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Abstract: Fluid–solid adsorption processes are mostly governed by the adsorbate transport in the
solid phase and surface diffusion is often the limiting step of the overall process in microporous
materials such as zeolites. This work starts from a concise review of concepts and models for
surface transport and variable surface diffusivity. It emerges that the phenomenon of hindered
surface diffusion for monolayer adsorption, which is common in zeolites, and models able to fit a
non-monotonic trend of surface diffusivity against adsorbate solid phase concentration, have received
limited attention. This work contributes to the literature of hindered diffusion by formulating a
time-dependent equation for surface diffusivity based on fractal dynamics concepts. The proposed
equation takes into account the contributions of both fractal-like diffusion (a time-decreasing term)
and hopping diffusion (a time-increasing term). The equation is discussed and numerically analyzed
to testify its ability to reproduce the possible different patterns of surface diffusivity vs. time.
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1. Introduction

A typical fluid–solid adsorption process generally consists of three steps when referring to the
adsorbate: (i) mass transfer by diffusion from the bulk of the fluid phase to the solid’s external
surface (film diffusion), (ii) mass transfer by diffusion into the solid phase (intraparticle diffusion),
and (iii) adsorption (by physical and/or chemical mechanism) on the solid’s internal surface. These
steps are the same in adsorption and ion exchange processes, the difference being related to the
stoichiometric nature of the latter [1]. Nevertheless, in practical applications both processes are
modelled by using analogous equilibrium and kinetic equations. Adsorption in porous solids is
typically controlled by the intraparticle diffusion step (ii), as film diffusion and adsorption are much
faster processes [2]. Similar is the situation in ion exchange although the overall rate can be controlled
by a slow chemical reaction, if such a reaction takes place [1]. The majority of adsorption models
rely on empirical pseudo-first or -second order chemical reaction-like expressions, which ignore the
diffusion steps always apparent in adsorption and ion exchange; thus, these models can fall short in
representing the physical phenomena underlying the processes under scrutiny [3,4]. On the other
hand, analytical solutions to diffusion-based models are possible under certain conditions such as
those postulating linear or rectangular adsorption isotherm and infinite solution volume [5]. Analytical
and/or approximate solutions are mostly based on the works of Crank [6], Boyd et al. [7], Paterson [8],
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and Helfferich [9]. A comprehensive discussion on the mechanisms and models used in adsorption
and ion exchange processes is provided by Inglezakis et al. [10,11].

The mass transport of an adsorbate in a porous solid occurs in macropores (>50 nm-diameter),
mesopores (2–50 nm), and micropores (<2 nm). Adsorption in particular relevant when referring
to meso- and micro-pores, where surface (in both) and capillary (in mesopores) forces are present.
In macro- and meso-pores at low adsorbate concentration, a monolayer coverage of the surface takes
place and mass transport typically occurs by molecular/Knudsen and surface diffusion [12,13]. In the
case of surface diffusion, the adsorbate transport occurs on the pores surface via “jumps” between
adsorption sites and the process is energetically activated [14]. Surface diffusion is significantly
affected by the adsorbed phase concentration which, in turn, can affect the apparent porosity and
contribute positively or negatively to the adsorbate permeability as a function of the operating
pressure, as discussed by Jia et al. [15]. When the adsorbate concentration increases, diffusion of
multilayer-adsorbed molecules occurs. Monolayer adsorption is controlled by adsorbate–surface
interactions, while multilayer adsorption by adsorbate–adsorbate interactions. A further increase of
adsorbate concentration may result in capillary condensation. In micropores, the adsorbate diffusion
accords to “configurational” or “intracrystalline” patterns and shares common characteristics with
the surface diffusion [12]. Surface diffusion affects the adsorption rate and can be the limiting step
of the process, as the diffusion coefficient may be orders of magnitude smaller than those typical of
molecular/Knudsen diffusion.

In this context, this work aims at proposing, discussing, and analyzing a time-dependent equation
for the surface diffusivity, taking into account the phenomenon of hindered surface transport—described
by fractal-like dynamics concepts—a topic limitedly explored in literature. To the best of our knowledge
the available variable diffusivity equations are scarce, as discussed in the next section, while fractal-like
dynamics is for the first time applied to a variable surface diffusivity equation.

2. Surface Transport and Variable Surface Diffusivity Models

The diffusion rate of an adsorbate into a solid is described by several coefficients. The adsorbate
self-diffusivity DSS(q) at a certain solid phase concentration (q) measures the displacement of a tagged
molecule (tracer) as it diffuses at equilibrium—a topic comprehensively discussed by Ruthven and
Kärger [14,16] (please refer to the nomenclature section where symbols and their meaning are listed).
For the macroscopic diffusion of an adsorbate, the surface transport diffusivity (or simply surface
diffusivity) DS(q) is used, which is defined as the proportionality constant relating the macroscopic
flux (J) to the macroscopic concentration gradient, which, recalling the Fick’s law expression, in radial
(r) coordinates is:

J = −DS(q)
dq
dr

(1)

The surface diffusivity is measured under non-equilibrium conditions in either steady-state or
transient conditions [12]. The surface diffusivity can be also defined in terms of the chemical potential,
which represents a more appropriate driving force than concentration [16]:

DS(q) = DS0(q)
(
∂ ln feq

∂ ln qeq

)
T

(2)

where feq is the fugacity of the bulk phase that is in equilibrium with the adsorbed phase when the latter
has equilibrium concentration qeq at constant temperature T, and DS0(q) is the corrected diffusivity.
The self-diffusivity, surface diffusivity, and corrected diffusivity are concentration dependent and,
in general, not equal among each other [17]. They become equal in the limit of zero adsorbate solid
phase concentration (q = 0):

DSS(0) = DS(0) = DS0(0) = DS0 (3)
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where DS0 will be referred to this paper as zero-loading surface diffusivity. Thus, the surface diffusivity
can be also defined as:

DS(q) = DS0g(q) (4)

where g(q) is a known non-dimensional correlation. For instance, a popular relationship is the Darken’s
approximation [18–20], where Ceq is the equilibrium concentration of the adsorbate in the fluid phase:

g(q) =
∂ ln Ceq

∂ ln qeq
(5)

By substituting Equation (5) into Equation (4), the surface diffusivity becomes equal to the
zero-loading surface diffusivity multiplied by a thermodynamic correction factor, which is a function
of the slope of the adsorption isotherm. For the Langmuir isotherm, g(q) is equal to (1 − qeq/qm)−1,
where qm is the saturation (monolayer) capacity of the solid; for a linear isotherm, it is g(q) = 1 and the
surface diffusivity is constant.

The most common methods for the measurement of the surface diffusivity include (i) uptake
rate measurements (transient) and (ii) the Wicke–Kallenbach permeability method (steady state and
transient). These methods are called macroscopic to distinguish them from microscopic methods used
to measure self-diffusivities [14]. Microscopic techniques include microimaging, (i.e., interference
microscopy (IFM) and IR microscopy (IRM)) and pulsed field gradient NMR, as discussed in Kärger
and Ruthven [21]. A comparison between them is provided, e.g., in [20,22]. In the Wicke–Kallenbach
permeability method, the gas flux is measured through a porous plug under constant pressure or
concentration gradient [12]. The surface diffusivity is calculated by using a simple equation involving
permeability and equilibrium data [23–25]. In the uptake rate method, the surface diffusivity is
calculated by use of adsorption models [14]. The simplest approach is to perform measurements over
a pseudo-differential variation in the adsorbed phase concentration [16,26]. Under this condition, even
if the diffusivity is variable, the assumption of constant diffusivity is acceptable [14]. This allows the
use of simple analytical solutions assuming constant diffusivity in the diffusion model. However,
the simplicity of the uptake rate measurements method is deceptive [27]. The problem is that there
are several experimental factors that should be incorporated in the employed models, such as those
related to other transport processes (film and/or pore diffusion) and heat transfer. In principle, such
effects could be embodied into the model, as for example in [26], or the experiments could be designed
so to exclude some effects, but such interventions may compromise the accuracy of the method [27].
Another approach is to perform experiments over a wide range of surface coverage values, and to
use constant-diffusivity models where essentially the measured diffusivity is an apparent or average
value [11]. The measured surface diffusivity can be correlated with the equilibrium surface coverage,
as for example in [28]. However, because of the wide range of surface coverage values, the accuracy of
this method is somewhat questionable [26]. Alternatively, the zero-loading surface diffusivity can be
derived by applying variable diffusivity models [11,12].

Figure 1 shows the typical trends of surface diffusivity as a function of the adsorbate concentration
in solid phase, adapted from Choi et al. [12]. In monolayer adsorption at increasing surface coverage
the surface diffusivity generally increases, and it decreases in some systems with significant pore
mass transfer restrictions, as discussed in literature [11,18,23,29,30]. In mesoporous-macroporous
materials, when multilayer adsorption/capillary condensation occur, a non-monotonic trend can be
observed, with surface diffusivity showing a maximum [30]. Moreover, in microporous materials
(e.g., zeolites [31]) and for monolayer adsorption, “hindered” (intracrystalline) diffusion occurs: this is
a phenomenon influenced by steric effects and in this sense it is different from surface diffusion [18],
but similar approaches can be adopted for its modelling [12].

Monolayer adsorption correlations able to predict both increasing and decreasing (hindered)
diffusion are discussed below, while comprehensive reviews on other correlations are provided
elsewhere, e.g., in [12,18]. The theoretical equation of Chen and Yang [29] can be adopted for the
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g-function, that it is here expressed in terms of the surface coverage degree θ = q/qm and it can predict
both increasing and decreasing trends for the surface diffusivity:

g(θ) =
DS(θ)

DS0
=

1− θ+ λ
2 θ(2− θ) + H[1− λ](1− λ)λ2θ

2(
1− θ+ λ

2θ
)2 (6)

where λ is the blockage parameter [11,29] and H[1 − λ] is the Heaviside step function (it is = 1 if λ < 1,
otherwise it is = 0). At λ = 0, Equation (6) gives the Higashi–Ito–Oishi equation [32]:

g(θ) =
1

1− θ
(7)
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Figure 1. Surface diffusivity as a function of adsorbate concentration in solid phase. Adapted version
from Choi et al. [12].

The correlation by Marbán et al. [33] is empirical and covers both increasing and decreasing trends
for the surface diffusivity:

g(θ) =
DS(θ)

DS0
=

DS0 + (DS,m −DS0)θ
m

DS0
(8)

where DS,m is the surface diffusivity at maximum loading (θ = 1) and m is an exponent. This equation
gives θ-increasing surface diffusivity values for DS,m > DS0, constant surface diffusivity for DS,m = DS0,
and decreasing surface diffusivity when DS,m < DS0.

To the best of our knowledge, at least in the area of adsorption kinetics modelling, the only
equations dealing with both increasing and decreasing trends of variable surface diffusivity are those
of Chen and Yang [29] and Marbán et al. [33]. Thus, the phenomenon of hindered surface diffusion,
mainly occurring in microporous adsorbents such as zeolites, is worthy of investigation, in particular
when expressions for the surface diffusivity with a well-defined theoretical basis are sought. In the
following, a contribution in this sense is given by formulating a time-dependent correlation for the
surface diffusivity based on fractal dynamics concepts.

3. Results and Discussion

3.1. Formulation of a Time-Dependent Correlation for Surface Diffusivity

The literature analysis of surface diffusion phenomena shows that several concurrent factors
determine the increasing, decreasing, or non-monotonic trends of the surface diffusivity as a function
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of the adsorbent surface coverage degree. In particular, the enhancement of surface diffusion with
loading is imputed to the progressive occupation of active sites characterized by lower binding energies
(increasing mobility of the adsorbate), whereas pore blocking by adsorbate species hinders surface
transport [18,23,29]. Moreover, it has been demonstrated, by means of Monte Carlo simulations applied
to describe diffusion in a lattice (a common model adopted to represent porous materials such as
zeolites), that intermolecular interactions can modify the free energy barrier associated with molecular
jumps, and consequently the hopping rate [34,35]. More specifically, attractive and repulsive forces
retard and accelerate diffusion with increased loading, respectively, when compared to systems with
non-interacting atoms.

From the previous arguments it is clear that the geometric and energetic features of the porous
diffusion medium, coupled with the properties of the diffusing species (molecular size, shape,
and chemical nature), affect the evolution of the diffusion process considerably. For example,
the diffusion coefficient taking into account the tortuosity of a porous medium can be 1 or 2 orders
of magnitude smaller than the one measured in the bulk fluid phase [36]. Hence, in the surface
diffusivity equation we propose herein all factors contributing in enhancing and impeding this
transport phenomenon are embedded in two distinct terms, each of them exhibiting a time-dependence
to explicitly address “temporal memory” effects on the transport process. This approach is inspired by
equations previously developed in the literature, in the framework of both anomalous transport and
fractal-like kinetics:

• In the case of anomalous transport (such as single-file diffusion in zeolites), for which the mean
square displacement of the diffusing entity exhibits a nonlinear growth with time, the time variation
of the diffusion coefficient can be expressed via a power-law scaling equation, and the diffusivity
decreases or increases with time for sub-diffusion and super-diffusion, respectively, as discussed
in the works by Kärger and colleagues [37,38], Metzler and Klafter [39], de Gauw et al. [40],
Lutz et al. [41], Wu and Berland [42];

• Kopelman [43] applied fractal-like kinetics to describe the dynamics of diffusion-limited
heterogeneous processes, for which the time-decrease of rate coefficients derives from the
non-re-randomization of the reactants position in the diffusion space due to dimensional or
topological constraints. Fractal-like kinetic models have been successfully applied to interpret
kinetic data for gas–solid reactive systems and fluid–solid adsorption processes, as in Haerifar
and Azizian [44] and in the works by Balsamo and Montagnaro [45–48].

On the basis of the above discussion, the time-decreasing term of surface diffusivity
D f r

S (t) (“fr” stands for fractal) due to hindered surface transport is expressed by means of a
fractal-like equation:

D f r
S (t) = D f r

S0(t + t1)
−h 0 ≤ h ≤ 1 (9)

where t is the time, t1 is a particular value of time having modulus = 1, and h is the fractal exponent.
In particular, h is related to the spectral dimension of the diffusion medium, with the spectral dimension
being a function of both the anomalous diffusion exponent and the fractal dimension. The spectral
dimension regulates the probability for a diffusing species to come back to its original position after a
certain time [43,49]; h has an upper limit value of 1, corresponding to spectral dimension tending to
zero. In Equation (9), D f r

S0 is a coefficient whose meaning can be analyzed when re-writing the equation
at the process initiation (i.e., t = 0):

D f r
S (t = 0) = D f r

S0t1
−h = DS0 (10)

as D f r
S (t) must equal the zero-loading surface diffusivity DS0 when t = 0; therefore, it is:

D f r
S0 =

DS0

t1
−h

(11)
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On the other hand, the time-increasing term of surface diffusivity Dhop
S (t) (“hop” stands for

hopping to recall the Higashi–Ito–Oishi model [32] predicting an increasing diffusivity with loading
due to surface hops) is expressed as:

Dhop
S (t) = Dhop

S0 (t + t1)
α α ≥ 0 (12)

with α being the hopping exponent. Similarly, Dhop
S0 is a coefficient whose meaning can be analyzed

when re-writing Equation (12) at t = 0:

Dhop
S (t = 0) = Dhop

S0 t1
α = DS0 (13)

as also Dhop
S (t) must equal DS0 when t = 0; therefore, it is:

Dhop
S0 =

DS0

t1
α (14)

We assume that the fractal and hopping contributions to surface diffusivity act as mechanisms in
series, and therefore we here propose the following equation (called MBI equation as acronym of the
authors’ surnames) by also taking into account Equations (11) and (14):

1
DS(t)

=
β

D f r
S (t)

+
(1− β)

Dhop
S (t)

=
β

D f r
S0(t + t1)

−h
+

(1− β)

Dhop
S0 (t + t1)

α
=

β

DS0
(t+t1)

−h

t1
−h

+
(1− β)

DS0
(t+t1)

α

t1
α

=
1

DS0

 β

(t+t1)
−h

t1
−h

+
(1− β)
(t+t1)

α

t1
α

 (15)

where β is the fractional contribution of the fractal diffusion resistance to the overall resistance,
while 1 − β the one related to the hopping surface diffusivity. For ease of reading, remembering that
t1 = 1, the MBI Equation (15) can be also informally re-written as:

1
DS(t)

=
1

DS0

 β

(t + 1)−h
+

(1− β)

(t + 1)α

 (16)

Noteworthy, a similar combination of diffusion resistances is found in the work of Kapoor and
Yang [50], where the authors applied the effective medium approximation to derive one-dimensional
surface diffusion in energetically heterogeneous adsorbents and considered the surface as constituted
by energy patches with discrete energy distribution.

In the MBI Equation (15), if h = α = 0, a time-invariant surface diffusivity is obtained,
i.e., DS(t) = DS0 (the zero-loading surface diffusivity). Moreover, Equation (15) allows to predict
a maximum for the DS(t)/DS0 ratio, by equating to zero its first derivative with respect to t. The
obtained value of time t* for which the surface diffusivity exhibits a maximum is:

t∗ = t1


[
α(1− β)
βh

] 1
α+h

− 1

 (17)

and the corresponding value of maximum surface diffusivity ratio reads:

DS(t)
DS0

∣∣∣∣∣∣
max

=

[
α(1−β)
βh

] α
α+h

(1− β)
(
α
h + 1

) (18)



Processes 2020, 8, 689 7 of 11

3.2. Analysis of the Time-Dependent Equation for Surface Diffusivity

In this section, the time-dependent DS(t)/DS0 trends predicted by the elaborated MBI Equation (15)
are critically discussed, with a main focus on the effect of the different parameters on the time evolution
of the surface diffusivity ratio. Data are now conveniently expressed as a function of the dimensionless
time τ = t/teq, where teq is the equilibrium time. The results are summarized in Figure 2a–d.

1. Time-invariant diffusivity ratio—Figure 2a. The simplest case, for which DS(t) = DS0, occurs when
both the fractal and hopping exponents are zero (i.e., h = α = 0). This indicates a memoryless
transport process, that is to say the adsorbate surface diffusion is not affected by alterations of the
porous diffusion environment taking place along the adsorption process.

2. Monotonically increasing diffusivity ratio—Figure 2b. In this scenario, the surface transport of the
diffusing species is continuously enhanced as new adsorbate molecules/ions are captured by the
adsorbent. First of all, this pattern can be established when there is no contribution of the fractal
diffusion resistance to the overall one, i.e., β = 0 and therefore the surface diffusivity is equal to its
time-increasing hopping term only (DS(t) = Dhop

S (t)). The time-increase of the diffusivity ratio is
more marked at greater values of the hopping exponent α, and the differences in DS(t)/DS0 values
become augmented as the adsorption time proceeds. For instance, at τ = 0.5 the surface diffusivity
ratio is 2.93 and 8.58 for α = 0.6 and 1.2, respectively. Under equilibrium conditions, DS(t)/DS0 is
4.21 and 17.77 for α = 0.6 and 1.2, respectively. Furthermore, a time-increasing surface diffusivity

ratio can be also obtained for a non-zero value of β. In this case, the constraint
[
α(1−β)
βh

] 1
α+h
≥ teq+1

(i.e., t* ≥ teq) needs to be satisfied, because otherwise the maximum for the surface diffusivity
ratio would fall in the existence domain for τ.

3. Monotonically decreasing diffusivity ratio—Figure 2c. This is the case of a hindered diffusion
process, for which the surface diffusivity decreases with time, and it is common for diffusion in
zeolites. A monotonically decreasing DS(t)/DS0 pattern can be predicted by setting β = 1, therefore
the surface diffusivity is equal to its time-decreasing fractal term only (DS(t) = D f r

S (t)). In this
context, the fractal exponent h regulates the time-decay of the surface diffusivity. For h = 0.5,
a slight decrease of the surface diffusivity with time can be observed: DS(t)/DS0 is 0.41 and
0.30 for τ = 0.5 and 1, respectively. An increase of h produces a more relevant reduction of the
surface diffusivity. In fact, for h = 0.9 the surface diffusivity diminishes by about one order of
magnitude when comparing the initial value with respect to the one retrieved at τ = 1. In addition,
a time-decreasing trend for surface diffusivity can be also derived for a non-negligible contribution

of the hopping transport resistance when the condition
[
α(1−β)
βh

] 1
α+h
≤ 1 is fulfilled (i.e., t* ≤ 0).

4. Diffusivity ratio exhibiting a maximum—Figure 2d. In this scenario, factors determining an
increase of surface diffusivity prevail for short adsorption times, whereas hindered transport

rules thereafter. From a mathematical standpoint, the constraint 1 <
[
α(1−β)
βh

] 1
α+h

< teq+1 needs to

be satisfied to obtain a maximum value for DS(t). The effects of β, α and h on the time evolution
of the surface diffusivity are shown in Figure 2d. In particular, when fixing α and h, an increase of
the fractional contribution of the fractal diffusion resistance (i.e., greater values of β) determines
a shift of the maximum towards shorter adsorption times and an associated reduction of the
maximum value of the surface diffusivity (i.e., the diffusion process is negatively affected by
increases in β). As an example, when α = 3 and h = 0.8, τ* equals to 0.15 (maximum diffusivity
ratio = 3.76) and 0.10 (maximum diffusivity ratio = 2.23) for β = 0.1 and 0.2, respectively. Very
interestingly, sufficiently high values of β also allow to predict surface diffusivity values smaller
than DS0. Finally, it is worth observing that when the α/h ratio is very high (example in the figure:
α = 3 and h = 0.03), the surface diffusivity decreases very weakly with time after having reached
its maximum value.
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Figure 2. Different patterns of the surface diffusivity ratio as a function of the dimensionless
time, predicted by the developed time-dependent MBI Equation (15): (a) time-invariant function;
(b) monotonically increasing function; (c) monotonically decreasing function; (d) function exhibiting
a maximum.

4. Conclusions

In the present study, the concepts of fractal theory of process dynamics were applied to describe
hindered surface (or intracrystalline) transport of an adsorbate species in porous materials upon
adsorption from a fluid phase. The latter process refers to an energetically activated diffusion which
can significantly affect the adsorption rate, in particular when pores blocking by adsorbates or
strong adsorbate–adsorbate interactions come into play. The equation formulated to describe the
temporal variation of the surface diffusivity accounts for two mechanisms acting in series: a fractal-like
(time-decreasing) and hopping (time-increasing) surface transport. The time-dependence of each
mechanism follows a power law with a specific scaling exponent. The mathematical and numerical
analysis of the proposed expression witnesses its potentiality to depict monotonic or non-monotonic
trends of surface diffusivity as a function of the adsorption time. It is noted that theoretical equations
are available in literature to interpret surface diffusivity patterns exhibiting a maximum are rare,
in particular when monolayer adsorption is dealt with.

Future numerical investigations will be aimed at using the developed fractal-like correlation
in combination with a diffusion-based model in order to assess its ability to fit adsorption capacity
experimental data vs. time for different fluid–solid adsorption systems, in comparison with commonly
adopted models including constant diffusion coefficients. Fitting will help to derive proper correlations
among fractal and hopping exponents, chemico-physical and textural properties of the adsorption
systems (including e.g., the tortuosity of the porous medium and the properties of the bulk fluid),
and operating conditions of the process, which in turn can provide deeper insights into mechanistic
aspects of the diffusion process.
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Nomenclature

C concentration of adsorbate in fluid phase (M/L3)
DS adsorbate surface diffusivity (L2/t)
DS0 zero-loading adsorbate surface diffusivity (L2/t)

D f r
S0

coefficient introduced in Equation (9) (L2/t(1−h))

Dhop
S0

coefficient introduced in Equation (12) (L2/t(1+α))
DSS adsorbate self-diffusivity (L2/t)
f fugacity (–)
g function defined in Equation (4) (–)
H Heaviside function (–)
h fractal exponent (–)
J mass flux (with respect to density) (L/t)
m exponent in Equation (8) (–)
q concentration of adsorbate in solid phase (M/M)
r radial coordinate of the adsorbent particle (L)
T temperature (T)
t time (t)
t1 unitary value of time (t1 = 1) (t)
Greek letters:
α hopping exponent (–)
β fractional contribution defined in MBI Equation (15) (–)
θ surface coverage degree (–)
λ blockage parameter (–)
τ dimensionless time (–)
Superscripts:
* point of maximum
fr fractal
hop hopping
Subscripts:
eq equilibrium value
m saturation (monolayer) conditions
max maximum value
L length
M quantity
T temperature
t time
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