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Abstract: Aminoethers of boric acid, which are organoboron ionic liquids, were synthesized by
using boric acid, triethanolamine, and triethylene glycol/diethylene glycol. Due to the formation of
intermolecular complexes of borates, the structure of aminoethers of boric acid contains ion pairs
separated in space, giving these compounds the properties inherent to ionic liquids. It is established
that the thermal stability of aminoethers under normal atmospheric conditions increases with an
increase in the size of the glycol. According to measurements of fast scanning calorimetry, density,
dynamic viscosity, and electrical conductivity, water is involved in the structural organization of
aminoethers of boric acid. The impact of the most thermostable organoboron ionic liquids on the
phase equilibrium conditions of the vapor–liquid azeotropic ethanol–water mixture is studied. It is
shown that the presence of these substances leads to increase in the relative volatility of ethanol.
In general, the magnitude of this effect is at the level shown by imidazole ionic liquids, which
provide high selectivity in the separation of aqueous alcohol solutions. A large separation factor,
high resistance to thermal oxidative degradation processes, accompanied by low cost start reagents,
make aminoethers of boric acid on the basis of triethylene glycol a potentially effective extractant for
the extractive distillation of water–alcohol mixtures.

Keywords: extraction; ionic liquids; vapor–liquid equilibrium; aqueous solution; physicochemical
properties

1. Introduction

Ionic liquids (ILs) are a new class of compounds consisting only of bulk cations and anions.
Particular interest in ionic liquids is related to their unique physical, physicochemical, electrochemical,
plasticizing properties [1]. Specific properties include low melting point (<100 ◦C), practical absence
of saturated vapor pressure, good polarity, good dissolving ability, possibility of regeneration, and
incombustibility. Currently, work is underway to reduce toxicity of ionic liquids [1–4].

ILs are characterized by a variety of structures. The ability to alter the nature of cations and
anions allows adjusting the chemical and physical properties. As a result, one can achieve the required
properties by choosing a certain combination of cations and anions from the well-known dependences
between the properties and structure of ions in ILs [5–8]. The ability to control the properties of ILs
allows one to replace traditional organic solvents and to use them in various fields. For example,
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ILs are successfully used as effective solvents [9–14], reactionary and catalytic zones [15,16], and
electrolytes [17–20].

From the point of view of practical use of ILs as solvents, their behavior in contact with water, which
is determined by the nature of the ILs itself, is important. Thus, a great number of halogen-containing
ILs are miscible with water, and some are not miscible at all. Most ILs contain a small amount of residual
water acquired by them during the synthesis process. In addition, many ILs are hygroscopic [21,22].

A promising area of ILs practical use is their application as extracting agents for the separation of
azeotropic or closely boiling liquid mixtures [23–25]. The main factor inhibiting work in this direction
is their high cost, as well as insufficient knowledge of the thermophysical properties of their solutions.
Thermophysical properties are necessary to model the development of methods for the regeneration of
ILs from solutions, searching for effective options for their practical application, for example, in the
processes of substances separation [26].

Extractive distillation has several advantages over traditional separation technologies: it is
operated like a conventional distillation process, using two key variables such as polarity and boiling
point difference, and, except for the solvent recovery operation, it does not require additional operations
to purify products [27–29].

In this work, the objects of the study are organoboron ionic liquids—aminoethers of boric
acid (AEBA–TEG/AEBA–DEG), based on boric acid, triethanolamine (TEA) and triethylene glycol
(TEG)/diethylene glycol (DEG), which form intermolecular complexes due to the formation of borates
(Figure 1). As a result, the structure of aminoethers of boric acid (AEBA) contains ion pairs that are
separated in space.
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Figure 1. Scheme of synthesis of aminoethers of boric acid based on triethylene glycol (AEBA–TEG)
and subsequent intermolecular complexation.

In previous works [30–32], by the NMR spectroscopy [31], it was proved that boron atoms in
AEBA exist in different forms. The presence of spatial ionic pairs in AEBA resulted there properties
inherent in ILs. The size distribution of AEBA was studied [31], a unimodal narrow particle size
distribution is observed, indicating the formation of clusters of the same size. It was also concluded [30]
that proton concentration released during the complexation of AEBA is inversed to molecular weight
of glycol, which is used in AEBA synthesis. Water addition up to 1%–2% leads to a significant decrease
in specific resistance. It is explained by the presence of small molecules of water in the system, which
facilitates proton transfer under the conditions of a superimposed electric field. The pattern in specific
resistance change confirms the accuracy of the statements of AEBA intermolecular complex formation
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synthesized with low-weight glycols. This detail allows the classification of this material as an ionic
liquid with proton conductivity.

The aim of this work is to study organoboron ionic liquids based on aminoethers of boric acid as
extractants for distillation process of binary mixtures.

2. Materials and Methods

2.1. Materials

All glycols, i.e., diethylene glycol (DEG), triethylene glycol (TEG), and monoethylene glycol (MEG),
were purchased from PJSC Nizhnekamskneftekhim (Nizhnekamsk, Russia). Triethanolamine (TEA)
was purchased from OJSC Kazanorgsintez. Boric acid (99.99%) was purchased from Sigma-Aldrich.
Glycols were additionally dehydrated at a vacuum depth of 1–3 mm Hg and a temperature of 90 ◦C to
a moisture content less than 0.01 wt%. These conditions were chosen experimentally and they ensure
the constancy of the residual water content.

2.2. Synthesis Process

Aminoethers of boric acid based on mono-, di- and tri-ethylene glycol (AEBA–MEG/AEBA–DEG/

AEBA–TEG) were obtained in one-step. The calculated amount of triethanolamine, boric acid and
MEG/DEG/TEG was added to a three-necked round bottom flask at a molar ratio of [TEA]:[H3BO3]:
[MEG/DEG/TEG] = 1:6:12. The use of such molar ratio was justified in previous works [30–32]. The mass
of boric acid (6 mol) was 2.793 g, triethanolamine (1 mol) was 1.124 g. The mass of MEG/DEG/TEG
(12 mol) was 5.641 g/9.644 g/13.485 g, respectively. The reaction mixture was heated to 90 ◦C with
heating rate of 2 ◦C·min−1 at a residual pressure of 10 mm Hg and was kept under these conditions
for 2 h. This time has been chosen experimentally and it ensures the constancy of the residual water
content involved in the structural organization of AEBA. The vacuum was created with oil pump,
connected to a U-shaped moisture trap filled with zeolite. Since the dissolution rate is greater than the
reaction rate, the mixing was carried out by the natural bubbling of water released during the reaction.

The progress of the reaction was monitored by titration by determining the concentration of
hydroxyl groups. When the number of hydroxyl groups reached the plateau, the synthesis was
considered as completed. The synthesis product was placed into sealed jar. AEBA–TEG contained
3.96 wt% of water, AEBA–DEG contained 4.97 wt% of water, and AEBA–MEG 5.21 wt% of water.
The water content was measured using a volumetric titrator from Mettler Toledo V20 according to the
Karl Fischer method.

2.3. Preparation of Aqueous Solutions

For the preparation of AEBA aqueous solutions, deionized water was used. Samples were
prepared on a ShincoADJ scales with a measurement error of ±0.0001 g.

2.4. Viscometry and Determination of Density

The dynamic viscosity of the samples was determined in the temperature range from 22 ◦C to
100 ◦C at atmospheric pressure on an SVM 3000 Stabinger Viscometer (Anton Paar, Graz, Austria),
with a systematic error of ±0.35% of the measured value. At the same time, the density of the samples
was determined with a systematic error of 0.0005 g/cm3.

2.5. Determination of Electrical Conductivity of Solutions

The conductivities of aqueous solutions of 3.96–99.95% AEBA–TEG and AEBA–DEG were
measured using a Crison GLP 31+ conductivity meter with a measurement error of ±0.5% at 20 ◦C.
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2.6. Thermogravimetric Analysis (TGA) Combined with Fourier-IR and Exhaust Gas Mass-Spectroscopy

Samples were analyzed on an Simultaneous Thermal Analyzer 6000 (PerkinElmer, Waltham, MA,
USA), in the range of 30–500 ◦C at a rate of 10 deg/min in an oxidizing air atmosphere. Gas-phase
decomposition products of samples were analyzed using a Frontier (PerkinElmer) gas cell of IR Fourier
spectrometer, scanning range 4000–500 cm−1; resolution 4 cm−1) and mass spectroscopy on a Clarus
680 gas chromatograph with an SQ 8C mass spectrometric detector. The gas was taken using a transfer
line at temperatures of maximum destruction of the samples.

2.7. Fast Scanning Calorimetry Measurement

The fast scanning calorimetry (FSC) measurement was carried out using FlashDSC1 device
by Mettler Toledo (Switzerland, Zürich) [33]. The fast scanning calorimeter uses Multistar UFS1
calorimetric sensor with an active diameter of 500 µm [34]. Before the experiment, the sensor was
conditioned and corrected according to the manufacturer’s instructions to ensure proper relation
between the measured signal and the temperature of the sample. The instrument is outfitted with an
intracooler, which permits measurements from −90 ◦C. The measurements were performed under a
dynamic nitrogen atmosphere at 30 mL/min flow rate. A thin copper wire (30 µm) was used to place
the droplet of the sample in the center of the calorimetric chip.

2.8. Phase Equilibrium Experiments

To accurately determine the vapor–liquid phase equilibrium conditions, the Rose–Williams still
method and its modifications [35,36] are currently used, which became a further development of the
open evaporation method, also known as simple distillation or Rayleigh distillation. Open evaporation
is a periodic distillation with one equilibrium stage, in which the generated vapor is continuously
removed, so the vapor is in equilibrium with the liquid of the stationary tank at any moment.
The method of open evaporation does not allow to obtain the exact concentration of equilibrium phases
at the point of interest in the diagram, like the Rose–Williams still method, but it allows to obtain curves
of evaporation residues and distillation lines that are strictly determined by the vapor–liquid phase
equilibrium conditions of the system. The method of open evaporation is used to study the phase
equilibrium of azeotropic mixtures to obtain residue curves, which are then used to determine the lower
and upper product of the distillation column, distillation boundary lines, and distillation regions [37].
The open evaporation method, compared to the Rose–Williams still method, is less laborious and
less demanding on the experimental conditions, but at the same time provides a qualitative and
quantitative assessment of the addition effect of eutectic solvents on the phase equilibrium conditions
in the azeotropic mixture in a certain concentration range. Thus, an open evaporation method was
chosen to conduct a comparative study of the effect of various AEBAs on the equilibrium conditions of
an azeotropic ethanol–water mixture.

To conduct experimental studies on the phase equilibrium of vapor–liquid in the ethanol–water–
AEBA system, an IKA-RV 10 (IKA, Germany, Staufen im Breisgau) digital rotary evaporator was
used. The initial liquid mixture of a given composition in an amount of 200–250 g was poured into
a cube-evaporator, which was immersed in an oil bath. To ensure intense boiling, the temperature
fluid in an oil bath was set 10÷20 ◦C higher than the boiling temperature of the mixture, which was
determined in preliminary experiments. The distillate was collected in a receiving flask and, after
accumulation it in an amount of 10 ÷ 20 g, was taken for analysis of the composition. The receiving
flask was replaced. The evaporation process was carried out continuously with sequential selection
of 6–8 portions of distillate, to a residual content of 1/10 part of the amount of the initial mixture in
the evaporator cube. The cube residue was weighed and its component composition was determined.
The data obtained were checked for compliance with the material balance; the error in the material
balance did not exceed 1.5%. The obtained distillates are a binary mixture of ethanol–water, therefore,
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in this situation, to determine the water content was used a Mettler Toledo V20 volumetric titrator
according to the Karl Fischer Method.

3. Results

3.1. Thermal Behavior of Aminoethers of Boric Acid

Since processes of an extractive distillation of water–alcohol mixtures were studied at temperatures
exceeding 100 ◦C, it was necessary to determine thermo-oxidative stability of AEBA.

According to Figure 2 and Table 1, the nature of the glycol used has a significant effect on the
thermo-oxidative stability of the resulting AEBA. Thus, AEBA–TEG retains its original structure up to
T = 200 ◦C. Despite the fact that AEBA–TEG contains 3.96 wt% of water, and AEBA–DEG contains
4.97 wt% of water, on the TGA curves there is no noticeable weight loss at 100 ◦C. The loss of 5% of the
mass for AEBA–DEG is achieved at T = 149 ◦C, and for AEBA–TEG it is achieved only at T = 175 ◦C.
The observed patterns may be due to the fact that solvated water is part of the structural organization
of AEBA–TEG and AEBA–DEG. According to mass spectroscopic studies of the products released at
T = 245 ◦C during thermo-oxidative degradation of AEBA–TEG (Figure 3), dissociation of AEBA–TEG
is not the main process accompanying its thermal decomposition in air. Thermo-oxidative degradation
is accompanied by the formation of TEG, crown ether (15-crown-5) and boratrane.

A decrease in length of glycol component in the AEBA structure by replacing TEG with DEG
leads to a noticeable decrease in stability to the thermo-oxidative action of corresponding AEBA–DEG
(Figure 2, Table 1). According to mass-spectroscopic studies (Figure 3), thermo-oxidative degradation
products of AEBA–DEG consist of DEG and boratrane.

Further decreasing of glycol components length to its monomeric form leads to an unacceptable
decrease of thermo-oxidative stability of AEBA–MEG for further studies.
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Figure 2. TGA curves of AEBA–MEG (1), AEBA–DEG (2), and AEBA–TEG (3) in air.

Table 1. Characteristics of thermo-oxidative stability of AEBA-MEG, AEBA-DEG AEBA-TEG for the
heating rate of 10 ◦C/min.

Sample T∆m 5%, ◦C T∆m 10%, ◦C T∆m 50%, ◦C

AEBA–MEG <100 123 190
AEBA–DEG 149 171 327
AEBA–TEG 175 233 392
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The main products of thermo-oxidative degradation here are MEG and boratrane (Figure 3).
Boratrane is also formed in decomposition cases of both AEBA–TEG and AEBA–DEG. Additional
products of AEBA–TEG decomposition are 15-Crown-5 and triethylene glycol, and in the case of
AEBA–DEG diethylene glycol is observed (Figure 3). The nature of the decomposition products
of AEBA in terms of flammability and toxicity allows them to be used at temperatures below the
start of decomposition. In this way, AEBA–TEG, and AEBA–DEG can be used in processes of
extractive distillation of water-alcohol mixtures due to their high resistance to thermo-oxidative
degradation processes.

3.2. Fast Scanning Calorimetry

Figure 4 presents the results of FSC analysis of AEBA–TEG with a water content of 3.96 wt%.
Several successive heating and cooling of the sample was carried out at a rate of 1000 K/s; the graph
shows the first and second heating of the sample. The first heating (black lower curve) showed the
presence of two endothermic thermal effects: narrow at −60 ◦C and wide in the range from 0 to
200 ◦C. Apparently, both of these effects are associated with the presence of water in the test sample,
which leaves during the first heating. Noteworthy is the absence of an endothermic effect that could
be associated with the melting of water crystals or water–IL eutectic. On the second heating (blue
curve) AEBA–TEG has a stable behavior in the temperature range −80 to 240 ◦C with the presence
of a glass transition at −30 ◦C. The same picture is observed during subsequent heating. A glass
transition is also observed on the cooling curve (red curve), and there are no other types of effects.
Thus, the wide endothermic effect observed during the first heating can be unambiguously associated
with the evaporation of bound water, while the evaporation process ends at a temperature noticeably
above 100 ◦C, which indicates a fairly strong interaction of water with AEBA–TEG. The narrow effect at
−60 ◦C is apparently a glass transition with an additional relaxation effect. A decrease in the transition
temperature compared with the anhydrous compound indicates the plasticizing effect of water.
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3.3. The Study of Aqueous Solutions of AEBA–TEG and AEBA–DEG

Since the used ILs contain solvated water, the content of residual water was taken into account
when preparing aqueous solutions of AEBA. The dependences of the density, dynamic viscosity, and
electrical conductivity of aqueous solutions of AEBA on its content were studied.

The measured dependences in density of AEBA aqueous solutions on temperature and composition
are shown in Table 2. It is clear that the densities of AEBA–DEG and AEBA–TEG aqueous solutions are
barely different (less than 1 wt%), while increase of AEBA concentration to 90 wt% leads to an increase
in the density of aqueous solution of relatively pure water to 20%. The correlation observed between the
patterns of change in the shape of electronic spectra and densities of aqueous solutions of AEBA–TEG
is most probable result of the involvement of water into structural organization of AEBA–TEG.

Table 2. The densities of aqueous solutions of AEBA–TEG and AEBA–DEG.

Density, g/cm3
Temperature, ◦C Temperature, ◦C

20 40 60 80 100 20 40 60 80

AEBA, wt% AEBA–TEG AEBA–DEG

0 0.998 0.992 0.983 0.971 - 0.998 0.992 0.983 0.971

10 1.020 1.012 1.001 0.99 - 1.022 1.014 1.005 0.992

20 1.043 1.033 1.022 1.009 - 1.048 1.032 1.028 1.015

30 1.065 1.054 1.042 1.029 - 1.073 1.062 1.05 1.036

40 1.091 1.079 1.065 1.050 1.034 1.100 1.088 1.075 1.059

50 1.115 1.101 1.087 1.071 1.054 1.127 1.113 1.099 1.083

60 1.137 1.122 1.107 1.091 1.074 1.151 1.136 1.122 1.106

70 1.157 1.142 1.126 1.110 1.093 1.174 1.159 1.144 1.128

80 1.175 1.160 1.144 1.127 1.110 1.194 1.180 1.165 1.148

85 1.181 1.166 1.149 1.133 1.116 - - - -

86.5 - - - - - 1.206 1.191 1.175 1.158

90 1.187 1.171 1.155 1.139 1.122 - - - -

91 1.189 1.172 1.156 1.140 1.123 - - - -

92 1.190 1.173 1.157 1.140 1.123 - - - -

93 1.190 1.174 1.157 1.140 1.123 - - - -

94 1.191 1.175 1.158 1.141 1.125 - - - -

95.4 1.191 1.174 1.157 1.141 1.124 - - - -
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Figure 5 shows the values of dynamic viscosity of aqueous solutions of AEBA. According to
these values, aqueous solutions of AEBA–DEG and AEBA–TEG with concentrations of less than
60 wt% possess similar viscosity. However, with a further increase of AEBA content, the viscosity
of AEBA–DEG solution grows faster than AEBA–TEG solution. For example, for a concentration of
85 wt% the viscosity of AEBA–DEG solution is 2.5 times higher than that of AEBA–TEG solution.
It should be also noted that the temperature dependence of the viscosity of AEBA aqueous solutions is
more significant as compared to pure water and increases with the increase of AEBA concentration.
Thus, in the case of water, the viscosity in temperature range from 10 to 80 ◦C changes threefold, and
in the case of 80 wt% AEBA solution the change of viscosity reaches 15–20 times.
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Figure 5. Dynamic viscosity of aqueous solutions of AEBA–TEG (a) and AEBA–DEG (b).

Thus, measurements of the concentration dependences of dynamic viscosity confirm that the
formation of borates leads to the formation of spacious intermolecular complexes, while borate-anions
themselves engage in dipole-dipole interactions with water. Solvation, in its turn, has a significant
impact on the structural organization of AEBA–TEG and AEBA–DEG, and, accordingly, on their
physicochemical properties. An additional confirmation of these results were the dependences
investigated by the method of electrical conductivity, which is an important approach in studying the
properties of ionic liquids [38,39].

Non-additive dependence can be also observed in electrical conductivity measurements of
AEBA–DEG and AEBA–TEG aqueous solutions. (Figure 6). Deionized water with a specific electrical
conductivity of σ = 1.03 µS/cm was used for studies. For calculations of molar concentrations of
AEBA–DEG, the used molar mass was 1734 g/mol, and for AEBA–TEG, it was 1998 g/mol. As can be
seen from Figure 6, aqueous solution of AEBA demonstrates classic properties of concentrated saline
solutions with a peak of conductivity, which is inherent for ionic liquids as well. However, in the area
of the maximum the conductivity of AEBA aqueous solution is two orders of magnitude lower than,
for instance, for imidazole ionic liquids [40]. At high concentrations of AEBA–DEG, the nature of
changes in electrical conductivity noticeably differs from more dilute solutions. That is, the solvation
of space-separated ionic pairs makes the structure denser and reduces the mobility of charge carriers.

An increase in the molecule size from AEBA–DEG to AEBA–TEG leads to sequential decrease in
the electrical conductivity of aqueous solutions of AEBA–TEG. This feature can be explained by the
fact, that the increase of the glycol component size in AEBA influences negatively on the formation of
intermolecular complexes because of steric hindrances, which reduce the number of protons released
and obstruct their migration.
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Figure 6. Dependences of the electrical conductivity of AEBA–DEG (1) and AEBA–TEG (2) on their
concentration in aqueous solutions (T = 25 ◦C).

3.4. Vapor–Liquid Equilibrium for Ethanol–Water Mixture in the Presence of AEBA

To analyze conditions of phase equilibrium of vapor–liquid according to experimental data
obtained in a rotary evaporator, the equation of the process of open evaporation (Rayleigh equations)
of a binary mixture was used [37]:

y(x)∗ =
dx

dln(L)
+ x (1)

where x and L are composition and mass of boiling mixture; y(x)* is equilibrium composition of
the vapor.

The masses of i-th portion of distillate Pi and its composition yi measured during the experiment
allows to determine the dependence of change in composition of the boiling mixture on its mass
according to the equation of material balance:

xi+1 =
Lixi − Pi+1yi+1

Lyi − Pi+1
; i = 0 . . . n− 1 (2)

where n is the number of samples taken. Based on these data, it is possible to construct the so-called
residue curves, which describe the change in the liquid composition of the mixture.

The discrete data obtained according to (2) were approximated by a polynomial in the form
of dependence of x = f(e), where x are weight fraction of ethanol in the boiling mixture; e = P/L0 is
distillate rate; L0 is the initial mass of mixture, which was in the cube evaporator. Next, substituting
this dependence into (1), the equilibrium composition of the vapor can be calculated as follows:

y(x)∗ =
dx
de

(1− e) + x (3)

The error in the equilibrium compositions of vapor and liquid, determined in this way, is associated
with the presence of additional processes of partial condensation (evaporation), i.e., with stages of
separation, which can be in the tube part of flask on its way from edge of boiling liquid to the vapor
condensation area.

The magnitude of this discrepancy would depend on relative volatility of the components for the
given concentration of the solution. To estimate the error in determining the equilibrium concentration,
distillation experiments were conducted on binary mixture of ethanol–water at atmospheric pressure.
The results of the comparison are shown in Figure 7. The calculated data were obtained via solving
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the Equation (3), in which the dependence of equilibrium vapor composition on the composition of
liquid phase was determined based on the non-random two liquid (NRTL) model [41]. The NRTL
model was chosen because it describes well the vapor–liquid equilibrium conditions for non-ideal
solutions. The parameters of this model for the ethanol–water system are known in the literature,
which provide high accuracy in calculating the conditions of vapor–liquid equilibrium at various
pressures and temperatures [42,43]. According to the figure provided, the experimental data agree well
with the calculated ones in cases, where initial concentration of ethanol x0 in the mixture, which was in
the cube-evaporator, is higher than 0.60 wt.fr. (for 0.84 wt.fr. of x0, the maximum error was 0.35%;
for 0.65 wt.fr. of x0—3.8%; for 0.5 wt.fr. of x0—29%), and where relative volatility of the components
is low. At lower concentrations the error increases, which is explained by the presence of additional
stages of separation in the rotatory evaporator. Since the number of separation stages under equal
conditions of the experiment in the rotary evaporator should not change, it is possible to estimate the
influence of AEBA on conditions of the vapor–liquid phase equilibrium by comparing the results of the
distillation experiment of a binary and tri-component mixture. In addition, this measurement method
is less time-consuming, in comparison with using the Rose–Williams still, and in one experiment,
it allowed to obtain data in the range of concentration measurements.
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Figure 7. Change in the concentration of ethanol in the ethanol–water liquid mixture during open
evaporation: line is solution (3); geometric figures—experimental data.

Figure 8 shows the results of such a comparison. The lines show the distillation of a binary
ethanol–water mixture at atmospheric pressure, the geometric figures show the results of the distillation
of these mixtures in the presence of AEBA. As can be seen from the curves, the addition of AEBA
increases the relative volatility of ethanol, which leads to more intensive depletion in the cube.
For quantitative estimation of the AEBA impact, the following ratio was used, determining the change
in relative volatility of ethanol:

m =
yAEBA

1

yexp
1

where y1
AEBA and y1

exp are the experimentally determined equilibrium concentrations of ethanol
in vapor over tri-component and binary solution at equal amount of ethanol and water. AEBA in
comparison with water and ethanol can be considered as non-volatile component, so its concentration
in vapor equals 0. Next, it is possible to estimate the coefficient of relative volatility:

α12 =
my0

1/x1(
1−my0

1

)
/x2

(4)
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where y0 is equilibrium concentration of ethanol in the vapor over binary solution determined by
the Non-Random Two-Liquid model (NRTL); x1 and x2 are concentrations of ethanol and water in
the solution.
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Figure 8. Change in the concentration of ethanol in a liquid mixture during open evaporation: red color
is 0.1 wt.fr. of AEBA; green—0.2 wt.fr.; blue—0.6 wt.fr.

The results of all experiments on investigation of the impact of AEBA on vapor–liquid phase
equilibrium are presented in Table 3.

Table 3. Coefficient of relative volatility of ethanol depending on AEBA–DEG/AEBA–TEG concentration.

wAEBA Interval of Liquid Phase
Compositions Based on Ethanol x α12(AEBA–TEG) α12(AEBA–DEG)

0.25 0.84–0.87 1.95 1.65

0.30 0.82–0.85 2.21 1.80

0.40 0.78–0.86 2.89 2.05

0.50 0.64–0.81 3.37 2.50

0.60 0.53–0.83 4,17 4.50

0.70 0.37–0.77 4.50 4.95

0.75 0.59–0.73 5.04 5.68

wAEBA is mass fraction of AEBA in the three-component mixture; x is mass fraction of ethanol in the absence of
ionic liquid.

As can be seen from Table 3, with the increase of AEBA concentration, the coefficient of relative
volatility of ethanol increases, including the area close to the azeotropic point. The inclination angle of
dependence of the relative volatility of ethanol on AEBA concentration for AEBA–TEG is different
compared to the case of AEBA–DEG. This leads to the situation where at low concentrations of AEBA,
the relative volatility of ethanol in the presence of AEBA–TEG is greater than in the presence of
AEBA–DEG. At higher concentrations (wAEBA > 0.6), the situation is reversed.

For evaluation of AEBA efficiency, the relative volatility coefficient of ethanol was compared with
published data, in which vapor–liquid phase equilibrium in the ethanol–water system was studied
in the presence of imidazole ionic liquids [44–48]. According to the analysis, the values of relative
volatility coefficients of ethanol depend on the nature of cation and anion of ionic liquid. The greatest
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effect of increasing the relative volatility of ethanol near the azeotropic point is provided by ILs with
[Cl] and [OAc] anions [45]. With the increase in the length of alkyl chain of the cation, the coefficient
of relative volatility decreased. For the most effective ionic liquid [Emim][Cl], the value or relative
volatility of ethanol at x = 0.95 for w[Emim][Cl] = 0.2 is α12 = 1.4, and for w[Emim][Cl] = 0.6, α12 = 3.4.
Thus, the separation ability of AEBA–TEG/AEBA–DEG for ethanol–water mixture corresponds to
imidazole ionic liquids with the greatest impact on relative volatility of ethanol. At the same time, the
simplicity of AEBA synthesis, low cost, and its high stability under ordinary atmospheric conditions
create advantages for their practical usage as a potentially effective reagent for processes of extractive
distillation of ethanol–water mixtures.

4. Conclusions

The effect of glycol components length on thermo-oxidative stability of organoboron ionic liquids
was studied. It was shown that resistance to thermo-oxidative degradation of AEBA decreases with a
decrease of glycol components length.

The influence of concentration of AEBA–TEG and AEBA–DEG on the density, dynamic viscosity,
and electrical conductivity was studied. AEBA–TEG has also been studied using fast scanning
calorimetry. It was established that AEBA exist in the solvated state, i.e., water is an integral part of
their structural organization.

In connection with the results obtained, AEBA–DEG and AEBA–TEG provided enough stability to
be used as extractants in extractive distillation process. According to the separation experiment results,
regarding the relative volatility coefficient of ethanol, it was found that the presence of AEBA–TEG
in the initial mixture could greatly affect this value. The advantages of the usage of AEBA–TEG as
an extracting agent for the separation of mixtures based on the example of azeotropic ethanol–water
mixture was shown and compared to known ionic liquids.
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Abbreviations

TEA triethanolamine
MEG monoethylene glycol
DEG diethylene glycol
TEG triethylene glycol
AEBA aminoethers of boric acid
AEBA–MEG aminoethers of boric acid based on monoethylene glycol
AEBA–DEG aminoethers of boric acid based on diethylene glycol
AEBA–TEG aminoethers of boric acid based on triethylene glycol
TGA thermogravimetric analysis
L0 initial mass of mixture
x0 initial concentration of ethanol in the mixture
L mass of boiling mixture
P mass distillate
e distillate rate
α12 coefficient of relative volatility
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