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Abstract: The electrical generation industry is looking for techniques to precisely determine the
proper maintenance policy and schedule of their assets. Reliability-centered maintenance (RCM) is
a methodology for choosing what maintenance activities have to be performed to keep the asset
working within its designed function. Current developments in RCM models are struggling to solve
the drawbacks of traditional RCM with regards to optimization and strategy selection; for instance,
traditional RCM handles each failure mode individually with a simple yes or no safety question in
which question has the possibility of major error and missing the effect of a combinational failure
mode. Hence, in the present study, a hybrid RCM model was proposed to fill these gaps and find
the optimal maintenance policies and scheduling by a combination of hybrid linguistic-failure mode
and effect analysis (HL-FMEA), the co-evolutionary multi-objective particle swarm optimization
(CMPSO) algorithm, an analytic network process (ANP), and developed maintenance decision tree
(DMDT). To demonstrate the effectiveness and efficiencies of the proposed RCM model, a case
study on the maintenance of an electrical generator was conducted at a Yemeni oil and gas
processing plant. The results confirm that, compared with previous studies, the proposed model
gave the optimal maintenance policies and scheduling for the electrical generator in a well-
structured plan, economically and effectively.

Keywords: policy selection; optimization; reliability-centered maintenance (RCM); analytic
network process (ANP); hybrid linguistic failure mode and effect analysis (HL-FMEA); failure
modes (FMs); oil and gas plant; co-evolutionary multi-objective particle swarm optimization
(CMPSO); developed maintenance decision tree (DMDT)

1. Introduction

Industrial plants are concerned with the availability and reliability of production due to market
demand, such as the electrical industry and oil-gas plants. Nowadays, producing electric energy
without interruption has attracted much attention from industries. The maintenance of an electrical
generator, therefore, plays a critical role in ensuring the reliability of the energy supply, with key
goals of improving the operational efficiency and the service life of the equipment. Therefore,
industrial plants apply different maintenance strategies. Reliability-centered maintenance (RCM) is
a methodology that can be used to decide what maintenance activities need to be performed in order
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to keep the equipment working within its designed function range [1]. RCM can choose the most
suitable maintenance tasks, reduce the probability of failure, and/or reduce the consequences of
failure. RCM was originally created for use in the aircraft industry [2].

Many researchers [1,3,4] have described an extension of the RCM method. Moreover, RCM II
was presented by Moubray [1], designed to be applicable to conventional industry.

RCM offers valuable insights into existing maintenance to find pertinent maintenance policies
and thus creates a balance between reliability, availability, and the cost of equipment [5]. Moreover,
the RCM technique potentially has a wide area of successful implementation that ranges from use in
a transmission system [6] to a power distribution system [7]. Due to recent economic demands,
maintenance teams are often faced with a variety of difficulties, such as maintenance scheduling,
asset criticality and management, and practices in subsystems or plants [8]. Conventional reliability
approaches for maintenance are insufficient for industrial world demands such as preventive
maintenance and condition-based maintenance. Furthermore, in the electrical distribution field, RCM
is mostly combined with FMECA (failure modes, effects and criticality analysis) to define the
criticality of equipment for the improvement of the reliability of maintenance [9].

Despite all RCM’s advantages, some industrial plants have found RCM to be too sophisticated
a methodology because of some difficulties in implementation. Especially if they are analyzing a
massive amount of data in a large plant, this will require experts and will be time-consuming.
However, profits grow immediately after program implementation, which can be drawn out only for
some equipment or if the equipment is nonstandard [10]. Several studies have reported the
drawbacks, as follows [11-16]: complicated, time-consuming, costly, too qualitative an approach,
shortfalls in safety due to a failure to update maintenance approaches, a lack of identification and
prioritization for failure modes, and handling each failure mode individually, which misses out on
the combinational effects of failure modes.

Several methods have been suggested to overcome RCM’s drawbacks, such as a genetic
algorithm (GA) [6,7], particle swarm optimization (PSO) [17], game theory [18], GO methodology
[19], MAUT (multi-attribute utility theory) [20], direct fault tree analysis [21], and the ANN technique
[22].

The FMEA approach is a part of the RCM steps, and in previous studies, FMEA structures were
improved to simplify the failure modes analysis and prioritization—for instance, ANP-DEMATEL
(Decision-Making Trial and Evaluation Laboratory) [23], hybrid linguistic failure mode and effect
analysis (HL-FMEA) [11], technique for order of preference by similarity to ideal solution (TOPSIS)
[24], and (an acronym in Serbian for a multi-criteria optimization and compromise solution) VIKOR
with house of reliability [25].

ANP is an extension of analytical hierarchy process (AHP), and was presented by Saaty [26]. The
advantages of ANP compared to AHP are an ability to offer an internal relationship, independence,
and interdependencies among the criteria, subclusters, and alternatives [26,27]. Similarly, ANP has a
novel calculation technique “supermatrix,” which is used to determine the weights of criteria and
alternatives for decision-making purpose [28]. According to Ziemba [29], ANP can assist a decision-
maker with solving the problem of the location and design selection for a wind farm, and is the best
technique for estimating issues and making decisions.

Particle swarm optimization (PSO) is an evolutionary algorithm based on a computation method
to find optimal solutions on Pareto fronts, introduced previously [30]. PSO models the collaborative
behavior of bird clustering or fish swarming. Also, the PSO algorithm has been successfully applied
in many fields, such as medical data classification [31], operation strategy optimization in integrated
energy systems [32], operation optimization [33], and fault diagnosis in power transformers [34].
Moreover, PSO was combined with Monte Carlo simulations to improve the outcomes of
maintenance planning for aircraft maintenance optimization [35]. Furthermore, several studies
suggest that the reliability and cost should be considered when determining the optimal maintenance
plan [36] and the availability for multi-period scheduling [37]. Recently, several PSO algorithms were
proposed to improve standard PSO and handle some complicated multi-objective optimization
problems [38,39].
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In previous studies, it was noted that RCM models were improved to solve some drawbacks in
failure mode identification and prioritization. Similarly, the work of Heo and Lyu [17] has
demonstrated an improved RCM by integrating PSO and other methods into the analysis. However,
unlike the study of Heo and Lyu [17], most of the modified RCM versions lack a focus on the
optimization of optimal RCM policy selection.

To our knowledge, no previous research in RCM modeling has covered the three phases of
optimization of failure mode prioritization, multi-objective maintenance optimization, and
multicriteria decision-making, especially for electricity generation in a hazardous location like an oil
and gas plant. Hence, a new approach is needed to fill this gap. Therefore, a new hybrid RCM model
was proposed via the hybrid LFMEA (linguistic failure mode and effect analysis), CMPSO (co-
evolutionary multi-objective particle swarm optimization), ANP, and developed maintenance
decision tree (DMDT) techniques to overcome the drawbacks of traditional RCM. This paper aims to
present a new RCM optimization model with the objective of overcoming the drawbacks related to
traditional RCM, with a valid maintenance plan.

The rest of this paper is organized as follows. Section 2 illustrates the proposed methodology of
the new hybrid RCM model using the hybrid LFMEA, ANP, co-evolutionary multi-swarm PSO
algorithm, and the developed decision tree approach. Sections 3 and 4 give the discussion and results
of the practical implementation of the model using the electrical generators case study in a Yemeni
oil and gas plant. Finally, the paper’s conclusions and suggested future work are given in Section 5.

2. Proposed Methodology of New Hybrid RCM Model

In this part, a hybrid RCM model was established based on the hybrid LFMEA, ANP, co-
evolutionary multi-swarm PSO algorithm, and the developed maintenance decision tree approach.
The opinions of experts and engineers were considered to obtain a more precise RCM analysis during
the application of the methodology. Figure 1 displays the proposed model for the hybrid RCM model
in an oil and gas plant with a hazardous environment.
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Figure 1. The proposed model for reliability-centered maintenance.




Processes 2020, 8, 670 4 of 25
The methodology of the proposed RCM model consisted of six steps, described as follows.

2.1. Identification and Prioritization of FMs by HL-FMEA Approach

Step 1: Classify the main dimensions and failure modes of the system. Data are extracted from
the literature reviews, vendor documents, the database of computerized maintenance management
systems (CMMS), and the opinions of industrial experts. A team of n experts will structure and
organize the data into m main risk factor dimensions and failure modes FM = { FM,, FM,, ..., FM,},
where k is a number of failure modes.

Step 2: Apply the hybrid LEMEA approach to identify and prioritize the failure modes, which
contain all weights of LFMEA, DEMATEL, and the ANP supermatrix.

In this step, risk weights of all failure modes and main clusters are determined to rank the failure
modes and their main clusters.

The HL-FMEA technique is presented as follows [11]:

(i) Compute the weights for risk factors W = (wp, ws,wp) through an analytic network process
(ANP), where W =1.
(i) Calculate linguistic evaluation matrix values V;; for FMs and main risk factor, which will
consist of n rows of experts and m columns of FMs.
Vij = (Vg" Vti"VtL])') 1)
t={1,23,,n}j={1,23,m},
where 1 denotes the number of expert members, and m denotes the number of failure modes.

Vt(])-, ng-, VtL])- are risk language evaluation weights given by the expert member Expertt for every
failure mode FM; . Then, risk constant ¢, :

L LifVi=EVS VY )
Px = Wy /2L, Wi, other’ @)
(iii) Compute the linguistic risk priority value V5"V for main clusters and failure modes.
VtI}PN = (o thj)')WO X (‘PSVS’)WS X (@p VtL})‘)WD- 3)
(iv) Determine the expert weights Wy, = (Wgy, Wiy, ..., Wg,) by a fuzzy priority matrix, where

Z VT/Et =1.
Fuzzy priority matrix F is used to determine a weight for every expert member, which are

explained in the following steps:

e Rank the failure modes for every expert {FM{,FM5, ..., FML} .
e Describe the partial order of the pf; fuzzy priority number for every expert member t and FM,;
failure mode.

1, FM{ is superior to FMf
0.5, FM{ is equal to FM

(
|
t = \
Pij 4| 1—pitj, wheni # j; (4)
l o i=jorother
pij = Yrapl; ij = 1,2,,m.
e Determine the fuzzy priority matrix F for each fuzzy preference p;; and FM; .
P11 Pz - DPim
F=|Pn Paz - P2m | -
pml pmz pmm

e  Calculate the consistency index y,, and rows’” summation of the fuzzy priority matrix F, then
rank them to get R® = ¥/L, py; > Xl psi > XiZq P > = > LiZq Pai:
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_ YRY
=102 (6)
The exert weights are
Wee=Ye/Xi=1 V- @)

Then, the expert constant S, :

g | V= v ©
’ max {yy/Xi=1Y¢}, other
(v) Compute the linguistic value of priority risk number LV*" for every FM; .
ijRPN — (‘81 Vlli.PN)WEl x (,82 V213‘PN WE2 N (ﬁn Vrll?]PN WETL’ (9)

where B, is the expert constant, Wy, is the expert weight, and V5V is the risk priority number.
(vi) Apply the DEMATEL approach with alpha cut to find the weights (r + ¢); and the relationship
between FMs. The detailed steps for DEMATEL are described in [11].
(vii) Apply the ANP approach with supermatrix to evaluate the weights W; , feedback, and
interdependence among FMs. The ANP approach steps will be explained in Section 2.3.1.
(viii)Calculate the final risk weights H RPI/]'.f mal 4 FMs and main cluster:

inal
HRPV™ = LVRPN x (r + ¢); X W (10)

(ix) Rank the failure modes and clusters according to the final risk weights.

2.2. Multi-Objective Optimization Based on Multi-Swarm PSO Algorithm

Optimization of maintenance problems is a multi-objective optimization process. In this section,
the objective functions are defined and modeled for maintenance problems, then used in the co-
evolutionary multi-swarm PSO (CMPSO) algorithm to seek optimal multi-objective solutions.

Defining the appropriate objective functions plays a key role in setting up a multi-swarm PSO
optimization algorithm. A common multi-objective optimization is formulated in Equation (11) to
obtain the decision variable vector X = (x4, X,,...,x,), from the vector of objective functions F(x) .

Min F(X) = {f1(x), 2(x), ..., fu ()}

9:(X)<0i=12,..q (11)

Subjected to: {hi(X) —0i=12 .1’

where g;(X) represents g inequality constraints, and h;(X) represents ! equality constraints.

2.2.1. Multi-Objective Function Modeling

Step 3: Select the multi-objective function of maintenance problems that will be used in the next
step of the optimization algorithm for evaluating and selecting the optimum solutions in the
multidimensional solution space.

In this paper, the objective functions of reliability R(X), risk (component failure) U5 (X) , and
cost C(X) are selected and formulated as follows.
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Minimize: Uy, (X), C(X) Xe R"

(12)
Maximize: R(X) X € R"

Urisk(X) = f (1 (o), M2 (32D, e 1 () - (13)

Then, an approximate risk model can be formulated as follows [40]:
Urisk(X) = Xi(I1; i (X)), (14)

where p;(x;) is the failure risk of the ith equipment.
Finally, the objective function of cost can be formulated as follows:

CX) = Xy ci(X), (15)

where C(X) < Cpyaget and ¢;(X) is the ith component cost.

2.2.2. Co-Evolutionary Multi-Swarm PSO Algorithm

The CMPSO approach deals with multi-objective optimization problems, and was developed by
Zhan et al. in 2013 [41]. However, unlike CMPSO, the standard PSO lacks the focus on the
shortcomings of the fitness assignment and is unable to optimize all objectives simultaneously due
to achieving one objective and being weaker on the other objectives.

The CMPSO approach consists of N subswarms, which are executed together to find optimal
solutions for N objectives. Similarly, each subswarm has the same optimization process of the single-
objective PSO technique. However, all subswarms and their particles share information by an
external shared archive. Therefore, the information gained from search experience is shared by all
subswarms and their particles, which achieves the actual Pareto front successfully.

Step 4: Apply the co-evolutionary multi-swarm PSO (CMPSO) algorithm to find the multi-
objective optimal solutions in the space of multidimensional objective solutions.

The particles in a swarm can travel in the multidimensional solution space and seek the optimal
solutions. Figure 2 shows the detailed steps of the proposed CMPSO algorithm for multi-objective
maintenance optimization.

In CMPSO, every ith particle in the nth swarm p* has positions Sj* = {x[}, x5, ..., x},}, and the
velocity vectors V* = {v]},v},...., v}, } . Moreover, positions and velocity will be updated after the
fitness function calculation.

For iteration (t+ 1), the velocity v]' and position x7' can be updated with the following
equations [41,42]:

vt + 1) = w.v(t) + ¢y.1y. (pBest] — x['(t)) + c,.15. (gBest™ — x[(t))

+ c3.75. (AT = X1 (1)) (16)

(E+1D) =x)+ v+ 1), 17)

where 1, 1,, and r; are random variables; (pBest]', gBest™) are the best local solution and the
best global solution of all particles in swarm », respectively; A} denotes the optimal random variable,
which is selected from the external archive; w denotes the inertia weight; and ¢; and ¢, denote
learning factors, whereas c¢; denotes a social learning factor.
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Figure 2. The proposed co-evolutionary multi-objective particle swarm optimization (CMPSO)

algorithm for maintenance optimization.

2.3. Multi-Criteria Decision-Making (MCDM) Based on the ANP and DMDT Techniques

Increasing the size of optimal multi-objective solutions for maintenance problem will add more
difficulties for the decision-maker due to conflicting objectives and constraints. Likewise, making
maintenance decisions has to balance all objectives and consider all limitations and risks, especially
in a hazardous area. Therefore, a multi-criteria decision-making approach is proposed in the next
subsections.

In the proposed MCDM phase, ANP and the developed maintenance decision tree (DMDT) are
used simultaneously to evaluate alternative maintenance policies with differing goals for
maintenance policy selection and scheduling.

2.3.1. ANP Approach

In this subsection, the ANP approach enables the decision-maker to prioritize the criteria and
their alternatives for maintenance policy selection, which involves six main factors: C1 (maintenance
cost), C2 (production loss), C3 (safety effect) C4 (environmental effect) C5 (complexity of
maintenance), and C6 (unavailability of spare parts).
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Step 5: Apply the ANP approach to obtain the weights for the decision-making criteria and their
alternatives for maintenance selection.
The ANP approach is presented as follows [26,43,44]:

1. Arrange the ANP network structure of criteria, subcriteria, and alternatives according to the
relationship between criteria and their alternatives. The influenced criteria and alternatives are
exemplified in the supermatrix Equations (18) and (19), which will offer the feedback and the
interdependence weights at a higher level.

G G Con
€1 . Cin, € . €y e Cpi e Epp
€11
C C1z 1 Wiy Wi, = Wi
1
€1n,
€11 (18)
A= G :912 Waa Waa < Wom
elnl
€11 X
c €12 H
m i W1 Wma W1
elnl
MD, - MD,,
Cl e Ck
MDl Cl W11 e Wlm (19)
A= : : : :
MDm Ck Wmi ° Wmm

2. Construct matrix A through pairwise comparisons concerning the influenced criterion, clusters,
and alternatives on those that it influences.
3. Calculate the inconsistency of the pairwise comparison matrix (CR < 0.1 [45]):

_ Amax—n
CR = Mmect, 20)

where RI denotes a random inconsistency value.
4.  Calculate the weights of supermatrix through the following expression:

Aw = }\max w, (21)

where A is the matrix of pairwise comparison, w is the eigenvector; and the maximum
eigenvalue is A,y -

5. Normalize the matrix by dividing every value in the supermatrix by the sum of its column to
get the weighted supermatrix W, .

6. Compute the final weights of limit supermatrix W, as follows:

WL — V|/r2k+1. (18)

2.3.2. Developed Maintenance Decision Tree (DMDT)

Step 6: Apply the proposed developed maintenance decision tree (DMDT) to determine the
optimum maintenance policies and schedules.

In this step, the DMDT algorithm is proposed to help the decision-maker select suitable
maintenance policies and scheduling, after the steps of ANP weight calculation and CMPSO
optimization. Moreover, the DMDT considers more criteria such as risk, safety, production loss, cost
of repairing, maintenance complexity, spare parts, and maintenance scheduling. Figure 3 shows the
proposed algorithm of the developed maintenance decision tree.
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3. A Case Study: An Electrical Gas Turbine Generator

3.1. System Descriptions

In this section, an electrical generator of a Yemeni oil and gas plant has been considered for the
case study. The objective of the case study is to demonstrate the applicability and effectiveness of the
proposed RCM model in a hazardous area. Electrical generators are the core parts of a power plant
and supply electricity to all machines in the plant. The reliability and availability of the electrical
generator are therefore essential for plant demand and production. The electrical generation unit
consists of four gas turbine generators and three emergency diesel generators. We performed
analyses from the stage of failure mode prioritization to the optimization phase, then the maintenance
decision phase, as the main purpose of this research is to obtain the optimum maintenance policies
and schedules for the whole system.

3.2. Data Collection

All the maintenance data for the electrical generator were collected, such as failures, shutdowns,
and health condition monitoring signals. These records were stored in the computerized maintenance
management system (CMMS). Furthermore, data were also obtained from the CMMS database,
vendor documents, a literature review, and experts’ opinions from the plant. Nevertheless, the
collected data should have acceptable consistency. This can be realized through a good correlation of
vendor recommendations and the experts’ judgments with the CMMS database to make accurate
judgments through the HL-FMEA framework. Moreover, during a data analysis of risk assessment,
different weights of experts have been evaluated according to their biases due to the dissimilarity of
experts’ knowledge and background. Moreover, consistency tests were carried out during the ANP
pairwise compressions for risk assessment and decision analysis. Hence, experts’ weights and
consistency tests were used in the proposed methodology to create precise judgments and prevent
serious bias in the analysis and in the results.

The expert team is made up of five experts from five sections of the plant (operation, electrical,
mechanical, control system and instrumentation, and health and safety environment). They all had
more than nine years of experience in maintenance and risk analysis in the oil and gas company. The
experts’ judgments were gathered through a series of workshops and meetings. The judgments of
experts were built based on their industrial experience, skills, and knowledge. The experts
{ Expert!, Expert?, Expert®, Expert*, Expert®} identified and analyzed 25 potential FMs
{FM,,FM,, ..., FM;5}; the potential FMs were organized under five main categories of FMs for the
electrical generator, as presented in Table 1. Moreover, the precise judgments were carried out by the
team of experts and through a group discussion, which eliminates the bias of a single expert and
improves the risk assessment and evaluation.
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Table 1. Main risk clusters and failure modes [11].

Main Dominations Failure Mode FM; Description
OP1 wrong operator action
Operation or2 overload/unbalanced voltage
(OP) OP3 wrong startup
OP4 wrong shutdown
. IN1 instrumentation failure
Instrumentation and control . oL
System IN2 . failure of calibration
(IN) IN3 failure of the control system
IN4 failure of data communication
EL1 rotor failure
Electrical EL2 stator failure
(EL) EL3 winding & insulation failure
EL4 output power failure
ME1 cooling system failure
Mechanical ME2 bearing failure
(ME) ME3 shaft failure
ME4 gearbox failure
oT1 material degradation
Other external risks OoT2 failure of the purging system
(OT) OoT3 lubricant contamination
OT4 gas leakage

4. Results and Discussion

4.1. Hybrid Linguistic FMEA Rank

In this step, hybrid linguistic FMEA was conducted to prioritize the failure mode risk and the
weights of three risk factors ( wy, ws, wy, ), which were determined by experts (0.326,0.453,0.221)
and through the ANP method. These weights are in line with previous studies [46,47], where the
severity risk factor (0.453) has a higher weight among other risk factors.

Table 2 illustrates the linguistic values of the main FMs with scale ( Vy/s,Vi/4,..., V5) . The

linguistic scale is s = 5, with range (2s — 1 = 9). Three risk values (VZ,V{

0 Ve VD ) were determmed for

every FM by the five experts in Equation (1), as shown in Table 2.

Table 2. Linguistic risk value for the main clusters of failure modes.

8, Vf], VD) Expert?! Expert? Expert® Expert* Expert®
or WMV V) (Va, Vi Vigs)  (VaVags, Viga) WV, Vis Vaz) (Vs Vigs Vi)
IN WV, Viya Vigs) (Vo Vg Visa) (Vi Vs, Vags) WV Viys, Vige)  (Va Vs, Vigs)
EL Vya Vo, Vip)  (Viys Vi, Vh) Va5 Vi, Vay2) Viyar Vij2 V1) Va, Vi3, V)
ME (VZ'V3!V1/5) (VIIVZ'V1/4—) (VZ! Vll VI/S) (VZ' Vl! V1/4) (V3'V3! V1/4—)
oT Vi, Vs, V1) Vi, Vi Vie) (Vi Vas Vi) (Vi Vags, Vi) (Viga, Vaga, Vigs)

The risk constant ¢, =1 is obtained by Equation (2); the consistency index vy, is calculated by
Equations (4)—(6); for instance, if the rank of failure modes for an expert ¢ is equal to R* = FM{ >
FM{ > FM! > .- > FM!, the ordering consistency index will be y; = ps;+pss + P51 + = + D5y +
D31 + - + D3y + - + Pgy . Therefore, the rank is ME > EL > OP > 0T >IN, RS =4>26>22>08>
0.4 and v, = {y1,Y2, Y3 Y4 Y5} =10.736, 1.027, 1.027, 1.027, 1.027}.

However, expert weights Wy, and risk priority values

VPN were calculated to obtain a

linguistic value of priority risk number LVjRP N in Equations (7) and (9), then the expert constants f;

={0.212,1} are given by Equation (8). Expert weights Wge =(0.152,0.212, 0.212, 0.212, 0.212) showed
that the evaluation of expert Expert! departed from the team’s consensus. Moreover, expert
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Expert® has a lower weight (0.152) that will reduce his bias on the expert group. As a consequence,
serious bias in the analysis and FM assessment results will be prevented. The weights of (r + ¢); and
W; were calculated through the DEMATEL and ANP approaches to obtain the final rank with risk
weights HRPV/™® in Equation (10). The final rank and risk weights HRPV™ are shown in Table
3, and the result is compared with the traditional FMEA approach.

As shown in Table 3, the highest-priority FMs are ME, OT4, ME3, OP, EL, and OT2, which are
associated with the hazards of gas and mechanical failures.

By contrast, the rank of the traditional FMEA for ME3, OT4, INT2, and IN4 is not clear due to
the drawback of mathematical calculation, while the HL-FMEA approach had a better ranking due
to the weights of the FM interrelationship and feedback, which were determined through the ANP
and DEMATEL methods.

So, according to the proposed methodology, a suitable maintenance policy should be selected to
prevent or control the risk of FMs. However, the selection of maintenance strategies involves many
factors (such as risk, cost, and reliability), which should be optimized before maintenance policy
selection and will be executed in the next steps.

Table 3. Final hybrid risk value of clusters and FMs.

Traditional HL-EMEA
FMEA
Clusters and - Final
FMs LV; r+oc); wW;
V\I;Ii);ﬂ Rank We;ght \g\/eigh)t] Wei{g,ht HRPV; Rank
Weight

or 216 3 0.614 3.732 0.284 0.651 4

IN 108 11 0.493 2.255 0.143 0.159 12
EL 210 4 0.741 2.991 0.29 0.643 5
ME 324 1 1.225 4.118 0.215 1.085 1
oT 144 8 0.491 3.353 0.268 0.441 7
OP1 162 7 1.297 1.247 0.148 0.239 10
OoP2 63 16 1.23 1.083 0.048 0.064 18
OP3 30 19 0.956 1.484 0.022 0.031 21
OP4 90 13 0.749 2.006 0.067 0.101 16
IN1 60 17 1.271 1.31 0.023 0.038 20
IN2 7 23 0.96 0.895 0.016 0.014 23
IN3 100 12 14 1.426 0.092 0.184 11
IN4 7 23 0.765 0.796 0.012 0.007 25
EL1 180 6 0.96 2.758 0.163 0.432 8
EL2 72 15 0.671 2.665 0.049 0.088 17
EL3 84 14 0.893 2.52 0.066 0.149 13
EL4 24 20 0.612 2.239 0.013 0.018 22
ME1 8 22 0.55 2.022 0.008 0.009 24
ME2 120 10 1.32 3.064 0.028 0.113 14
ME3 256 2 1.811 3.157 0.121 0.692 3
ME4 200 5 1.537 2.701 0.058 0.241 9
OT1 45 18 1.056 4.242 0.023 0.103 15
OT2 126 9 1.608 2.74 0.139 0.612 6
OT3 9 21 0.854 3.451 0.013 0.038 19

OT4 256 2 2.786 2.862 0.091 0.726 2
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4.2. Maintenance Optimization and Comparison

In this section, we applied the co-evolutionary multi-swarm PSO (CMPSO) to find a set of
optimal solutions. Figure 4 shows the 3D space of nondominated solutions and multi-objective
functions.

In this optimization phase, the three objective functions (risk of unavailability, cost, and
reliability) are treated simultaneously in Equations (11)-(15) through the CMPSO algorithm in Figure
2. However, Equations (16) and (17) were used to find the best local and global solution of all particles
in swarm n. The CMPSO algorithm was executed in MATLAB® 2018b software to verify the
effectiveness of the optimization phase for obtaining the optimal solution set.

A stable value of fitness was obtained at 600 iterations. Hence, the maximum optimization
iteration of CMPSO number was set to 600, and the maximum capacity of external archive or Pareto
front is 200. The CMPSO algorithm contains three different swarms of PSO that work cooperatively.

The initial population size for each swarm was set to 30 particles, Learning factor as ( ¢; = ¢, =

g, cy = g) , and inertia weight as w = 0.9- gen_num X 0.5/600 .

100

@) farraetisd

Figure 4. The 3D space of non-dominated solutions for multi-objective functions.

To verify the effectiveness of the CMPSO methodology, the MOPSO [48] and NSGA-II [7]

algorithms were also applied to optimization problems and evaluated using the same objective
functions. As can be seen in Figure 5, the CMPSO has a better fitness value than MOPSO and NSGA-
IT due to the self and social learning of subswarms and particles in CMPSO.
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Figure 5. Comparative fitness of the three algorithms.

As observed in Figure 6, after 600 iterations, the Pareto fronts of cost reliability —dimensional,
which are provided by CMPSO, are more precise and faster than those provided by the NSGA-II

algorithm.
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Figure 6. Comparative Pareto fronts of cost reliability —dimensional.

In Figure 7, the orange squares in the x—y plane represent the two objectives (cost and
unavailability), which show contradictory trajectories. As the cost goes up, the risk of unavailability
becomes smaller. The green stars in the x-z plane show the contradictory relationship of
unavailability and reliability. The blue dots in the y—z plane represent two objectives (cost and
reliability) that show a positive relationship of mutual rising. As the cost increases, the reliability rises
until it becomes stable.
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Figure 7. The relationships of three objectives (reliability, unavailability, and cost).

Figure 7 indicates that the optimum solutions are achieved with reliability (>93%) and
unavailability (<0.5 x 10-%) when the cost is greater than $140K. Thus, more attention would be given
to this multi-objective zone during the selection process.
In Figure 8, the red spheres of the distributed surface represent a graphically optimal Pareto set
of three-dimensional solutions. Orange cubes, green stars, and blue dots are the projections of the
optimization objectives in three planes.
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Figure 8. The final set of Pareto optimal solutions.
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Figure 8 illustrates the final optimal Pareto front, which was obtained from the CMPSO
algorithm. The optimum solutions have reliability (>90%), but the unavailability and cost vary (0.5 »
104 <U(x) < 1 x 104), ($25K < C (x) < $125K). Therefore, more decision criteria are essential to deal
with the unavailability and cost variance for maintenance selection. Moreover, maximizing the
system reliability ensures that the unavailability and cost are optimized for maintenance selection
with regards to the decision-making criteria, especially for a multi-objective problem. Furthermore,
the lower cost is related to the measures of high unavailability and very low reliability. As such, the
decision-maker should always consider both the risk of unavailability and the maintenance costs. The
final set of the optimal Pareto front has 200 valid solutions in the reliability—cost-unavailability
dimensions.

Finally, each element of the optimal solution is unique when all objectives are concerned.
Consequently, it may not be possible to select all elements for the optimization problem. Therefore,
the decision-maker needs assistance to select the best solutions efficiently. In this respect, the final
step of the proposed RCM model will be held in the decision phase by the assistance of the ANP and
DMDT approaches.

4.3. Multi-Criteria Decision-Making Phase and Performance Evaluation

4.3.1. ANP Weights of Evaluation Criteria

In this step, the ANP approach was used to compute the weights of maintenance decision criteria
and alternatives. By using those weights, the developed maintenance decision tree (DMDT) was
adopted to select maintenance policies and scheduling.

In order to find the evaluation criteria weights, the CMMS data of historical operation and
maintenance were analyzed and collected. Then, a pairwise comparison of the six evaluation criteria
was set up by engineers and experts from the production, safety, and maintenance departments. Each
pairwise evolution was determined based on the nine scores in Saaty [45].

The relationships between the criteria and their alternatives were determined in judgment
matrix A; see Equations (18) and (19). Table 4 shows the pairwise comparison of the six criteria to the
goal; then those weights are placed in the column w,; of matrix A.

Table 4. Criteria pairwise comparison to goal.

Goal C1 C2 (3 C4 C5 C6 Geo-Mean Goal Weight

C1 1 5 0714 1429 1.667 2.5 1.664 0.246
cC2 02 1 0.2 1.25 125 1.667 0.686 0.102
C3 14 5 1 3333 1429 25 2.090 0.309
C4 07 08 03 1 0.4 1.5 0.682 0.101
Cs 06 08 07 2.5 1 1.667 1.058 0.156
C6 04 06 04 0667 0.6 1 0.581 0.086
Sum 6.761 1

Then, the inconsistency ratio was derived from Equation (20); CR = 0.04758 (an acceptable value
is less than 0.1).

The same pairwise comparison steps were followed to construct the remaining columns of
matrix A. For the criteria feedback effects, four tables were organized to generate columns w,; of
matrix A and six tables were organized for every criterion to create the matrix columns (ws;) .
Moreover, the final weights of the supermatrix were determined in Equations (21) and (22), as shown
in Table 5. The ANP supermatrix calculation was executed and verified with MATLAB 2018b
software. The final weights of each decision criterion and alternative are shown in Table 6 and Figure
9.
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Table 5. The analytic network process (ANP) supermatrix for decision criteria and alternatives.

Goal (1 C2 C3 C4 C5 Ce PSM CBM CM
Goal 0 0 0 0 0 0 0 0 0 0
Cl1 0.246 0 0 0 0 0 0 028 0.211 0.183
C2 0.102 0 0 0 0 0 0 0.108 0.08 0.231
C3  0.309 0 0 0 0 0 0 0.377 0.425 0.326
C4 0.101 0 0 0 0 0 0 0.048 0.098 0.07
C5  0.156 0 0 0 0 0 0 0.157 0.124 0.145
Ce 0.086 0 0 0 0 0 0 0.03 0.062 0.045
PSM 0 0.743 0.707 0.122 0.162 0.663 0.178 0 0 0
CBM 0 0.194 0223 0.804 0.77 0278 0.751 0 0 0
CM 0 0.063 0.07 0.074 0.068 0.059 0.071 0 0 0
Table 6. The final weights of limit supermatrix W .
Goal C1 C2 C3 C4 C5 C6e PSM CBM CM
Goal 0 0 0 0 0 0 0 0 0 0
c1 0 0237 0237 0237 0237 0237 0237 0 0 0
C2 0 0.102 0.102 0102 0.102 0.102 0.102 0 0 0
C3 0 0399 0399 0399 0399 0399 0.399 0 0 0
C4 0 0.0756 0.0756 0.0756 0.0756 0.0756 0.0756 0 0 0
C5 0 0139 0139 0139 0139 0.139 0.139 0 0 0
Ce 0 0.048 0.048 0.048 0.048 0.048 0.048 0 0 0
PSM 0.410 0 0 0 0 0 0 0.410 0410 0.410
CBM 0.522 0 0 0 0 0 0 0.522 0522 0.522
CM  0.068 0 0 0 0 0 0 0.068 0.068 0.068

Figure 9 shows that C3 (the safety effect) has the highest rank among the maintenance decision
criteria, followed by C1 (the maintenance cost) due to the importance of safety effects in the oil and
gas field, which validates the proposed methodology. C6 (the unavailability of spare parts) has the
lowest rank due to the ability of the CMMS system, which can organize the spare parts automatically.

CBM (condition-based maintenance) has the highest rank among the maintenance policies,
followed by PSM (preventive scheduled maintenance) due to the influence of machine condition
monitoring and maintenance planning in failure prevention that is associated with a hazardous field
such as oil and gas plants.
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= e
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1 1

<
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1
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||
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0.0
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2
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Cca
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Cé
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Decision criteria and their alternatives

Figure 9. Final weights of decision criteria and alternatives.
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4.3.2. Maintenance Policy Selection and Evaluation

After the prioritization of decision criteria and alternatives, the proposed developed
maintenance decision tree (DMDT) was implemented to select appropriate maintenance policies and
scheduling. Table Al reveals the selected maintenance policies and the schedule of the proposed
RCM model for the failure modes of the electrical generator.

From Table Al in Appendix A, the FMs with highest risk priority are suited to CBM because of
the strong impact of CBM on machine condition, production loss avoidance, and failure prevention,
especially in a hazardous field such as oil and gas plants. Furthermore, TSM and CM policies are
assigned for FMs with medium and low risk, respectively. Likewise, the highest-priority FMs are
OT4, ME3, and OT2, which required more condition monitoring due to hazardous gas leakages and
mechanical component failures. Thus, these findings demonstrate the validity of the proposed
maintenance decision-making methodology.

To validate the applicability of the above maintenance plan, the selected maintenance policies
and scheduling were executed within 72 weeks for the electrical generator unit in a Yemeni oil and
gas plant. The significant results are as follows:

e Triple transmitters were installed to overcome the functional failure of critical measures such as
vibration, temperature, and gas detection. Moreover, controller redundancy improves the safety
and reliability of operations and maintenance. For instance, the installation of triple gas detectors
cost $3030 and saved 5 h of production loss and a machine shutdown cost of $5000.

e  For critical valves and instrumentations, functional testing and recalibration were carried out at
a workshop before the field installation, which reduces the failure rate and determines any
fluctuations in service at an early stage.

° Critical activities were carried out during shutdown or overhaul; this scheduling avoids
production losses and equipment failure.

e  For different sampling points, an oil analysis was carried out, which gave useful information
about when the oil must be changed due to the impact of load and condition changes.

e  For operator error prevention, training and operation procedures were carried out. For instance,
operator decisions traditionally depend on experience, which varies from one operator to
another.

e  Modification of the graphical display and control logic is necessary to simplify the control view
and avoid repeatable control failures.

Moreover, there is no task of “run to fail” at all in the proposed maintenance plan due to its
safety impact in a hazardous oil and gas environment.

The optimization results of RCM implementation in comparison with traditional RCM for
electrical generators are summarized in Table 7. It is worth highlighting that the optimization results
were improved after the execution of the proposed plan due to the field experience of the
maintenance team that solved most of the practical maintenance issues. As seen in Table 7, it is clear
that, in general, the proposed RCM model has sufficient effectiveness in terms of reliability and
unavailability and represents a real cost reduction—of 38.7% in comparison with the traditional

model.
Table 7. The optimization results of RCM implementation.
Parameters . Proposed Hybrid RCM
T 1RCM
(Executed Time: 72 Weeks (1.5 Years)) raditional RC Before Execution  After Execution
Reliability 0.882 93.25 96.23333
Risk of Unavailability 2.49 x 10 1.16 x 10™* 1.31 x 10
Cost ($) $1,288,163.72 $966,122.5 $789,644.4

For the validation of the proposed RCM model, the proposed model was compared with other
RCM models based on the electrical generator case study. Therefore, the traditional RCM model, the
RRCM model [9], and the NA-RCM model [7] were selected for comparison to appraise the benefits
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of the proposed RCM model. Table 8 reveals the risk prioritization and selected policy results of the
four FMs derived from the above RCM models.

In Table 8, the priority orders of FMs for the proposed model and the NA-RCM model [7] are
similar to each other, but different from the traditional RCM model and the RRCM model [9]. This
proves the validity of our proposed RCM model. Additionally, ME3 has been replaced by OT4 in the
proposed model due to the advantages of using risk assessment, which has a safety impact on the
final risk. CBM was selected as the optimal policy of the proposed RCM model. However, there are
slight differences in the optimal selected policies due to the considerable differences in the
optimization algorithm and multi-criteria decision-making, which are adopted by the proposed RCM
model in relation to the literature in Table 8. Hence, the proposed RCM model has a better
discrimination degree than the traditional RCM, the RRCM [9], and the NA-RCM [7] models. By
comparison, the results reveal the ability of the proposed RCM model to find the optimal
maintenance policy in a hazardous environment.

Table 8. Comparison between the proposed model and other recent CRM models.

Model M Optln:llzatl Optimization Task The Priority of gl:tu:la;
odels Method on Objectives Selection Failure Modes electe
Algorithm Policy
Traditional FMEA ) Cost- Decision logic ~ ME3 = OT4 > ME4 > PM,
RCM effectiveness tree EL1 CBM
FMEA, Dependson  OT4 > ME3 > ME4 >
RREMB] pazp ) Cost critical FMs EL1 ™
Cost and Depends on
NARCM " pMEA NSGA-I Reliability objectives of ~ O1+7ME3>OT2> M,
7] : o EL1 CBM
index optimization
Proposed Reliability,
Hybrid HFMA CMPSO Cost, and Risk ANP and OT4>ME3>0T2 > CBM
of IRCMDT EL1
RCM s
unavailability

This study shows that the proposed RCM model is the most suitable for selecting the optimum
maintenance policy and scheduling in a hazardous environment. This can efficiently support
industrial engineers in their decision-making and overcome the time-consuming nature and the
complexity of extended RCM models, such as the game theory RCM model [18] and the mode-based
RCM model [49].

The application of the proposed RCM model in an oil and gas plant shows how companies can
benefit from the new optimization and policy selection methodology. Furthermore, the application
of the proposed RCM model proves that the implementation of the proposed maintenance plan helps
with creating practical tasks and schedules. Moreover, the proposed RCM model has a better ability
to deal with interdependencies and feedback effects due to considering all relationship weights
among all possible decision criteria through the ANP approach.

As aresult of the above case study, the findings of optimization and policy selection were offered
to the maintenance department at a Yemeni oil and gas company to update the current maintenance
plan, particularly in order to prevent potential failures and improve the system reliability.
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5. Conclusions

This paper presents the application of a new hybrid RCM model that integrates the HL-FMEA,
CSPSO, ANP, and DMDT approaches and is suitable for use in a hazardous environment. The HL-
FMEA approach was used to identify and prioritize the risk weight of FMs. Moreover, the CMPSO
algorithm was applied to handle multi-objective optimization problems. ANP and DMDT were
applied to determine the optimal maintenance policy and schedule for every FM cost-effectively
while sustaining the reliability requirements in a hazardous plant. The validation of the RCM model
was carried out through a practical application study and analysis of the electrical generators of an
oil and gas plant in Yemen. The three phases of the proposed methodology were integrated into the
new RCM model to overcome the main shortcomings of the traditional RCM model.

The results of the case study show that the proposed RCM model is capable of optimizing the
risk and cost with reducing reliability. Furthermore, the decision algorithm has a reasonable
consideration for the criteria weight of safety, production loss, and repair cost for carrying out the
selection of maintenance policy and schedule. This study also points out that multi-objective
prioritization, optimization, and decision-making methods can be integrated into other applications
such as design optimization and process management. Moreover, the model offers a quantitative and
qualitative approach that is well-structured to assist decision-makers, especially in selecting relevant
maintenance policies and actions instead of making a decision based on expert opinions only.

To our knowledge, the proposed hybrid RCM is the first RCM model that deliberately combines
the effects of the three phases, rather than the approach of traditional RCM, which only evaluates FM
independently and ignores the combined effects of safety, production loss, and repair cost on the
whole machine.

Overall, the results of the present research demonstrate that costs can be optimized by secluding
CM tasks to reduce the interval of the electrical generator maintenance and inspection in relation to
the equipment reliability and area risks. Also, the model provides a good defense against any sudden
failure, which may happen before or after a planned maintenance event. In addition, companies could
tap into this model to evaluate and classify their risk in order to prevent future failures and help their
decision-makers, especially in hazardous areas such as nuclear and gas electrical plants. Future
research should adapt the model using artificial and automatic approaches, such as ANN and
machine learning, so that experts and engineers can enhance maintenance plans.
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Acronyms

AHP
ANN
ANP
CBM

CM
CMMS
CMPSO
DEMATEL
DMDT
FMEA
FMECA
FMs

GA
HL-FMEA
LFMEA
MAUT
MCDM
MOPSO
NA-RCM
NSGA-II
PM

PSM

PSO
RCM
RPNs
RRCM

TOPSIS
VIKOR

Appendix A

Table Al. The selected maintenance policies and scheduling of the proposed RCM model.

Analytical Hierarchy Process

Artificial Neural Network

Analytic Network Process

Condition-Based Maintenance

Corrective Maintenance

Computerized Maintenance Management System
Co-evolutionary Multi-Objective Particle Swarm Optimization
Decision-Making Trial and Evaluation Laboratory
Developed Maintenance Decision Tree

Failure Mode and Effect Analysis

Failure Mode, Effects Critical Analysis

Failure Modes

Genetic Algorithm

Hybrid Linguistic Failure Mode and Effect Analysis
Linguistic Failure Mode and Effect Analysis
Multi-Attribute Utility Theory

Multi-Criteria Decision-Making

Multi-Objective Particle Swarm Optimization

New Approach to Reliability-Centered Maintenance
Non-Dominated Sorting Genetic Algorithm
Preventive maintenance

Preventive Scheduled Maintenance

Particle Swarm Optimization

Reliability-Centered Maintenance

Risk Priority Numbers

Rational Reliability-Centered Maintenance
Technique for Order of Preference by Similarity to Ideal Solution

An acronym in Serbian for a multi-criteria optimization and compromise solution
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. Check and
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. Monitor and record the
Purging

OoT2 3 controller CBM 3M purging operation
remotely
A PSM 6M Replace oil and filters Oil sampling
OT3 14 Lube oil CBM M Check a.nd analysis the every 54 h
oil sample
CBM 1y Compare the reading in ~ Install triple
Local and Control room sensors to
OT4 1 Fire and gas o overcome the
detector Calibration and functional
PSM 3M . .
functional test failure of one
detector.
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