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Abstract: This paper proposes a theoretical framework for generalization of the well established
first order plus dead time (FOPDT) model for linear systems. The FOPDT model has been broadly
used in practice to capture essential dynamic response of real life processes for the purpose of control
design systems. Recently, the model has been revisited towards a generalization of its orders, i.e.,
non-integer Laplace order and fractional order delay. This paper investigates the stability margins as
they vary with each generalization step. The relevance of this generalization has great implications in
both the identification of dynamic processes as well as in the controller parameter design of dynamic
feedback closed loops. The discussion section addresses in detail each of this aspect and points the
reader towards the potential unlocked by this contribution.

Keywords: first order plus dead time model; stability; gain margin; phase margin; fractional order
system; frequency response; fractional order delay; fractional order control

1. Introduction

The FOPDT (First Order Plus Dead Time) model is a trademark approximation of process dynamic
response for the purpose of control design. In the design of a feedback control loop, one considers its
performance to a load disturbance or set-point change, its robustness to the changes in the controlled
process characteristics, and its fragility to the variation of its own parameters. Several methods are
proposed to tune controllers taking into account these features, while approximating the true process
dynamic response with FOPDT [1]. Industry reports that PID-type control (Proportional Integral
Derivative) is still the frontline feedback algorithm and that identification is still responsible for large
costs [2]. Hence, approximations such as FOPDT are useful to allow first hand control design methods
for non-control-expert process operators such as broadly exemplified in [3].

Frequency response based optimal tuning for PID-type controllers is very popular for both
classical and fractional order PID-type controllers [4–9]. Stability margins are imposed as part of
the design, such as gain and phase margin. These are intrinsically used to determine the amount of
robustness one aims for the closed loop characteristic behavior. Optimal tuning rules for PID-type
control have been broadly analysed in frequency domain [10,11]. Fragility for integer order PID-type
control [1] and for fractional order PID-type control [12–14] is an important measure to account for
robustness to dynamic process variability. Dead time variability is an important factor in determining
the amount of fragility of a process, and fractional order control has proven to be intrinsically robust to
these variations [15].
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In this paper we restrict our attention to the generalization of the classical FOPDT model and
the implications thereof with respect to gain and phase margins. The contribution of the work is
the full generalization of orders in the FOPDT and the corresponding analysis with perspectives for
identification and control opportunities.

2. The Generalization of the FOPDT Model

The classical FOPDT model has the form:

P1(s) =
K

Ts + 1
e−Tds (1)

with K the gain; T the time constant and Td the time delay of the approximated process. This is referred
to as the integer FOPDT model.

The first generalization was proposed in [16] as a fractional order transfer function with integer
order dead time:

P2(s) =
K

Tsα + 1
e−Tds (2)

with α ∈ R. We will refer to this form as FOfPDT.
The second generalization was proposed in [17] as an integer first order transfer function with a

fractional order dead time:
P3(s) =

K
Ts + 1

e−Tdsβ
(3)

with β ∈ R. We will refer to this form as FOPDTf.
Here, we add the complete generalization, i.e., a fractional order transfer function with fractional

order dead time:
P4(s) =

K
Tsα + 1

e−Tdsβ
(4)

with (α, β) ∈ R. We will refer to this form as FOfPDTf.
When control design is envisaged, the robustness of the closed loop is measured in terms of the

stability margins: gain and phase margin. The open loop gain and phase margin are then determined
such that the controller parameters compensate towards the desired closed loop values. The phase
margin (PM) and gain margin (GM) of the loop transfer function will be used to provide the analysis
among the four FOPDT models.

The PM for the classical FOPDT model (1) is given by

PM1 = − arctan(Tωg)− Tdωg + π (5)

where ωg is the gain cross-over frequency in rad/s. The GM is given by

GM1 =
1

‖Ke−Td jωp

Tjωp+1 ‖
=
‖Tjωp + 1‖

K
=

√
T2ω2

p + 1

K
(6)

where j =
√
−1 and ωp the phase cross-over frequency in rad/s.

The PM for the FOfPDT model (2) is given by

PM2 = − arctan

(
Tωα

g sin απ
2

Tωα
g cos απ

2 + 1

)
− Tdωg + π (7)
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and the corresponding GM is given by

GM2 =

√
T2ω2α

p + 2Tωα
p cos απ

2 + 1

K
(8)

The PM for the FOPDTf model (3) is given by

PM3 = − arctan(Tωg)− Tdω
β
g sin

βπ

2
+ π (9)

and the GM is given by

GM3 =
1

‖Ke−Td jωβ
p

Tjωp+1 ‖
=

√
T2 jω2

p + 1

Ke−Tdω
β
p cos βπ

2

(10)

The PM for the FOfPDTf model (4) is given by

PM4 = − arctan

(
Tωα

g sin απ
2

Tωα
g cos απ

2 + 1

)
− Tdω

β
g sin

βπ

2
+ π (11)

and the GM is given by

GM4 =
‖T(jωp)α + 1‖

K‖e−Td(jωβ
p )‖

=

√
T2ω2α

p + 2Tωα
p cos απ

2 + 1

Ke−Tdω
β
p cos βπ

2

(12)

respectively.

3. Analysis

3.1. Effect of Augmentation with Fractional Order Time Constant Term

Let us commence by looking at the system augmented from (1) to (2). The extra parameter is the
fractional order α.

Theorem 1. For any given ωg > 1 and ωp > 1, there exists an α > 0 ∈ R, such that a system augmented
with order α has increased robustness.

Proof of Theorem 1. For the gain margin, assuming that GM2 ≥ GM1 gives√
T2ω2α

p + 2Tωα
p cos απ

2 + 1

K
≥

√
T2ω2

p + 1

K
(13)

Simplifying on both sides delivers the inequality

T2(ω2α
p −ω2

p) + 2Tωα
p cos

απ

2
≥ 0 (14)

In (14) the first left hand term is always positive for α > 1, while the term in cosine is periodically
positive in intervals α ∈ (0, 1)∪ (3, 5)∪ (7, 9).... For all these intervals, the inequality holds, as depicted
in Figure 1, available program in Supplementary Material. The same inequality is derived for GM4 >

GM3.
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Figure 1. Surface of solutions for Equation (14) for GM2 > GM1.

Let us now assume that PM2 ≥ PM1. We obtain

− arctan

(
Tωα

g sin απ
2

Tωα
g cos απ

2 + 1

)
≥ − arctan(Tωg) (15)

equivalent to

arctan

 Tωα
g sin απ

2
Tωα

g cos απ
2 +1 − Tωg

1 +
Tωα

g sin απ
2

Tωα
g cos απ

2 +1 Tωg

 ≤ 0 (16)

This gives the inequality

Tωα
g sin απ

2 − T2ωα+1
g cos απ

2 − Tωg

Tωα
g cos απ

2 + T2ωα+1
g sin απ

2 + 1
≤ 0 (17)

The denominator in (17) is always positive for monotonically increasing values of sin(απ/2),
that is α ∈ (0, 1) ∪ (3, 5) ∪ (7, 9).... This is illustrated in Figure 2.

Figure 2. Surface of solutions for denominator of Equation (17).
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For the inequality (17) to hold, we need the sign of the numerator to be negative. For same values
of α as above, the numerator is negative. The result is illustrated in Figure 3, available program in
Supplementary Material.

Figure 3. Surface of solutions for Equation (17) for PM2 > PM1.

Notice the same inequality is obtained for PM4 ≥ PM3.

3.2. Effect of Augmentation with Fractional Order Time Delay Term

Let us now examine the system augmented from (1) to (3). The extra parameter is the fractional
order delay β.

Theorem 2. For any given ωg > 1 and ωp > 1, there exists an β > 0 ∈ R, such that a system augmented
with order β has increased robustness.

Proof of Theorem 2. Assume GM3 ≥ GM1. It follows that

1

e−Tdω
β
p cos βπ

2

≥ 1 (18)

Equivalently,

e−Tdω
β
p cos βπ

2 ≤ e0 (19)

following that

− Tdω
β
p cos

βπ

2
≤ 0 (20)

For Td > 0 and ωp > 0 we have that Tdω
β
p > 0 and the simplified inequality holds

cos
βπ

2
≥ 0 (21)

Inequality (21) holds for values β ∈ (0, 1) ∪ (3, 5) ∪ (7, 9)....
Assume PM3 ≥ PM1. It follows that

− Tdω
β
g sin

βπ

2
≥ −Tdωg (22)
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with Td > 0 and ωg > 0. Division with right hand side term gives

ω
β
g

ωg
sin

βπ

2
≤ 1 (23)

The inequality follows

ω
(β−1)
g sin

βπ

2
− 1 ≤ 0 (24)

This inequality holds for negative values of sinusoidal function, i.e., β ∈ (2, 4) ∪ (6, 8) ∪ (10, 12)....
Figure 4 illustrates this result, available program in Supplementary Material.

Figure 4. Surface of solutions for Equation (24) for PM3 > PM1.

For both inequalities (21) and (24) simultaneously, then β ∈ (3, 4) ∪ (7, 8)....

The same inequalities are valid for GM4 > GM2 and PM4 > PM2.

4. Discussion

4.1. On Identification

By definition, a fractional order derivative sα implies a higher order of equivalent electrical of
R-L elements; while a fractional order integrator 1

sβ implies a higher order of equivalent electrical R-C
elements [18,19]. The frequency intervals where these high order systems are operating are significantly
different, i.e., higher vs lower frequency bandwidth. This influences also the achievable closed loop
bandwidth.

Typical processes where setpoint tracking is envisaged will abide to lower frequency bands,
while processes where essentially disturbance rejection mode is used will abide to band-limited
intervals. Finally, stochastic noise will be visible at higher frequencies. Control theory has shown that
no single controller can adequately handle all above mentioned modes of operation, unless detuned
for high robustness over a large frequency interval of operation [11,20]. In practice, separate controllers
(feedback, feedforward, lead-lag, lag-lead etc) will be used to tackle the various frequency intervals
of interest.

Figure 5 presents the four model structures by means of Nyquist plot frequency response for
various values of their fractional orders. It can be observed the difference in frequency intervals
where the fractional order affects the frequency response. Figures also available via program in
Supplementary Material.
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Figure 5. Nyquist plot of the frequency response of the four model structures, starting from FOPDT
(top) to FOfPDTf (bottom). All model structures have K = 1, T = 1 and Td = 1.

In our prior work described in [16], we presented generic LTI (linear time invariant) systems to
describe transfer functions of incommensurate real orders involving fractional order time constant
terms. Process model given by (2) has been used to identify the process dynamic response from a
simple sinusoidal experiment. The identification procedure has been successfully applied both in
simulation and in experimental data and has been used for both in system identification [16] as well as
in controller tuning [7].
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It has been shown in [16] that such a FOfPDT model has the least number of unknown parameters
compared to real process high order dynamics. The ability to capture effortlessly the high order
dynamics is in the geometrical meaning of the fractional order, related to the frequency response of
the system. One such fractional order value is equivalent to an interlacing of pole-zero pairs in a
band-limited interval.

The conditions for robustness analyzed in the previous section can be thus used to pose restrictions
in the identification domain of solutions. This is directly applicable with the identification method
described in [16], as the coefficient α is preset in a user-determined interval to speed up the convergence
of the identification procedure.

The process model from (3) has been identified from an experimental circuit of RC elements
in a ladder network configuration [17]. The fractional order delay coefficient has been shown to
improve the fitting in frequency domain for faster decay of phase at higher frequencies. This high
frequency behavior is also observed in delay–dominant systems. It has been observed that increasing
the delay coefficient value results in decreasing the fractional order delay coefficient value. However,
in the classical β = 1 form such as in (1), increasing the delay coefficient value alone exhibited poor
fitting performance.

A summary of the real life processes where some of these structures are used, is given in Table 1.
Variations of fractional order model (with/-out time delay in model structure) with multiple fractional
order time constants have been omitted from the list, but real life examples are numerous and in
various application areas; see e.g. numerous works involving experimental data based identification
of fractional order dynamic systems of J.A. Tenreiro Machado, R. Caponetto and H. HosseinNia.

Table 1. Non-exhaustive summary of published reports where the various forms of FOPDT
generalization has been employed on a real life process with experimental data. NMP: non-minimum
phase; MIMO: multiple input multiple output.

Process Model Reference

high order, delay dominant FOPDT [4,21,22]
NMP,open loop unstable, MIMO, poorly damped FOPDT [3]
high order FOfPDT [23–25]
high order FOPDTf [17]

4.1.1. Identification Procedure

There exist identification procedures for FOPDT and SOPDT (Second Order Plus Dead Time)
model approximations from real data [16,26,27]. Here we give a summary of the employed method
used in this paper in the two numerical examples given hereafter. In Appendix A we give a summary
of the estimation method from [16] for the FOPDT and FOfPDT model structures. The identification
method used in [17] for the FOPDTf model structure is based on nonlinear least squares identification
method from experimental multisine data, without specific considerations on the fractional order
interval values. Any other optimization method can be used to extract/identify the model parameters
from experimental data.

1. Select a test frequency ω̄. As mentioned in [7,16], the critical frequency (i.e., phase crossover
frequency) is a suitable candidate.

2. Do a sine test with ω̄ using the scheme in Figure 6. The process frequency response P(jω̄) and
its slope dP(jω)

dω ‖ω̄ can be obtained from the magnitude and phase of the signals y(t) and ȳ(t).
In Figure 6, P(s) represents the real physical process and y(t) represents the measured process
output. The underlying theory has been described in [28] and the method validated as robust
against process disturbances and measurement noise.

3. Obtain a simple FOfPDT model of the physical process with the method described in [16].
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4. Convert the FOfPDT model into a discrete-time transfer function for digital control purposes.
A procedure to convert any fractional order model into a discrete-time transfer function has been
described in [29].

Figure 6. Scheme of the experimental procedure to obtain the (sine) signals y(t) and ȳ(t) and compute
the phase slope of the process at the phase crossover frequency (or other frequency), from [28].

4.1.2. High Order Process Example

Let us consider the high order process model example from [16]:

P(s) =
1

(s + 1)6 (25)

with sampling period Ts = 0.3 and the FOPDT approximation given by

Pap(s) =
1

(3s + 1)
e−3s (26)

The step response is given in Figure 7. Notice that in practice, the FOPDT approximation is done
by trial-and-error manner, and the result is quite good. However, the S-shape of the high order system
is clearly far from being adequately captured by the first order dynamic characteristic.

Figure 7. Step response for the real high order system and the FOPDT approximation model.

The identified FOfPDT model has the form

Pid(s) =
0.8983

3.6223s1.161 + 1
e−3.0259s (27)

where no constraints have been put on the values of α. The stability margins are given in Table 2 below
and the frequency response in terms of Bode and Nyquist plots in Figure 8, available with program in
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Supplementary Material. Notice in the Nyquist diagram a distinct ability of the identified FOfPDT
model to outperform the FOPDT in terms of curve fitting.

Table 2. Stability margins for the three process transfer functions.

Process GM PM ωp ωg

Real Process 2.3741 - 0.5770 -
FOfPDT 2.2348 - 0.6018 -
FOPDT 2.2612 - 0.6758 -

Figure 8. Frequency response of the real process and the FOPDT and FOfPDT model estimations.

4.1.3. Delay Dominant Example

When approximations of FOPDT are used for dynamic step response from the real process,
the processes are classified in three groups. This is based on the formula

τ =
T

T + Td
(28)

and the intervals defined as:

• if τ ∈ (0, 0.5) then the system is lag dominant;
• if τ ≈ 0.5 then the system is balanced; and
• if τ ∈ (0.5, 1) then the system is delay dominant.

In [16] we discussed the process with significant time delay:

P(s) =
2

(5s + 1)(10s + 1)
e−25s (29)

with sampling period Ts = 0.3 and the FOPDT approximation given by

Pap(s) =
2

(15s + 1)
e−27s (30)

The step response is given in Figure 9. Notice that in practice, the FOPDT approximation is done
by trial-and-error manner, and this particular approximation is very good.
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Figure 9. Step response for the real high order system and the FOPDT approximation model.

The identified FOfPDT model has the form

Pid(s) =
1.8868

15.19s1.086 + 1
e−27.68s (31)

where no constraints have been put on the values of α. The stability margins are given in Table 3 below
and the frequency response in terms of Bode and Nyquist plots in Figure 10, available with program in
Supplementary Material. From the Nyquist diagram we conclude that the identified FOfPDT model
outperforms by far the FOPDT approximated model.

Table 3. Stability margins for the three process transfer functions.

Process GM PM ωp ωg

Real Process 0.7011 −97.3831 0.0824 0.1330
FOfPDT 0.7011 −101.7894 0.0824 0.1360
FOPDT 0.7996 −58.6913 0.0831 0.1154

Figure 10. Frequency response of the real process and the FOPDT and FOfPDT model estimations.

Notable surveys of real life processes requiring fractional order transfer function models have
been given in [30,31].

4.2. On Control Design

The initial properties of the system, such as PM and GM, will strongly influence the limitations
of the closed loop bandwidth. The controller will have to bring in the loop response the difference
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between process features and a specified GM or/and PM by the user for the closed loop properties.
Obviously, a system with a large PM will lessen the tight conditions on the controller design, enabling
the possibility to achieve a better (larger) bandwidth with larger robustness than a process already
closer to stability margins in terms of GM and PM. A complete analysis with theoretical insight has
been given in [32,33] and for example, user defined PM based automatic tuning rules presented
in [4,10,34].

In industrial control practice, the FOPDT model is used by process operators to detect basis
features of the process such as time constant T, gain K and delay Td (artificially introduced by
approximating high order dynamics or naturally present in process, or combination of both). Usually,
industrial use does not identify this model form, but directly approximates it from data step response
(see a comprehensive summary of industrial practice by ABB in [35]). If this model is introduced by the
operator as information on the process to be controlled, a vast variety of automatic rules are directly
available to design PID–forms of controllers. This has been exemplified in [11,21,22] and recently
introduced with event-based control concepts for model identification in [36–38].

Alternatively, automatic tuning of controllers is based on harvesting information from experiment
data such as a relay test, a sinusoidal test; see examples on real life processes in [7,27]. These newer
methods use automatic optimization techniques, which move away from the hands-on training for
process operators from earlier decades. With the availability of digital system control this is now
possible to perform in efficient manner.

The FOfPDT form has been used to design control parameters in [16]. Such similar process
transfer function models have been also used in many other recent works [6,15] to mention a few.
A good textbook for design of fractional order controllers based on frequency response stability margin
criterion is [4].

From a methodological point of view, the frequency response design is no different from loop
shaping in optimal control design. The most commonly used form of controller is obviously the
generalization of the classical PID controller structure to a fractional order in the form

PID(s) = Kp +
Ki
sγ

+ Kdsδ (32)

with Kp the proportional gain, Ki the integral gain and Kd the derivative gain and γ, δ their respective
fractional orders. By their fractional order terms, this generalized PID controller form has two
additional degrees-of-freedom when tuning is concerned. A geometrical interpretation of this form has
been recently addressed in [39]. The control design can be applied as with any other model structure,
based on frequency response characteristic. This poses not any difficulty as all four model structures
presented in this paper have a frequency response which can be analytically calculated for the purpose
of controller design.

In particular, the model generalizations are useful for control design purposes as the inequalities
hold for conditions of critical frequency ωc when the phase of the system is −180o, i.e., the result of a
relay feedback experiment. This is commonly employed in automatic tuning of PID-type controller
parameter methods. Autotuning methods based on user defined specifications in frequency domain
such as GM and PM have been given in [4,5] and recently in [8,28]. As in the numerical examples
given in Tables 2 and 3, the critical frequencies are very close to each other although the stability
margins differ significantly among the sets of model structures. This implies that one model structure
offers significantly improved stability margins to play with, while maintaining the same bandwidth.
Consequently, it relaxes the conditions imposed on the set of solutions for controller design.

Recent surveys of real life processes requiring fractional order PID controllers have been given
in [9,15,40–42]. The experimental works involving a closest form of the FOfPDT model for controller
tuning purposes are very scarce, e.g., [25,43–46]. Closed loop control examples of FOPDT structures
with fractional order time constant representative for real life processes has been given in [16].
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4.3. On Deployment

When used in computer-based digital systems, the fractional order transfer functions of the model
or of the controller, need to be discretized. An efficient method delivering a minimal integer order
equivalent discretized model is given in [29] along with a Matlab (R2017a, MathWorks, Gent, Belgium,
2017) implemented software example. The advantage of the method is that discretization occurs
directly from the transfer function in Laplace, making it very compact in terms of programming.

When analogue realizations are envisaged, this is also possible through special circuitry and
elements with specific material properties, as provided in [43].

Fractional order controllers deployed in real time systems have been broadly used in experimental
systems; see e.g., [21,22,42,47,48].

A notable review of numerical tools is given in [49].

5. Conclusions

In this paper we introduced a generalization of the classical first order plus dead time transfer
function model and examined cases when the generalization has an advantage in terms of robustness
when compared to its nominal form. The analytical study provided insight into the usefulness of the
model as a function of frequency intervals of interest for the dynamic process at hand. A discussion
section provides the reader with potential relevance for identification and control design purposes and
points to relevant works where the model structures have been used in simulation and experimental
studies. As the concept is newly emerging, opportunities arise to investigate the use of these models in
practice for capturing real process dynamic characteristics and design controllers in frequency domain.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/6/682/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

FOPDT First Order Plus Dead Time
FOfPDT First Order Fractional Plus Dead Time
FOPDTf First Order Plus Dead Time Fractional
FOfPDTf First Order Fractional Plus Dead Time Fractional
SOPDT Second Order Plus Dead Time
PID Proportional Integral Derivative (Control)
GM Gain Margin
PM Phase Margin

Appendix A. Generic FOfPDT Model Identification

We give here a summary of the estimation method presented for the first time in [16] for the
FOPDT and FOfPDT model structures. This particular methodology aims to fastforward the estimation
optimization process by avoiding a full nonlinear in the parameter identification procedure, as the
fractional order term α is apriori handled as explained above. The other advantage is that a sinusoidal
test can be applied, which is easy to perform during the operation of the industrial process without

http://www.mdpi.com/2227-9717/8/6/682/s1
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disturbing its nominal operation in a disruptive way as a relay test may do. Further information of the
sinusoidal test model identification for automatic tuning of controller parameters are given in [7].

The derivative of the classical FOPDT model is given by

dP(s)
ds

=
−Ke−Tds

(Lsα + 1)2 αLsα−1 +
−Ke−Tds

(Lsα + 1)
Td =

−Ke−Tds

Lsα + 1

[
αLsα−1

Lsα + 1
+ Td

]
= −P(s)

[
αLsα−1

Lsα + 1
+ Td

]
(A1)

Separating on the left hand the process and its slope gives:

dP(s)
ds

P(s)
= −

[
αLsα−1

Lsα + 1
+ Td

]
(A2)

The frequency domain representation of (A2) is given by

j
dP(jω)

dω

P(jω)
=

[
αL(jω)α−1

L(jω)α + 1
+ Td

]
= A + jB (A3)

with A and B the real and imaginary parts of the complex number j
dP(jω)

dω
P(jω)

. Notice that the values of A
and of B are known from the sine test.

A + jB =
αL(jω)α−1

L(jω)α + 1
· L(−jω)α + 1

L(−jω)α + 1
+ Td (A4)

which gives after multiplication

A + jB =

α
jω [(j)αωαL + ω2αL2]

1 + [(j)α + (−j)α]ωαL + ω2αL2 + Td (A5)

Supposing α is apriori given (e.g., in a loop for determined interval values), the complex number
jα in (A5) can be expressed as

jα = ej π
2 α = cos(

π

2
α) + j sin(

π

2
α) (A6)

and denoting X = ωαL we can separate the real and imaginary parts in (A5) as:

A =
α
ω sin(π

2 α)X
1 + 2 cos(π

2 α)X + X2 + Td (A7)

and

B =
− α

ω

[
cos(π

2 α)X + X2]
1 + 2 cos(π

2 α)X + X2 (A8)

Expression (A8) can be written as:(
B +

α

ω

)
X2 +

(
2B +

α

ω

)
cos(

π

2
α)X + B = 0 (A9)

from which X is obtained (α is given, B is known, and ω = ω̄), hence

L =
X

ωα
(A10)

From the expression of the real part (A7), knowing X, we can obtain the time delay Td. Plugging
the calculated values for L and D and the known α value into FOPDT model (with s = jω̄), it gives K.
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At this moment, all parameters of (1) are known. Adding a fitting cost to this procedure for the various
values of α, the minimal cost delivers the final model parameter values.

The algorithm is executed for a pre-defined interval in small steps (e.g., ∆α = 0.001), i.e.,
any interval set by the GM and PM inequalities. The final solution is given by that α value for
which the following conditions are fulfilled:

(K, L) ∈ R, and (L, Td) > 0 (A11)

Notice that if L ∈ R, then it follows from (A7) that also Td ∈ R. For all examples tested hitherto,
of which three selected representative ones are given in this paper, an unique solution for α was found
which satisfied (A11).

The result is thus an FOfPDT model, which has at the test frequency ω̄ the same frequency
response value and the same frequency response slope as the real process.
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