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Abstract: A compound droplet with its single inner droplet appears in a broad range of applications
and has received much attention in recent years. However, the role of the inner droplet location on
the dynamical behaviors of the compound droplet is still not completely understood. Accordingly,
the present study numerically deals with the eccentricity of the compound droplet affecting its colliding
behaviors with the other droplet in a simple shear flow. The solving method is a front-tracking
technique that treats the droplet interface as connected elements moving on a rectangular fixed grid.
Initially, two compound droplets assumed circular are placed at a distance symmetrically to the
domain center and they come into contact, because of the shear flow, when time progresses. During
the collision process, the inner droplet that is initially located at a distance to its outer droplet center
circulates around this center. It is found that this rotation also contributes to the formation of the
collision modes including the reversing, passing-over and merging ones. Starting from a passing-over
mode, a transition to a reversing mode or a merging mode can appear when the inner droplets,
in terms of their centroids, are closer than their outer droplets. However, the location of the inner
droplet within the outer droplet only has an effect when the value of the Capillary number Ca is varied
from 0.01 to 0.08. For Ca < 0.01 corresponding to the merging mode and Ca ≥ 0.16 corresponding to
the passing-over mode, the inner droplet position has almost no impact on the collision behaviors of
two compound droplets.
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1. Introduction

In general, compound droplets exist in two types [1]. The first type of compound droplets is
available with the outer interface partially enclosing its inner droplets [2]. Such a compound droplet
is not considered in the present study. In the second type, a compound droplet consists of an outer
interface (i.e., outer droplet) that completely encapsulates one or many inner droplets [3–5]. When the
droplet is small, it is all called a “double or multiple emulsion droplet” [6]. The second type has shown
its applications in many academic problems and industrial processes, for example, biotechnological
processes [7], delivery of drugs [8] and some other applications [9]. In these processes and applications,
a compound droplet can collide with one or many other ones and the dynamical behaviors of collisions
have been classified into three main modes—reversing, passing-over and merging [10,11]. Before
coming into contact with others, a compound droplet may carry one or many daughter droplets [6].
In this study, to simplify we pay attention to the compound droplets with one inner core (i.e., single-core
compound droplets) that are suspended in a simple shear flow [11–13].
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The dynamics of one single-core compound droplet in the simple shear flow has been investigated
carefully for many years [14–17]. For example, Luo and his co-workers [17] considered an initially
concentric droplet with its finite deformation caused by the shear of the continuous outer flow and the
authors claimed that the compound droplets exhibit less deformation than those without any inner
core (i.e., single-phase droplets). Chen et al. [15] numerically showed that the shear flow may cause
the compound droplet to decompose into smaller droplets in three mechanisms—instability breakup,
necking breakup and end-breakup. The transitions between the breakup and the finite deformation of
the compound droplet were presented by Vu et al. [12]. However, as mentioned, these studies focused
on the dynamical deformation and breakup of one droplet, which does not interact with any other.
In addition, these works have not considered the effects of the compound droplet eccentricity. In a
few other works, for example, References [18,19], the authors considered the role of the location of
the inner droplet, that is, the eccentric compound droplet, in the dynamical behaviors of the droplet.
Once again, these works [18,19] have not extended to the cases of binary droplets collisions as done in
our present study.

Recently, few attempts have been made to investigate the dynamical interaction of two single-core
compound droplets [10,11,20]. For instance, Liu and co-workers [11,20] considered two colliding
modes (passing-over and reversing) of PVA (polyvinyl alcohol) solution/PS (polystyrene) solution/PVA
solution droplets and compared with single-phase droplets. The authors found that the compound
droplet moves in a similar trajectory but deforms differently as compared with the single-phase droplet.
Revisiting this problem, our previous work [10] showed that, in addition to the passing-over and
reversing modes, two compound droplets may become one as they are in contact with each other.
This mode of collisions is merging. However, these works have not considered the effects of the
position of the inner droplets on the collision behaviors of the droplets. This missing gap is the focus of
our present work.

As aforementioned, in various applications of compound droplets including single-core compound
droplets, droplet collisions may appear and the colliding behaviors are affected by the presence of
the inner droplets [10,11]. Many applications indicated that when compound droplets are carried
out by the continuous flow, their inner droplets are not concentric (e.g., Figure 1b in Reference [21],
Figures 4 and 5 in References [22,23]) before or during the contact stage. Accordingly, the presence of
the inner droplet and its position within its enclosing outer interface (i.e., droplet eccentricity) before
the contacting stage should have an important role in the colliding behaviors. However, so far, such
a detailed investigation has not been found. Hence, in this study, we consider eccentric compound
droplets and investigate how the eccentricity leaves its impact on the dynamics of the collision. The rest
of the paper is as follows. In the following section, we describe the numerical problem and its solving
method. We then present the results of colliding behaviors under the influence of eccentricity. Finally,
some concluding remarks are provided. To ease understanding, some animations of droplet collisions
are also provided in the Supplementary Materials.

2. Numerical Problem and Method

In the present study, we deal with the collision of two compound droplets with only one core in
each droplet (known as “single-core compound droplets”), which are suspended in a simple shear
flow (Figure 1). As mentioned below, we focus on small-sized droplets with a little density difference
and ignored buoyancy effects and thus the motions of the droplets during the collision are in the
plane through their centers of mass [10,11]. Accordingly, a two-dimensional configuration to facilitate
high-resolution computations with a reasonable computational cost, as considered in this study, can be
accepted [10] even though three-dimensional simulations should be conducted. Initially, the compound
droplets are placed symmetrically to the center (xc, yc) of the domain and the inner and outer droplets
are circular and eccentric with the horizontal (εx0) and vertical (εy0) eccentricities defined as:

εx0 = (xci1 − xco1)
∣∣∣
t = 0 = 0.5(∆xo − ∆xi)

∣∣∣
t = 0

(1)
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εy0 = (yci1 − yco1)
∣∣∣
t = 0 = 0.5(∆yi − ∆yo)

∣∣∣
t = 0

(2)
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Figure 1. (a) The computational domain for the collision of two eccentric compound droplets with the 
left droplet denoted as “droplet 1” and the right one for “droplet 2.” (b) The configuration of the 
compound droplet 1 [the droplet on the left side in (a)]. Each compound droplet consists of one inner 
droplet and is thus known as a “single-core compound droplet.” 
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1,” the fluid in between the inner and outer interfaces, that is, the middle fluid, is called “fluid 2” and 
the rest is the outer, carrying fluid denoted by “fluid 3” Three fluids are assumed immiscible and 
each fluid has a constant density (denoted by ρ) and a constant viscosity (denoted by µ). The 
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p—pressure, t—time, Fb = (Fbx, Fby)—body force (e.g., gravity) and Fs = (Fsx, Fsy)—interfacial tension 
force defined as: 

Figure 1. (a) The computational domain for the collision of two eccentric compound droplets with
the left droplet denoted as “droplet 1” and the right one for “droplet 2.” (b) The configuration of the
compound droplet 1 [the droplet on the left side in (a)]. Each compound droplet consists of one inner
droplet and is thus known as a “single-core compound droplet.”

Here, ∆x and ∆y are the horizontal and vertical distances between two droplets with the subscripts
i and o denoting respectively the inner and outer droplets. (xci1, yci1) and (xco1, yco1) are respectively
the coordinates of the centroid of the inner droplet 1 and that of the outer droplet 1. Accordingly,
for example, εx0 < 0 and εy0 = 0 correspond, in terms of droplet centroids, to the outer droplets closer
than the inner droplets in the horizontal direction. The initial radii of the inner and outer droplets
are R1 and R2, respectively. The inner droplet contains the inner fluid denoted by “fluid 1,” the fluid
in between the inner and outer interfaces, that is, the middle fluid, is called “fluid 2” and the rest is
the outer, carrying fluid denoted by “fluid 3” Three fluids are assumed immiscible and each fluid has
a constant density (denoted by ρ) and a constant viscosity (denoted by µ). The interfacial tension
coefficients of the inner and outer droplet interfaces are respectively denoted by σ1 and σ2.

To handle the droplet interface and its movement, a front-tracking method [24,25] is used.
The interface is modeled by a finite number of straight-line segments whose point coordinates xf are
updated by integrating the following equation:

dx f

dt
= Vn. (3)

In Equation (3), the velocity Vn is interpolated from the nearest velocities solved from the following
governing equations [10], on a background, rectangular and fixed grid:

∂ρu
∂t

+
∂ρu2

∂x
+
∂ρuv
∂y

= −
∂p
∂x

+
∂
∂x

2µ
∂u
∂x

+
∂
∂y
µ

(
∂u
∂y

+
∂v
∂x

)
+ Fbx + Fsx (4)

∂ρv
∂t

+
∂ρuv
∂x

+
∂ρv2

∂y
= −

∂p
∂y

+
∂
∂x
µ

(
∂u
∂y

+
∂v
∂x

)
+

∂
∂y

2µ
∂v
∂y

+ Fby + Fsy (5)

Dρ
Dt

=
Dµ
Dt

= 0. (6)
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Equations (4)–(6) are for Newtonian and incompressible fluids with u = (u, v)—velocity vector,
p—pressure, t—time, Fb = (Fbx, Fby)—body force (e.g., gravity) and Fs = (Fsx, Fsy)—interfacial tension
force defined as:

Fs =

∫
f

σκδ
(
x− x f

)
n f dS. (7)

In Equation (7), κ is the mean curvature, nf is the unit vector normal to the droplet interface and
the subscript f represents the interface. nf points outward from the droplet. δ is the Dirac delta function.
Like our previous paper [10], we consider small droplets with the size from a few micrometers to a
few millimeters [11,20] and thus the effect of gravity is neglected (i.e., Fb = 0). x = (x, y) is the position
vector and xf indicates the position of the interface.

Equations (4)–(6) are discretized by a finite difference method and the discretized equations are
solved on the uniformly distributed, staggered background grid. A second-order predictor-corrector
scheme is used to integrating the equations in time. Such discretization and integration are to give
the highest possible accuracy [24]. We use the location of the inner droplet to construct the indicator
functions to specify three fluids and their fluid properties at every location in the domain [10].

The boundary conditions are as follows. At the left and right boundaries, we set a periodic
condition. At the top boundary, u = (U, 0) is specified and u = (–U, 0) is set at the bottom boundary.
Accordingly, a shear rate γ is created:

γ = 2U/H, (8)

where H is the height of the domain and is chosen as 6R2. The domain width is denoted by W and
equal to 24R2 (Figure 1) [10]. The dimensionless time is τ = γt.

When the droplets move, the length of interface segments is changed in time due to the movement
of the interface points (Equation (3)) but it is always in the range of 0.2 h–0.8 h by deleting or adding front
elements, where h is the grid spacing of the background grid [24]. To handle the merging of two droplets,
we calculate the distance from one segment of one droplet interface to another segment of the other
droplet interface. As this distance is smaller than 0.5 h, the droplets perform merging. This coalescence
technique has been widely used in front-tracking-based simulations [24]. Like other front-capturing
techniques, for example, the level set method [26] and the volume of fluid method [27], the coalescence
is dependent on the grid spacing. However, we can easily add a physics-based coalescence treatment
to our method but it is not considered in this study. The method was implemented in Fortran
(i.e., an in-house serial code) originally developed by Unverdi and Tryggvason [28]. The code was run
on a 3.6 GHz Intel Core i9-9900 K workstation. The CPU time, for example, for a typical case, using a
1536 × 384 grid resolution (discussed below) was about fifty-three hours.

Figure 2 presents the results of our grid convergence study for a merging mode using four grid
resolutions 0512 × 128, 1024 × 256, 1536 × 384 and 2048 × 512. The parameters defined below are
Re = 1.58, Ca = 0.01, R12 = 0.65, σ12 = 1.0, ∆xo0/R2 = 3.0, ∆yo0/R2 = 0.6, εx0 = εy0 = 0.0. This merging case
is selected for the grid study because the merging mode is sensitive to the grid resolution. The shapes
of the droplets plotted at τ = 2.0, 4.0 and 12.0 are compared among four grids. Figure 2 indicates that
no difference in the droplet shape is available before merging (τ = 2.0 and 4.0). However, because
of merging at different resolutions, the shapes of the droplets are different after merging. The most
difference is for the inner droplet and the coarsest grid, while we see almost the same results for the
outer droplet shape with a little difference in the inner droplet shape when 1536 × 384 and 2048 × 512
were used. Accordingly, we believe that the grid resolution of 1536 × 384 used for the computational
results presented below is acceptable. The grid independence study for a passing mode with a higher
Ca (i.e., Ca = 0.1) was described in Reference [10]. It is noting that the grid resolution used in the
present study is finer than that in our previous [10]. The method accuracy was also confirmed in our
previous work [10] as illustrated in Figure 3. For this comparison, the values of the Capillary and
Reynolds numbers are 0.25 and 1.0. Three fluids of the compound droplets are identical. Initially,
the droplets are concentric. The inner-to-outer radius ratios R12 (defined below) of 0.5 is computed and
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the steady-state shape of the droplet and its outer deformation parameter are compared with those of
Hua et al. [16]. The comparison indicates clearly that the method predicts very well the deformation
of the compound droplets in the simple shear flow. A more detailed description of this validation
can be found in Reference [10]. More comparisons supporting the method accuracy can be found in
References [12,13,24,29].
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in the simple shear flow and the results are compared with Hua et al. [16]: (a) the steady-state droplet
shape and (b) the temporal variation of the deformation parameter of the outer droplet. (xc, yc) denote
the coordinates of the domain center. Other parameters are shown in the text.

3. Results and Discussion

3.1. Colliding Modes

Our previous works [10,12] assumed that the compound droplet is concentric at the beginning of
computations and the following parameters govern the dynamics of the problem:

Re =
ρ3γR2

2

µ3
, Ca =

µ3γR2

σ2
(9)

R12 =
R1

R2
, ∆xo0, ∆yo0 (10)

σ12 =
σ1

σ2
, ρ13 =

ρ1

ρ3
, ρ23 =

ρ2

ρ3
, µ13 =

µ1

µ3
, µ23 =

µ2

µ3
. (11)

Here, Re and Ca are the Reynolds and Capillary numbers. R12, ∆xo0 and ∆yo0 are respectively the
droplet radius ratio, the initial distances between two outer droplets (calculated from their centers
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of mass, Figure 1) in the x- and y-directions. σ12 is the interfacial tension ratio of the inner to outer
droplets. Accordingly, we also use these parameters in the present study. However, in this study,
we pay attention to the effects of the compound droplet eccentricity on collision modes and thus εx0

and εy0 are addressed and the focus of this study. Accordingly, except for εx0 and εy0 and Ca, the other
parameters are kept fixed: Re = 1.58, R12 = 0.65, σ12 = 1.0, ∆xo0/R2 = 3.0, ∆yo0/R2 = 0.6 with the density
and viscosity ratios set to unity. These values are based on our previous works [10,12] to figure out
various modes of collisions as shown below.

Figure 4 shows the different modes of collisions including the merging mode (Ca = 0.01, Figure 4a),
the reversing mode (Ca = 0.04, Figure 4b) and the passing-over mode (Ca = 0.16, Figure 4c) [10].
The parameters for these behaviors are εx0 = 0.1 and εy0 = 0.0. As illustrated, when two droplets come
into contact, the droplets are almost circular for the small Capillary numbers (Ca = 0.01 and 0.04) but
much deformed in the case of the high Ca (Ca = 0.16). Accordingly, when contacting (the frames in
the middle row of Figure 4), more circular droplets result in a merging mode while more deformed
droplets induce a passing-over mode. The reason is that, for the high Ca, the pressure of the squeezed
fluid film in the region between two droplets is strong enough (as compared to the pressure inside the
droplets) to prevent the droplets from merging [10]. In contrast, in the case of Ca = 0.01 corresponding
to the interfacial tension force dominating over the viscous force, no fluid film in between the droplets
is generated and thus the droplets merge easily to produce a larger compound droplet when they
come very close to each other (Figure 4a). The reversing mode (Figure 4b) is dominant when there
exists a gap between them during the droplet 1 moving downward (and droplet 2 moving upward).
A better understanding can be found in the animations of these collision modes provided in the
Supplementary Materials.

The trajectories of the outer droplet 1 (the droplet on the left of the domain at the beginning of the
computation) in three cases are illustrated in Figure 5b with its corresponding deformation parameters
To (Figure 5a) for the outer interface (i.e., outer deformation parameter), defined as:

To =
Lo −Do

Lo + Do
, (12)

where Lo and Do are respectively the maximum and minimum distances from the center of mass to a
point on the outer interface. From the beginning, the droplet 1 becomes more deformed as it moves to
the right. Before contacting with the other on the right side (i.e., compound droplet 2), the droplet 1
goes down. In the case of merging, the resulting droplet stays at the center. In the case of reversing,
the deformation of the droplet decreases a little when it moves to the center. It then experiences more
deformation when going back to the left. The most deformed droplet corresponds to Ca = 0.16 for
the passing-over mode because of a low interfacial tension force as compared to the viscous force.
The droplets have the maximum deformation at the beginning of the contacting stage because of the
presence of the fluid film in between them. Their deformation is then decreased when they are about
to split away [10,20]. When two droplets are far away from each other, they gradually reach a less
deformed shape, resulting in a decrease in the deformation parameter. The reason for this decrease
is that when moving to the other side of the domain (after contacting) the droplets are driven to the
center plane where the effect of the shear rate on the droplets is minor and thus the interfacial tension
force makes the droplets less deformed.
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Figure 4. Three collision modes of two eccentric compound droplets: (a) merging, (b) reversing and (c)
passing-over. In (a)–(c), from the top to the bottom, the corresponding time is τ = 2.0 (before contacting),
9.2 (in contact) and 14.0 (after contacting). εx0 = 0.1 and εy0 = 0.0. Color shows the normalized
pressure field pn = p/(0.5ρ3U2). The animations are available in the Supplementary Materials for better
understanding of these modes (Video S1: merging mode, Video S2: reversing mode and Video S3:
passing-over mode).
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Figure 5. (a) The deformation parameter To of the outer droplet of the droplet 1 with (b) its trajectory
in three modes shown in Figure 4. The line definitions in (a) also apply for (b). (xco1, yco1) are the center
of mass of the outer droplet 1. The arrows show the movement directions of the droplet.
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3.2. Effect of the Horizontal and Vertical Eccentricities

Figure 6 shows the spatiotemporal motion of two droplets in colliding for different horizontal
eccentricity εx0/R2 = −0.1 (top), 0.2 (middle) and 0.3 (bottom). The other parameters are Ca = 0.02
and εy0/R2 = 0.0. We can see that when the compound droplets come in contact with one another,
the inner droplet circulates in each outer droplet. In the case of εx0/R2 = −0.1 (Figure 6a), initially two
inner droplets, in terms of the center of mass, are further than the outer droplets. Then, during coming
into contact with each other, the inner droplet 1 tends to move upwards while the other inner droplet
moves downwards (at τ = 4). Accordingly, when the droplets are in contact, two inner droplets at the
other ends (at τ = 8) help them to pass over one another at a later time (at τ = 12). For the other cases,
the inner droplets are closer than the outer droplets (Figure 6b,c) and thus when the droplets are in
contact, the inner droplet 1 intends to pull the outer droplet 1 downward while the outer droplet 2
is pulled upward. In the case of the closet one (εx0/R2 = 0.3), the inner droplets support the droplet
merging while they result in a reversing mode for the remainder. Accordingly, for Ca = 0.02, increasing
the horizontal distance between the inner droplets, the outer droplets change from the passing-over
mode (Figure 6b) to the merging over mode (Figure 6c).
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Figure 6. The effect of the horizontal eccentricity on the colliding behaviors of the compound droplets:
(a) passing-over, (b) reversing and (c) merging. Other parameters are shown in the text.

Figure 7 shows the droplet profiles at different moments of collisions with different vertical
eccentricities εy0/R2 = −0.2 (top), 0.1 (middle) and 0.3 (bottom). The other parameters are Ca = 0.02
and εx0/R2 = 0.0. As previously mentioned, when the droplet 1 moves to the right to collide with the
droplet 2, its inner droplet goes around in a clockwise direction. Hence, for εy0/R2 = −0.2 and 0.1,
the inner droplet 1 in the upper half of the compound droplet 1 tends to push its outer droplet upward
during the colliding stage (τ = 8.0). Thereby, the compound droplets in these cases pass over each
other (Figure 7a,b). In contrast, in the case that two inner droplets are initially at the furthest distance
(Figure 7c), the inner droplet 1 is in the lower half of its outer droplet when two compound droplets
are in contact (τ = 8.0). Accordingly, the inner droplet 1 pulls the compound droplet 1 downward and
promotes the droplet merging.
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Figure 7. The effect of the vertical eccentricity on the colliding behaviors of the compound droplets:
(a,b) passing-over and (c) merging. Other parameters are shown in the text.

Figure 8 shows the movements of the center of mass of the inner droplet 1 about the center of
mass of its outer droplet for the cases shown in Figures 6 and 7. This figure illustrates clearly that
the inner droplet 1 circulates around the center of the outer droplet 1. As mentioned above, in the
passing-over cases [εx0/R2 = −0.1 (Figure 6a) and εy0/R2 = −0.2 and 0.1 (Figure 7a,b)] the inner droplet
is moving upward at the stage of contacting (τ = 8.0 for εx0/R2 = −0.1 and τ = 8.0 for εy0/R2 = −0.2
and 0.1) while it is moving downward for the other cases. The reversing mode appears when the
outer droplets are not so close to one another (τ = 8.0 in Figure 6b). When the outer droplets overlap
a bit (in the horizontal direction) (τ = 8.0 in Figure 6c or τ = 8.0 in Figure 7c), they merge at a later
time. We also observe such rotations of the inner droplet 1 about the center of its enclosing droplet for
Ca = 0.01 and Ca = 0.16, as shown in Figure 9. However, as aforementioned, a very small Ca (Ca = 0.01)
results in a merging mode while a high Ca (Ca = 0.16) corresponds to a passing-over mode [10,12].
Thus, when the Capillary number is the dominantly controlling parameter for the formation of the
collision modes, the position and the rotation of the inner droplet has almost no impact on the colliding
behaviors of two droplets, as illustrated in Figure 9.
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It is evident that the droplet eccentricity has an impact on the colliding behaviors of the 
compound droplets, for example, for Ca = 0.02. To provide a more complete picture of the colliding 

Figure 8. (a) The trajectories of the center of mass (xci1, yci1) of the inner droplet 1 relative to the center
of mass (xco1, yco1) of the outer droplet 1 shown in Figure 6. (b) The trajectories of the center of mass
(xci1, yci1) of the inner droplet 1 relative to the center of mass (xco1, yco1) of the outer droplet 1 shown in
Figure 7. The symbols in (a) indicate the cases at τ = 8.0 shown in Figure 6, while the symbols in (b)
indicate the cases at τ = 8.0 shown in Figure 7. The arrows show the movement directions.
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Figure 9. The trajectories of the center of mass (xci1, yci1) of the inner droplet 1 relative to the
center of mass (xco1, yco1) of the outer droplet 1 for (a) Ca = 0.01 (merging modes) and (b) Ca = 0.16
(passing-over modes). The symbols indicate the moments of the contacting stage. The arrows show the
movement directions.

3.3. Region Diagrams of Colliding Modes

It is evident that the droplet eccentricity has an impact on the colliding behaviors of the compound
droplets, for example, for Ca = 0.02. To provide a more complete picture of the colliding behaviors
with the presence of the droplet eccentricity, we have performed more simulations with Ca varied in
the range of 0.005–0.32. For each value of Ca, we varied εx0/R2 (while keeping εy0 = 0.0) and εy0/R2

(while keeping εx0 = 0.0) from −0.3 to 0.3 to show the effects of each eccentric factor. As shown in
Figure 4, increasing the value of the Capillary number corresponding to decreasing the interfacial
tension force and more deformed droplets enhances the passing-over mode [10]. Accordingly, in the
region diagrams of Ca versus εx0 and εy0 (Figure 10) two compound droplets pass over each other when
the values of the parameters fall within the right side of the diagrams. At a small Ca (i.e., Ca ≤ 0.01)
the merging mode is available for almost all values of εx0 and εy0. This is understandable since at a
small Ca, the interfacial tension force is very dominant over the viscous force and thus the position of
the inner droplets has a very minor effect. At a value of Ca in the range of 0.02–0.08, the location of the
inner droplet at the beginning of collisions plays a role in the colliding behavior. That is, the collision
changes from a passing-over mode to a reversing mode and a merging mode when two inner droplets
are closer in the horizontal direction, that is, εx0/R2 varying from −0.3 to 0.3 (from the bottom to the top
of the diagram, Figure 10a). However, the effects of the vertical eccentricity εy0 are not so dominant as
εx0 = 0.0, as shown in Figure 10b. The effects of the combinations of non-zero εx0 and εy0 are shown in
Figure 11.

Figure 11 indicates the colliding modes appearing for Ca = 0.01, 0.04 and 0.16 when we varied
εy0 in the range of −0.3–0.3 for each εx0 varied in the range of −0.3–0.3. It is clear that at a small Ca
(Ca = 0.01) the dominant mode is merging while for Ca = 0.04 and Ca = 0.16 the passing mode occupies
almost entire diagrams. The reserving mode occurs only for εx0 = 0.15 with most cases corresponding
to εy0 ≥ 0.0 (Figure 11a,b). In such colliding cases, the inner droplet 1 behaves similarly to that shown
in Figure 6b, in which the inner droplet 1 has a tendency of pulling its enclosing droplet down during
the stage of contacting (the dash line in Figure 8a). Figure 11 also confirms that the compound droplet
eccentricity has the most influence for the value of the Capillary number in the range of 0.01–0.04.
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left and in the upper half of the domain.
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Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Video S1: a merging 
mode with Ca = 0.01, εx0 = 0.1 and εy0 = 0.0, Video S2: a reversing mode with Ca = 0.04, εx0 = 0.1 and εy0 = 0.0, Video 
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Figure 11. The εx0-versus-εy0 region diagrams of the colliding modes of two eccentric compound
droplets for (a) Ca = 0.01 and (b) Ca = 0.04 and (c) Ca = 0.16. Initially, the droplet 1 is on the left and in
the upper half of the domain.

4. Conclusions

We have presented the computational results of two single-core compound droplets colliding
in the simple shear flow undergoing the influence of eccentricity. The Capillary number Ca is varied
in the range of 0.005 to 0.32 with Re = 1.6, R12 = 0.65 and the ratios of material properties set to
unity. The eccentricities in terms of εx0 (x direction) and εy0 (y direction) are varied from −0.3 to
0.3. The results are three modes of collisions (merging, reversing and passing-over) recognized.
The collision modes for Ca ≤ 0.01 resulting in the merging mode and Ca ≥ 0.16 leading to the formation
of the passing-over mode are almost independent of the location of the inner droplets. In contrast,
when the value of Ca is varied from 0.02 to 0.16, the eccentricity becomes important and affects the
modes of collisions. Particularly, εx0 varying from −0.3 to 0.3 can cause the collision behavior to change
from a passing-over mode to a reversing mode and ends at a merging mode, for example, for Ca = 0.02
with εy0 = 0.0. While varying in this range (−0.3–0.3), εy0 induces the transitions just between the
merging and reversing modes (e.g., for Ca = 0.01 and εx0 = 0.15), or between the passing-over and
reversing modes (e.g., for Ca = 0.04 and εx0 = 0.15), or between the passing-over and merging modes
(e.g., for Ca = 0.02 and εx0 = 0.0).

The present study (or our previous work [10]) is limited to two-dimensional results and single-core
compound droplets. Accordingly, three-dimensional computations are necessary for more accurate
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predictions and to consider the effect of the eccentricity caused by the inner droplet located out of the
plane through the centers of two outer droplets. In addition, to find out what will happen when the
compound droplets encapsulate many inner droplets.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/5/602/s1,
Video S1: a merging mode with Ca = 0.01, εx0 = 0.1 and εy0 = 0.0, Video S2: a reversing mode with Ca = 0.04,
εx0 = 0.1 and εy0 = 0.0, Video S3: a passing-over mode with Ca = 0.16, εx0 = −0.2 and εy0 = 0.0.
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published version of the manuscript.
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