0.5 wt % was evaluated.

• Through the experimental results of six different nanofluids, an LM-based ANN model was made.
• With the inputs of temperature, concentration, nanomaterial type and size, the proposed ANN

model illustrated a good consistency with the measured experimental data (R2 was almost close
to one).

• The proposed ANN approach was compared with the different regression techniques to evaluate
the performance of the model.
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• This study allows researchers to analyze their models for predicting the thermophysical properties
of MWCNT nanofluids.

• This research helps in minimizing the experimental time and cost for future work.
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Nomenclature

ANN Artificial Neural Networks
BR Bayesian Regularization
EG Ethylene Glycol
MWCNT Multiwalled Carbon Nanotubes
MLP Multilayer Perceptron
SDBS Sodium Dodecyl Benzene Sulfonate
GA Genetic Algorithms
RBF Radial Basis Function
HTC Heat Transfer Coefficient
SVR Support Vector Regression
FTIR Fourier Transform Infrared Spectroscopy
UV–vis Ultraviolet Visual
GPR Gaussian Process Regression
LM Levenberg–Marquardt
NN Neural Network
RMSE Root Mean Square Error
MSE Mean Square Error
MAE Mean Absolute Error
UCND Uniformity Coefficient of Nanoparticles Distribution
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