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Abstract: Pipelines are like a lifeline that is vital to a nation’s economic sustainability; as such,
pipelines need to be monitored to optimize their performance as well as reduce the product losses
incurred in the transportation of petroleum chemicals. A significant number of pipes would be
underground; it is of immediate concern to identify and analyse the level of corrosion and assess
the quality of a pipe. Therefore, this study intends to present the development of an intelligent
model that predicts the condition of crude oil pipeline cantered on specific factors such as metal
loss anomalies (over length, width and depth), wall thickness, weld anomalies and pressure flow.
The model is developed using Feed-Forward Back Propagation Network (FFBPN) based on historical
inspection data from oil and gas fields. The model was trained using the Levenberg-Marquardt
algorithm by changing the number of hidden neurons to achieve promising results in terms of
maximum Coefficient of determination (R2) value and minimum Mean Squared Error (MSE). It was
identified that a strong R2 value depends on the number of hidden neurons. The model developed
with 16 hidden neurons accurately predicted the Estimated Repair Factor (ERF) value with an R2

value of 0.9998. The remaining useful life (RUL) of a pipeline is estimated based on the metal loss
growth rate calculations. The deterioration profiles of considered factors are generated to identify the
individual impact on pipeline condition. The proposed FFBPN was validated with other published
models for its robustness and it was found that FFBPN performed better than the previous approaches.
The deterioration curves were generated and it was found that pressure has major negative affect on
pipeline condition and weld girth has a minor negative affect on pipeline condition. This study can
help petroleum and natural gas industrial operators assess the life condition of existing pipelines and
thus enhances their inspection and rehabilitation forecasting.

Keywords: pipeline; artificial neural networks; life prediction; deterioration; estimated repair factor

1. Introduction

In terms of the transportation of petroleum fluids around the globe, pipelines are becoming
more critical. With the increasing number of applications, pipelines are subject to different failures
under different conditions [1]. Pipelines are extended to several km for various purposes, to transport
oil and gas for industrial and household use [2]. In other words, pipeline safety and security are
related to a country’s social and economic development. Although the pipelines are the safest mode
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of transportation, there are chances of flow leakage and interruption while running due to various
reasons [3]. Cracks and leaks in a pipeline system can be a reason for economic loss, waste of
resources, and sometimes even human deaths due to system failure. Inspection and checking of the
pipeline condition are, therefore, mandatory on a timely basis. The damage that occurs due to a few
reasons, such as welding defects, mechanical factors, external damage, natural hazards, corrosion, has
a significant impact on the life of the pipeline. It is, therefore, mandatory for a pipeline to undergo
regular inspection in order to avoid accidents and pipeline failure.

For years, numerous studies have been introduced and developed to inspect the pipelines,
detect the abnormalities and predict the life of the pipeline. Some of those were non-comprehensive
and time-consuming methods. Dey et al. developed a risk-based model for pipelines, the analysis
in this study helping to determine the impact of the effects on pipeline failure [4]. After few years,
Liu et al. introduced a hybrid fault detection model by means of a combination of Rough Set (RS) and
Artificial Neural Network (ANN). The proposed model can effectively identify the complexity status
of a pipeline [5]. Later, Xing et al. presented the prediction of long-distance pipeline failure rates using
fuzzy ANN model. The model was developed on the basis of a failure tree and a fuzzy computational
technique [6]. Two models were developed for more accurate prediction failure rates by Tabesh et al.
based on Data Driven Modelling (DDM), ANN and Fuzzy Neuro systems [7]. Bersani et al. evaluated
a failure occurrence through ANN, as the relationship between factors and failures to be developed is
a complex case [8]. Noor et al. demonstrated the prediction of the residual life of the pipe, which was
subjected to internal corrosion by presenting a standard deviation model based on pigging data [9].
Dawotola et al. introduced a model with a combination of Analytic Hierarchy Process (AHP) and
multi-criteria decision analysis for oil and gas pipeline inspection, design and maintenance, suggesting
an optimal selection approach [10]. Ahmadi et al. introduced a new method for oil flow rate prediction
in reservoirs based on a real case using fuzzy logic, ANN, and the imperialist competitive algorithm [11].
Later, El-Abbasy et al. developed an ANN model based on various factors to predict the condition of
oil and gas pipelines [12]. Likewise, Szoplik proposed a model that can predict cumulative gas demand
for resident consumption by using ANN [13]. Ayegba et al. presented an ANN model to assess the
performance of a vertical 900 bend on an air silicone oil mixture over a wide range of flow rates [14].
Similarly, some authors used artificial neural networks to assess different types of conditions such as
predictions of steam flow, estimation of soil temperatures, assessment of groundwater quality, etc. [15].

ANNs are computational systems whose architecture and operation are inspired by biological
neural cells in the brain. ANN’s primary function can be defined either as computational models for
linear and nonlinear approximation, clustering and classification of data, or as model simulation [16].
The Feed-Forward (FF) network is commonly used along with Back Propagation to train neural
networks. Feed-Forward Back Propagation Network (FFBPN)’s main use is to learn and map the
relationships between inputs and outputs. In addition, the FFBPN learning rule is used to adjust
a system’s weight values and threshold values to achieve the minimum error [17]. It can also be
described as a complex relationship between the input and output values of a network set. Each node
or neuron has a value that is determined by the input received from other network system units.
Each input signal is multiplied by the corresponding input line weight value.

This research aims to investigate parameters that contribute to a pipeline’s life condition and to
develop an accurate model for assessing the life condition of a crude oil pipeline. Based on survey
results received from expert opinions from the oil and gas industries and analysing the available
historical data, this work identified factors that have influenced the pipeline’s life conditions, viz.,
metal loss anomalies (over length, width and depth), wall thickness, welding girth and pressure flow.
FFBPN is chosen for the current model development because of its high prediction rates accuracy and
the main advantage of FFBPN is learning from measured data sets [18].

The main objective of the current study is to develop a predictive model for assessing the life
condition of the crude oil pipeline using a FFBPN. The model architecture has been selected by trial
and error method to achieve optimal neural network structure with minimum error and maximum
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R2 value. The developed FFBPN approach has been compared with earlier approaches for its robustness.
The contribution of this approach helps petroleum oil and gas industrial operators to take the necessary
preventive actions and reduce product losses to the oil and gas industries.

2. Proposed Feed Forward Back Propagation Network (FFBPN) Approach

The overall methodology is presented in Figure 1. The first step comprises of collecting the data
from the crude oil industry. Six parameters were identified, based explicitly on the higher impact on
the pipeline condition. The FFBPN technique was used for training a model which is the performance
of two-way iterations. The first way includes the forward step computation of input weights and the
second way is backward step computation for updating weights and calculating errors. The training
data was normalized within the range of [0–1]. Seventy percent of collected data was used for training
the model, whereas 30% of the data is divided equally for the testing and validation, respectively.
Secondly, the model was trained based on Equation (1) until the criteria met [19].

xk =
n∑
i

wkixi (1)

where xk is the variable’s new value, xi is the variable’s initial value and wki is the neuron/variable’s
weight link value. The activation function between the input and the hidden layer was ‘logsig‘, as
indicated by Equation (2).

f (x) = 1/(1 + e−x) (2)

The purelin function was used as Equation (3) between the hidden layer and the output layer:

f (x) = x (3)
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Figure 1. FFBPN approach workflow.

Finally, the model was validated for its reliability with a new (unknown) data set and the results
were found to be satisfactory. The justification for these stages is discussed in the results section.

2.1. Data Collection

The data was collected from the Sudan-based crude oil industry. The inspection team divided the
pipeline into five sections, as the length of the pipeline was found to be large (1135.88 km). Table 1
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shows the details of the pipeline characteristics. The inspection was carried out at different time
intervals on each segment. The fourth section of the pipeline, which had a length of 241.21 km, was
found to have significant anomalies of internal metal loss and welding anomalies. Therefore, data
from the fourth section was used during this study. Later the parameters of the fourth section were
considered and normalized. Each parameter of this section had 85,519 reference points and the data
was normalized, which is discussed in the further section in detail.

Table 1. Characteristics of collected pipeline data.

Parameter Unit

Max. Allowable Operating Pressure (MAOP) 97 (bar)
Product type Waxy crude oil

Diameter 32 (inches)
Material API 5L X 65/X 70
Length 1135.88 (km)

Nominal wall thickness 11.71 (mm)/18.91 (mm)
Design Factor 0.72

Assessment pressure 80 (bar)
Design pressure 100 (bar)
Inspection years 2009 and 2015

2.2. Impact of Critical Factors on Pipeline Condition

The questionnaire was sent to 90 professional experts in the oil and gas industry from various
regions in Asia. Of the 90 given, 55 responded to the questionnaire; participants were provided with
twelve different factors including cathodic protection, metal loss, welding anomalies, corrosion, product
type, pressure flow, temperature difference, third party, crossings, wall thickness, environmental
hazards and vibration. Participants were allowed to select multiple factors as responses without any
restriction on the selection order.

Based on the opinion of experts, metal loss, corrosion, cathodic protection, product type and wall
thickness were the parameters with maximum influence on the condition of oil and gas pipelines.
It is important to mention here that the limited availability of periodic inspection data restricted
the investigation of parameters affecting the condition of the pipeline. Thus, cathodic protection,
corrosion and product type were identified as critical parameters for pipeline condition with a frequency
percentage of 72.7%, 90.9% and 78.2%. The lack of available inspection data restricted the use of these
parameters for model development. Nonetheless, during our survey results, the factors considered
during this study presented a reasonably high significance. During survey results, metal loss, wall
thickness, welding anomalies and pressure flow showed a frequency percentage of 81.8%, 70.9%, 58.2%
and 29.1%. Thereby, the selection of input parameters used for model development was in accordance
with survey responses. The parameters considered in this study were limited to metal loss anomalies,
wall thickness, weld anomalies and pressure flow.

2.3. Parameters Considered for the Model Development

The six parameters including metal loss (length, width and depth), wall thickness, weld girth
and pressure were considered from the data and given as inputs, and Estimated Repair Factor (ERF)
is taken as output to develop the FFBPN model as shown in Figure 2. The model was developed
in three stages, namely training, testing and validation, in which 70%, 15% and 15% of data were used,
respectively. If the training criteria are met in the first stage, then the model proceeds to the test stage
where it is tested to measure its performance for a given testing data sample values; otherwise, it is
recalled for retraining in the first stage. The model is successfully developed and validated after the
testing stage.
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2.4. Data Normalization

The data was normalized using Equation (4). Six parameters were considered as inputs, namely
metal loss anomalies (including length, width and depth), wall thickness, weld girth and pressure
flow, and Estimated Repair Factor (ERF) as output. The metal loss feature’s safe working pressure
(Ps) was calculated based on the remaining strength assessment method (ASME B31 G). The severity
of metal loss features and need for repair action was determined, as shown in Figure 3, according to
the ratio of safe pressure to assessment pressure (80 bar). The mathematical relationship of ERF is
presented in Equation (5). Each variable that was considered in this work had 85,519 reference points.
Thus, 6 × 85,519 values were considered as inputs, and 1 × 85,519 values were considered as outputs.

xnew =
x− xmin

xmax − xmin
(4)

where xnew is a new value, x is an original value, xmax is a maximum value, and xmin is a minimum
value of a specific parameter.

ERF = Assessment pressure/Safe working pressure (5)
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2.5. FFBPN Model Development

MATLAB® 2018a was used to develop the FFBPN model. During the initial training stage,
the FFBPN-based model is trained using the available historical data. If the model fails to meet
expectations, it will allow the process to be re-propagated until it reaches the best requirement using the
Levenberg-Marquardt (LM) backpropagation algorithm [20]. After completion of the model training,
15% of the data was used to validate the trained model at the validation stage. Once the accuracy was
reached, the model was allowed for the test stage and tested with the remaining 15% of the data sets,
and results were found to be accurate with the R2 value reached close to 1.0. The network consists of
three layers, i.e., input, hidden and output layers as shown in Figure 2. The proposed network was
used with sigmoid function (tansig) in the hidden layer and the linear function (Purelin) in the output
layer. The input layer receives the input signals from the other source; the role of the hidden layer is
to transform the signals into something that the output signal can use in some way. The proposed
neural network architecture with ‘tansig’ and ‘purelin’ functions is presented in Figure 4. This neural
architecture is also called a multi-layer perceptron. The standard multilayer perceptrons are capable of
approximating any quantifiable function to the desired accuracy rate [21].
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The six parameters mentioned above have been used as inputs and ERF has been used as a target
for the model development. Notably, the model was trained with a different number of neurons, out of
which, 16 neurons gave the best predicted output and the selected number of data sets were sufficient
to train, validate and test the model.

3. Results and Discussions

3.1. FFBPN Model Training

A FFBPN neural network has been developed to predict a crude oil pipeline’s life condition.
Specific factors have been considered as inputs for model development as limited data were available.
The model developed was trained on the basis of Equation (1) and the Levenberg-Marquardt
backpropagation algorithm; the model has been later validated and tested by providing all possible
data sets. The R2 value has been predominantly changed as the number of hidden neurons was varied,
starting from a minimum of 6 to a maximum of 20, as shown in Figure 5. The precise values of R2

have also been presented along with the respective number of neurons. The Mean Square Error (MSE)
values for each stage have been calculated using Equation (6) [22]

MSE =
1
2

n∑
m=1

(
Oa −Op

)2
(6)

where MSE is the mean of error squares, Oa is the actual output and Op is predicted output.
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The accuracy of the developed model has been found to be highly sensitive to the number of
hidden neurons. Table 2 shows the overall R2 values against the respective number of hidden neurons,
with MSE and R2 values, in all stages. The best network architecture was found to be [6 × 16 × 1].
Variations in R2 and MSE values along typical ANN stages with 16 hidden neurons are illustrated
in Figure 6. The overall R2 values are found to be consistent with the number of neurons ranging from
12 to 18, the detailed results obtained against these neurons are presented here. During the selection of
optimum network structure, the error for the existing state of the neural network must be assessed
constantly. This needs the selection of an error function, conventionally called a loss function, which
can be used to estimate the loss of the model, so that the weights can be updated to reduce the loss on
the next evaluation. In this study, MSE has been used as loss function to compute the performance of
neural network.

Table 2. Values of Training, Testing, Validation and overall R2 based on number of neurons.

No. of Neurons
Training Validation Testing

Overall R2

MSE R2 MSE R2 MSE R2

6 11.2354 0.9513 21.6136 0.9571 16.0711 0.7641 0.9372
7 10.0785 0.9609 60.7338 0.8935 19.8944 0.9463 0.9547
8 1.3699 0.9931 11.6083 0.7578 25.8974 0.8624 0.9645
9 3.5939 0.9880 20.6453 0.9796 24.8692 0.1707 0.9604
10 19.5869 0.9252 10.8580 0.3483 14.4814 0.8686 0.9045
11 4.9530 0.9768 10.9544 0.8166 30.9652 0.8871 0.9430
12 3.7410 0.9824 10.6335 0.8287 71.8311 0.6975 0.9215
13 2.3421 0.9780 0.0464 0.9787 56.0370 0.9144 0.9376
14 2.4702 0.9867 10.3475 0.9409 7.3257 0.9091 0.9749
15 0.9471 0.9945 20.8847 0.9022 13.8276 0.9275 0.9665
16 0.0894 0.9973 0.1046 0.9970 0.0783 0.9977 0.9998
17 1.6581 0.9908 10.9430 0.9465 26.9734 0.8224 0.9622
18 1.7737 0.9887 9.9706 0.9658 66.2021 0.6006 0.9276
19 2.0126 0.9876 16.7679 0.9224 13.1037 0.9619 0.9677
20 2.3673 0.9848 35.6957 0.8710 20.8974 0.9494 0.9509
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Figure 8 consists of a plot between Mean Squared Error (MSE) and Epochs. The best validation
performance was obtained at epoch 528, with validation plot reaching its minimum MSE value
of 0.12456.

Processes 2020, 8, x FOR PEER REVIEW 11 of 16 

 

 

Figure 8. Best validation performance plot. 

3.2. FFBPN Model Testing 

Figure 9 represents the plot with R2 value of 0.9978 obtained during the testing of model. The 

developed neural network model was applied to the different data set to test the predicted accuracy 

of the output and the results were found to be satisfactory as the R2 value is close to 1. 

 

Figure 9. Performance of model on Testing data set based on R2. 

Figure 8. Best validation performance plot.

3.2. FFBPN Model Testing

Figure 9 represents the plot with R2 value of 0.9978 obtained during the testing of model.
The developed neural network model was applied to the different data set to test the predicted accuracy
of the output and the results were found to be satisfactory as the R2 value is close to 1.
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In addition, a new sample data set has been selected from actual historical data from 2009 and
2015. The values of metal loss, wall thickness, pressure and weld girth have been later used as input
to predict the ERF value using the FFBPN model. Figure 10 illustrates the plot between the actual
ERF and the predicted ERF values. The plot indicates reasonable agreement with Root Mean Square
Error (RMSE) and Mean Absolute Percent Error (MAPE) values of 0.025149 and 0.025263, respectively,
between actual and predicted data sets.
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Figure 10. Plot for actual ERF vs predicted ERF.

3.3. Metal Loss Growth Rate Calculation Results

The severity of growth in metal loss leads to the degradation of a pipeline. Therefore, it is necessary
to be careful to eliminate a pipeline’s catastrophic failures. In total, 85,519 metal loss anomalies were
recorded from the historical data. The rate of growth in metal loss is calculated using Equation (7)

RML =
D2 −D1

Ins. Dt.1 − Ins. Dt.2
(7)

where RML is ML growth rate, mm/yr.; D1 is ML depth level in the first inspection, mm; D2 is ML depth
level in the second inspection, mm; Ins. Dt1 is first inspection date, yr. and Ins. Dt2 is the second date
of inspection, yr.

The metal loss growth rates are acquired from historical inspection data. Table 3 presents the
calculated results for three metal loss rates, i.e., pessimistic, average and optimistic rates, which provide
a confidence interval range for the remaining useful life (RUL) of the pipeline.

Table 3. Metal loss growth rate results.

Range Metal Loss Depth Level Depth Recorded in 2009
Inspection (%wt)

Depth Recorded in 2015
Inspection (%wt) Max. Growth Rate (mm/yr)

Optimistic 0%wt ≤ D < 10%wt 0 9 0.27
Average 10%wt ≤ D < 20%wt 0 19 0.58

Pessimistic 30%wt ≤ D < 40%wt 0 30 0.91

3.4. Remaining Useful Life Calculation Results

After the metal loss growth rates are calculated and current ERF is predicted from FFBPN model,
they are used to predict the RUL of the pipeline. The trajectory of deterioration is extended from
predicted ERF value at time instant tc, by combining it with the metal loss growth rates. The time at
which the trajectory hits the threshold ERF value is termed as failure time tf. The RUL can be calculated
by subtracting both the times as given in Equation (8) (Ahsan et al., 2019).

RUL = t f − tc (8)

For this research, three different deterioration ranges were used to predict crude oil pipeline RUL
such as (i) optimistic, (ii) average, and (iii) pessimistic. Table 4 presents the predicted RUL for these
three rates.

Table 4. Predicted Remaining Useful Life for crude oil pipeline.

Optimistic Average Pessimistic

Rate 0.27 0.58 0.91
Predicted RUL 26 years 14 years 10 years
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The predicted RUL may help pipeline technicians take all the necessary actions and plan the
maintenance accordingly, which may reduce the production losses of the oil and gas pipeline industries.

3.5. Sensitivity Analysis

It is necessary to recognize evidently about the interrelationships between the factors considered
and the pipeline condition; for that purpose, the correlation analysis suing Microsoft Excel software is
carried out to identify the individual influence on the life of pipeline condition. The developed model
is put through sensitivity analysis to discuss its sensitivity to changes in the factor values. In other
words, the developed model is performed to examine how the uncertainty in inputs could affect the
output. A contribution percent of each factor considered for this study is given according to the severe
impact on pipeline’s life, as shown in Table 5.

Table 5. Relative Contribution of individual factors.

Individual Factor Relative Percentage (%)

Length 10.72638761
Width 8.534201257
Depth 2.856189363

Wall thickness 37.2331322
Pressure 40.5805349

Weld Girth 0.069554677
Total 100

It is important to know the effect of each individual factor on the pipeline condition. For this
reason, deterioration profiles have been generated, as shown in Figure 11. The value of one selected
factor has been varied while the other factors have been kept constant with their respective average
values. Later, the model has been allowed to predict the new values, the variations that have been
observed in the new prediction pipeline condition is because of the factor that is varied, and other factor
values kept the same at their average values. The profiles have been generated for each factor following
the same process. The summary of all deterioration profiles for all factors are shown graphically
in Figure 11. It is found that the pressure has major negative affect on pipeline condition, and weld
girth has the minor negative affect on pipeline condition.
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Figure 11. Deterioration profiles of factors.

A comparison test for developed FFBPN model is performed with earlier approaches such as
Regression analysis, ANN and Fuzzy logic techniques for its robustness. Table 6 summarizes the
comparison results of the proposed FFBPN model with other previous approaches in terms of R2, RMSE
values and validation accuracies. It is observed that the proposed FFBPN technique is a good robust
performance indicator in terms of pipeline condition prediction. The results for earlier approaches are
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found to be acceptable and close to 1.0. However, the results show that FFBPN showed slightly better
performance than previous approaches, with the R2, RMSE value and validation accuracy of 0.9998,
0.02514 and 99%, respectively, as shown in Table 6.

Table 6. Performance Comparison of FFBPN with previous studies.

Technique R2 RMSE Validation Accuracy

FFBPN 0.9998 0.02514 99%
ANN [23] 0.9064 0.08 92%

Regression [24] 0.9940 0.015 96%
Fuzzy Logic [25] N/A 0.07 83%

ANN [12] 0.9959 0.012 97%

4. Conclusions

• The prediction model to assess the condition of the crude oil pipeline was developed using
the Back Propagation Neural Network technique focused on specific factors such as metal loss
anomalies (across length, width and depth), wall thickness, weld girth and pressure flow.

• The results of FFBPN model found to be satisfactory based on an R2 value of 0.9998. The predicted
output accuracy was found to be highly dependent on the number of neurons.

• The model was tested with a new data set and the results were found to be good, with the R2

value of 0.99.
• The FFBPN model was validated using a new sample data and the results were found to be

accurate with Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE)
values of 0.02514 and 0.02526, respectively.

• The deterioration curves were generated to know the effect of each factor selected on the pipeline
condition; it was found that pressure has a major negative effect on pipeline condition and weld
girth has a minor negative effect on pipeline condition.

• The proposed FFBPN was validated with other published models for its robustness and it was
found that FFBPN performed better than the previous approaches based on R2 and RMSE.

• In terms of maintenance scheduling, the proposed approach will be beneficial. The developed
model can be applied to real-time data to help pipeline operators take the necessary actions to
prevent product losses in the oil and gas pipeline industries.
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