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Abstract: Women’s cancers remain a major challenge for many health systems. Between 1991 and 2017,
the death rate for all major cancers fell continuously in the United States, excluding uterine cervix and
uterine corpus cancers. Together with HPV (Human Papillomavirus) testing and cytology, colposcopy
has played a central role in cervical cancer screening. This medical procedure allows physicians to
view the cervix at a magnification of up to 10%. This paper presents an automated colposcopy image
analysis framework for the classification of precancerous and cancerous lesions of the uterine cervix.
This framework is based on an ensemble of MobileNetV2 networks. Our experimental results show
that this method achieves accuracies of 83.33% and 91.66% on the four-class and binary classification
tasks, respectively. These results are promising for the future use of automatic classification methods
based on deep learning as tools to support medical doctors.

Keywords: biomedical image processing; computer-aided diagnosis; cervical cancer; machine
learning algorithms; deep learning; transfer learning; MobileNetV2; ensemble

1. Introduction

It is estimated that every year, at least two million women are diagnosed with breast or
cervical cancer [1]. Cervical cancer is the fourth most common women’s cancer worldwide, both
in incidence and mortality, while it is the most common cancer in 38 countries [1]. Global inequities
(both geographical and socio-economical) in cervical cancer incidence and mortality have long been
observed [2], and they persist to this day. Consequently, women’s cancers are still a major challenge
for global healthcare, especially in low and middle-income countries (LMIC) where approximately
90% of deaths from cervical cancer occur, according to the World Health Organization (WHO). In [1], it
was estimated that approximately 85% of women diagnosed and 88% of women who die from cervical
cancer live in an LMIC. For example, a large proportion of cervical cancers in Ethiopia are diagnosed
at an advanced stage [3].

For 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United
States alone [4]. The three most common cancers for women in the United States are breast, lung,
and colorectal. The cancer death rate in the United States rose until 1991. It then fell continuously
through 2017 [4] for all common cancer types, excluding uterine cervix and uterine corpus cancers.
These stagnant rates for these two types of women’s cancers can be attributed to the lack of major
treatment advances [5,6]. This critical aspect, together with the fact that cervical cancer is a largely
preventable disease with a known causative agent (i.e., human papillomavirus (HPV) with several
major oncogenic subtypes) [7] call for the development of the early reliable detection of cervical
precancerous lesions and cancer and for age-appropriate screening strategies [8].
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WHO indicates that global mortality from cervical cancer can be reduced by actively applying
a number of measures, including prevention, vaccination, early diagnosis, effective screening, and
treatment. The screening tests to detect precancerous lesions include HPV DNA testing, cytology
(Papanicolaou (Pap) testing), and visual inspection of the cervix. HPV testing is more frequently used
as the primary cervical cancer screening test [9], while cytology-based screening is expensive and
requires complicated training [10]. The Bethesda system (which was originally proposed in 1988 [11]
and further revised in 1991, 2001, and 2014) is the most commonly accepted nomenclature for Pap
smears [7].

Abnormal cells can be found after a routine Pap smear. CIN (cervical intraepithelial neoplasia,
also called cervical dysplasia) is a precancerous lesion characterized by abnormal growth of the
cells on the surface of the cervix. According to how much epithelial tissue is affected, CIN may be
characterized [12] as:

1. CIN1 (low-grade neoplasia), which is about one-third of the thickness of the epithelium.
2. CIN2, which is one-third to two-thirds of the thickness of the epithelium.
3. CIN3, which affects more than two-thirds of the thickness of the epithelium.

One of the goals of clinical diagnosis is to discern between normal/CIN1, and CIN2/CIN3 (or
CIN2+). In [13], the authors proposed to change the terminology for HPV-associated squamous
lesions of the anogenital tract to LSIL (low-grade squamous intraepithelial lesion) or HSIL (high-grade
squamous intraepithelial lesion), as follows:

1. CIN1 is referred to as LSIL.
2. CIN2 (p16 negative, which is a high-risk HPV marker) is referred to as LSIL.
3. CIN2 (p16 positive) is referred to as HSIL.
4. CIN3 is referred to as HSIL.

The visual inspections of the cervix with acetic acid (VIA) and Lugol’s iodine (VILI) are an
alternative to cytology, especially in LMIC. VIA is a visual inspection of the cervix after the application
of 3–5% acetic acid [10]. Following the application, a precancerous lesion becomes white (acetowhite).
However, an acetowhite area may also be a benign lesion, which needs to be excluded before
considering a VIA-positive lesion as precancerous or cancer. VILI follows VIA and the precancerous
lesions (tissues with low glycogen concentration), and cancer turn yellow after the application of
Lugol’s iodine. Benign lesions need to be excluded, such as in the case of VIA. Colposcopy involves
the examination of the cervix and surrounding areas under a microscope (colposcope), which is the
most common procedure for visualization of the cervix before and after the application of acetic acid.

The present study applies the deep learning methodology to a cervical image dataset of 477
colposcopy cases (each case is composed of five pictures after the VIA procedure, one taken using a
green lens and one after VILI) and proposes a precancerous lesion diagnosis method that is based on an
ensemble of MobileNetV2 networks, which represents the first use of these networks for the automated
classification of precancerous lesions. After a section dedicated to the evolution and advances in
the computer-aided diagnosis of colposcopy images, this paper continues with details on the actual
implementation of the proposed method and the obtained results. It ends with a section on future
possible developments.

2. Related Work

In the early years of computer-aided diagnosis applied in medical imaging, there were presented
several studies on the use of traditional image analysis techniques for cervical cancer diagnosis.
A statistical texture analysis approach focusing on six different vascular patterns that relate to
cervical lesions was shown to demonstrate a classification accuracy of over 95% [14]. A multispectral
imaging system for the in vivo detection of cervical precancer and cancer, after the application
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of acetic acid (to enhance the reflectance differences between normal and pathologic epithelium),
was developed and presented in [15] where improved sensitivity and specificity was demonstrated.
ColpoCAD (a Computer-Aided-Diagnosis (CAD) system for colposcopy) was introduced in [16]
as a multi-sensor, multi-data, and multi-feature colposcopy images analysis tool. For example,
ColpoCAD features algorithms to assess the smoothness of a lesion margin and to detect mosaic
and punctuation vessel patterns. Segmentation of macro-regions in colposcopy images was at the
basis of a unified model-based image analysis framework reported in [17]. Again, the classification of
vascular abnormalities was modeled as a problem of texture classification, and the major contribution
of that paper was to address the detection of all vascular abnormalities in a unified framework.

In the age of data-driven machine learning techniques, biomedical imaging and analysis have
been attracting a largely increasing interest from the scientific community. The application areas are
very diverse, and they target various organs. For example, the use of 3D convolutional neural networks
(CNNs) to discriminate between primary and metastatic liver tumors from MRI data was proposed
and evaluated in [18]. In [19]; a deep CNN-based method and transfer learning were proposed for
breast MRI tumor classification; and in [20], transfer learning was used for the diagnosis of lung
diseases, including cancer and tuberculosis. Recently, an entire issue of the Proceedings of the IEEE
was dedicated to diverse computational strategies based on deep learning for the analysis of medical
images [21]. In [22], a survey on using deep learning techniques (mainly CNNs) for medical images
analysis was given and presented over 300 contributions to the field (mainly in image classification,
but also in object detection, segmentation, and registration). Cervical dysplasia diagnosis was included
in the application areas.

Multimodal deep learning for cervical dysplasia diagnosis was presented in [23] where the results
of using a CNN indicated 87.83% sensitivity at 90% specificity on a large dataset. Another CNN-based
method for localized classification of uterine cervical cancer histology images was presented in [24],
where the accuracy of 77.25% was reported.

In [25], from a total of 485 images in the dataset (from 157 patients), a total of 233 were captured
with a green filter, and the remaining 252 were captured without a green filter. Of the total number of
images, 142 images were of severe dysplasia, 257 of CIS (carcinoma in situ), and 86 of invasive cancer.
The training was performed using Keras and TensorFlow. The accuracy obtained was approximately
50%.

In [26], images from 330 patients who underwent colposcopy were analyzed (97 patients were
diagnosed with LSIL and 213 with HSIL). A CNN with 11 layers was used, and the accuracy and
sensitivity for diagnosing HSIL were 0.823 and 0.797, respectively.

A mobile phone application to be used in low-income settings, dedicated to the preliminary
analysis of the digital images of the cervix (after VIA), was presented in [27].

Cell morphology was combined with cell image appearance for the classification of cervical cells
in Pap smear in a CNN-based approach in [28]. The dataset used was the Herlev benchmark Pap smear
on which four CNN models (AlexNet, GoogLeNet, ResNet, and DenseNet) pretrained on the ImageNet
dataset were fine-tuned. For the two-class and the seven-class classification tasks, GoogLeNet obtained
the best accuracies, 94.5% and 64.5%, respectively.

The first study to use transfer learning with the DenseNet model (ImageNet and Kaggle) for the
classification of colposcopy images was presented in [29] where the accuracy of 73.08% in 600 test
images was reported.

Other machine learning techniques have been used for cervical disease diagnosis as well. In [30],
several cervigram images from the U.S. National Cancer Institute were collected and further enhanced
to evaluate image-based cervical disease classification algorithms. Further, to differentiate between
high-risk and low-risk patients, seven classic machine learning algorithms (random forest (RF), gradient
boosting decision tree (GBDT), AdaBoost, support vector machines (SVM), logistic regression (LR),
multilayer perceptron (MLP), and k-nearest neighbors (kNN)) were trained and tested on the same
datasets on a ten-round ten-fold cross-validation. The RF algorithm was shown to yield the best results
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with accuracy, sensitivity, and specificity of 80%, 84.06%, and 75.94%, respectively. RF was also used
in [31] where image segmentation for cervigrams was the first step of the approach. The method’s next
steps were the extraction of color and texture features for the interpretation of uterine cervix images.
Next, the Boruta algorithm was applied for feature selection. The final step involved the use of RF.

The present paper is the first to propose the use of MobileNetV2 [32] networks for the automatic
classification of colposcopy images. We used a diverse input composed of three different types of
images: from VIA, from a green lens, and from VILI. Another contribution of this paper is the modeling
of the ensemble, which is built from several MobileNetV2 sub-networks and an inverted residual unit
(a stack of convolutional layers specific to the MobileNetV2 architecture). The sub-networks transform
the different images into three-dimensional embeddings that capture the discriminative features for
the problem of CIN classification. The inverted residual unit processes the embeddings from multiple
images in order to find distinctive patterns. Apart from the network modeling, we directed our
research towards handling class imbalance, which is common in this domain, and manipulated the
loss function, to be more robust to this phenomenon. Last, to better understand the functioning of the
network, we visualized its activations and identified problem areas.

3. Materials and Methods

3.1. Dataset Description and Data Augmentation

We used the IEEE Dataport cervigram image dataset [33], which consists of images from
colposcopy procedures. As mentioned in the Introduction, during the procedure, an acetic acid
solution is applied to the cervix area to help the doctor to better visualize abnormal regions. After the
application of the solution, the areas of interest will change color, becoming white. There are seven
images for each medical visit: five of them contain sequential pictures of the cervix after applying
the acetic acid solution, one views the cervix through a green lens, and one displays the cervix after
applying iodine solution [33], a solution of a dark red color. The images are ordered as follows: the
five involving acetic acid solution are first; next is the image through the green lens; and last is the
image having iodine solution, as presented in Figure 1. The dataset was constructed in such a way that
if we sorted the image files alphabetically, then in each folder, we obtained this ordering of images.
However, there were a few exceptions to this rule, and in those cases, we renamed the files so that they
were sorted properly. The data were classified into four categories [33]: normal cervix (class label 0),
CIN1 (class label 1), CIN2/3 (class label 2), and cervical cancer (class label 3).

Figure 1. Dataset sample: the first five images correspond to the application of the acetic acid solution;
the image from the penultimate column is viewed through a green lens; and the image in the last
column displays the application of iodine solution. The sample corresponds to Class 2 (Cervical
Intraepithelial Neoplasia 2/3). In the images, it can be observed how the area below the cervix opening
turns whiter after the application of the acetic acid solution.

The dataset available at [33] contained a training set and a test set. We used the same train/test
images as proposed by the authors in [33]. The dataset contained 3339 images of a size of 480 × 640
pixels, of which 3003 belonged to the training set and 336 belonged to the test set. However, the data
variety was limited because the pictures belonged to only 477 medical visits, and many of the images
were similar. The images were grouped per visits, so we knew to which visit each image belonged.
The training set and test set contained separate patient visits; thus, images from the same visit would
never get mixed into both the training set and the test set. This was an important observation since we
needed a model that generalized well to novel patients.
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Data augmentation plays a very important role in combating overfitting, especially when dealing
with lower volumes of data. Table 1 presents the image transformations that we used for augmentation.
The parameters for each transformation were picked randomly between established bounds; therefore,
each training sample was unique.

Table 1. Image transformations used for dataset augmentation.

Transformation Parameters

Rotation random between 0◦ and 45◦

Scale random between 100 and 200%
Shear random between 0◦ and 30◦

Resize 224 × 298 pixels
Horizontal flip random 50%
Normalization mean = [0.485, 0.456, 0.406]; std = [0.229, 0.224, 0.225]; tensors represent RGB dimensions

3.2. Model Description

3.2.1. MobileNetV2 Architecture and Concepts

In the current work, we propose an ensemble of MobileNetV2 [32] networks as a solution to
the problem of colposcopy images’ classification. The choice of the MobileNetV2 architecture was
motivated by several reasons. The dataset in use was relatively small for training a network on the
task of visual recognition, making it prone to overfitting, while using a smaller, but expressive network
such as the MobileNetV2 countered this effect. The MobileNetV2 is an architecture that optimizes
memory consumption and execution speed at a low cost in terms of error [32]. The fast execution
speed makes experimenting and parameter tuning much easier, while the low memory consumption
is a desirable quality in the context of an ensemble of networks. Two of the most important concepts
describing the MobileNetV2 architecture are the depthwise separable convolution [32] and the inverted
residual [32], which will be further discussed.

As described in [32], the depthwise separable convolution is used in other efficient models,
such as MobileNets [34], Xception [35], and ShuffleNet [36]. Depthwise separable convolution
substitutes conventional convolution with two operations [32]. The first operation is a feature map-wise
convolution; that is, a separate convolution is applied to each feature map [32]. The resulting feature
maps are stacked together, and they are processed by the second operation, which is a pointwise
convolution [32]. The pointwise convolution has a 1 × 1 kernel, and it is applied to all of the feature
maps at the same time [32]. A conventional convolution processes the image across the width, height,
and channel dimensions at the same time. Meanwhile, the depthwise separable convolution processes
the image by the width and height dimensions during the first operation and across the channel
dimension during the second operation, being a factorization of the conventional convolution [32].
As described in [32], the computational costs of conventional convolution Cnormal and depthwise
separable convolution Cseparable are:

Cnormal = hi · wi · di · dj · k2. (1)

Cseparable = hi · wi · di(dj + k2). (2)
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Cnormal cost of conventional convolution;
Cseparable cost of depthwise separable convolution;
i input layer index;
j output layer index;
hi height of input feature maps;
wi width of input feature maps;
di number of input feature maps;
dj number of output feature maps;
k filter size.

By dividing (1) with (2), one can quantify the computational advantage of using depthwise
separable convolutions over conventional convolutions [32]:

Cnormal
Cseparable

=
dj · k2

dj + k2 . (3)

In [32], the inverted residuals were described and compared to residual blocks [37], which
are an important component of the ResNet model [37]. Both blocks use bottlenecks and residual
connections [32], and both use three convolutional operators [32,37]. The first and last operators use
1 × 1 filters [32,37], which transform data from the input domain to an intermediate representation and
the intermediate representation to the output domain. The intermediate representation is processed
by a 3 × 3 filter [32,37]. In the residual block, the first and last convolutions have more feature maps
(channels) compared to the inner convolution of the block [37]; in contrast, the inverted residual
uses the first and last convolutions with a smaller number of feature maps compared to the inner
convolution [32]. In both cases, the residual connection is between the first and last feature maps,
which are less in the case of MobileNetV2 [32] when compared to ResNet [37]. In both architectures,
if we stack multiple units, it results an alternation of larger and smaller layers. The essential difference
lies in the placement of the residual connections, which brings an advantage in terms of memory
consumption in the MobileNetV2 architecture [32].

We used a publicly available implementation of the MobileNetV2 network from the PyTorch
Hub [38]. All the MobileNetV2 network implementation details are found at [38] and in the
MobileNetV2 paper [32], while the source code is also publicly available at the GitHub link [39].
Table 2 documents additional high-level features related to the MobileNetV2 network used. In the
next subsection, we present an essential structural modification that we performed to this network for
adapting it to our problem.

3.2.2. MobileNetV2 Tuning

The MobileNetV2 network is a series of inverted residual blocks stacked between two
convolutions [32], which we can view as adapters transforming the input to an intermediary
representation and the intermediary representation to output. The convolution’s final output is passed
through a global average pooling layer and through an inference layer [32]. The MobileNetV2 network
is adapted to the ImageNet classification challenge [40], which is a classification problem having 1000
classes. For this reason, the last convolutional layer (just after the last inverted residual block) is larger,
having 1280 feature maps and a filter size of 1 × 1 [32]. However, the cervical lesion classification
problem has only four classes. Consequently, it makes sense to use a smaller representation of the
image. In Section 4.1, we show that using a smaller representation achieved a better accuracy of the
network regardless of being used in the context of an ensemble or alone. To constrain the size of the
representation, we modified the last convolutional layer, just after the last inverted residual block,
to output 32 or 64 feature maps instead of 1280. If used inside the ensemble, then this layer becomes
the final layer, and the resulting feature maps are joined by those from other models and processed by
the ensemble network. If the model is used alone, then the feature maps of this layer pass through
global average pooling and result in a vector of 32/64 elements. The vector is further processed by a
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fully connected layer to calculate the result. Because the original MobileNetV2 model was pretrained
on ImageNet [40], we kept all other layers unchanged to preserve the already trained parameters, and
we fine-tuned the whole network during training.

Table 2. Generic information related to the MobileNetV2 architecture [32]. In the details below, we
took into account the implementation in [38].

Network depth The network contains 17 inverted residual units stacked between two convolutional
layers and a single fully connected layer. Given that each inverted residual block is
implemented using three convolutional layers, we can conclude that the network has a
depth of 53 convolutional layers and a single fully connected layer.

Filter size All depthwise separable convolutions are implemented using two convolutions; the first
has a 3 × 3 filter size, while the second has a 1 × 1 filter size. The depthwise separable
convolutions are better explained in Section 3.2.1. The other two regular convolutional
layers that act as adapters for the input and output representations have a filter size of
3 × 3 and 1 × 1.

Spatial
downsampling

The spatial downsampling is achieved through increasing the stride to a value of two in
some of the convolutional layers, while all other layers keep a stride of one. There is no
maximum pooling involved.

Convolution
padding

The implementation employs the padding scheme of padding = ( f ilter − 1)/2, as can be
noted in the source code [39]. This scheme preserves the size of the layer for odd filter
sizes (in our case, the network utilizes only filters of sizes of one and three).

Nonlinearities Unlike other networks, the nonlinearity used in the MobileNetV2 network is ReLU6
instead of ReLU (rectified linear unit). While the ReLU function equals f (x) = max(0, x),
the ReLU6 function equals f (x) = min(6, max(0, x)). According to the MobileNetV2
paper [32], the reason for using ReLU6 is that it is more robust to low precision
computation.

Normalization All convolutional operations are followed by per channel batch normalization, that is,
for each batch, the layer activations are standardized to zero-mean and unit variance and
then go through a linear transform parameterized by learnable scale and shift parameters.

Dropout The network presented at [38] uses dropout only for the fully connected layer with a 20%
probability of ignoring connections.

3.2.3. MobileNetV2 Ensemble

The main contribution of this study is the creation of the MobileNetV2 ensemble and the tuning
of the MobileNetV2 architecture to be better used in the context of the ensemble. As described in
Section 3.1, the dataset could be split according to three categories: images after applying the acetic
acid solution, images viewed through a green lens, and images after applying the iodine solution.
In Section 4.2, we will show that training a single MobileNetV2 model on a single category of images
yields better results than training on all of the categories at the same time. Based on this observation,
we trained a separate model on each of the image categories. In the final step, we joined the trained
models in an ensemble that yielded superior results to any of the separately trained models. We used
the model described in Section 3.2.2 as the building block of our ensemble. We trained three models of
this kind on the three categories of images. Each model was trained in isolation on its specific image
category, and the model parameters remained fixed when the ensemble was trained. From each of
the three models, we dropped the last inference layer and the average pooling, the restricted size
convolution becoming the output layer. All of the feature maps resulting from the three networks
were stacked and then processed by an inverted residual block that analyzed and related all images
at the same time. Finally, the feature maps went through global average pooling and through a fully
connected layer that calculated the result.
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3.3. Network Forward Pass

This section describes a forward pass of the data through the ensemble. The network input
consisted of seven images, which represented a specific colposcopy procedure. The first five images
displayed the cervix after applying the acetic acid solution, while the last two displayed the cervix
through a green lens and after applying the iodine solution. The ensemble contained three models,
each being specialized in a certain type of image. The steps below describe the ensemble forward pass;
the tensor sizes will be displayed in the form: f eature maps × height × width.

1. Every image was processed by the appropriate specialized network. The network trained on acetic
acid solution images would process five images, while the other two networks would process
one image each. Images were fed to the network as tensors of size 3 × 224 × 298. The network
specialized in green lens images output tensors of size 64 × 7 × 10. The other two networks
output tensors of size 32 × 7 × 10.

2. All resulted feature maps were stacked, forming a tensor containing 32 × 5 + 64 + 32 = 256
feature maps; that is, a tensor of size 256 × 7 × 10.

3. The tensor was processed by an inverted residual block, as described in Section 3.2.1. The result
had the shape: 32 × 7 × 10.

4. Next, global average pooling was performed, transforming the tensor of size 32 × 7 × 10 into a
tensor of size 32; that is, each feature map was averaged.

5. To calculate the final result, the vector was passed through a fully connected layer, yielding a
tensor of size 4.

These steps are shown in pseudocode in Algorithm 1. The pseudocode is similar to the actual
PyTorch implementation. Figure 2 illustrates the forward pass and the architecture of the ensemble.
The tensor transformations are summarized in Table 3.

Algorithm 1 Ensemble forward pass. The function parameter x is an array of seven input images.
All CNNare functions denoting the forward pass of a specialized convolutional neural network. The
CONCATENATEfunction stacks multiple feature maps, which have the same width and height; for
example, stacking two tensors having f eature maps × height × width equal to 32 × 7 × 10 will result
in a tensor of size 64 × 7 × 10. AVG_POOL calculates the average per feature map; for example,
pooling a tensor of size 64 × 7 × 10 results in a tensor of size 64. FULLY_CONNECTED is a function
representing the forward pass of a fully connected layer. The resulting tensor is of size 4. Please note
that, for simplicity, we did not take into account the batch dimension for tensor sizes.

function FORWARD(x)
list = [ ]
for i = 0, . . . 4 do

xacetic acid = CNNacetic acid(x[i])
list.append(xacetic acid)

end for
xgreen lens = CNNgreen lens(x[5])
list.append(xgreen lens)

xiodine solution = CNNiodine solution(x[6])
list.append(xiodine solution)

xconcat = CONCATENATE(list)
xinverted residual = CNNinverted residual(xconcat)

xaveraged = AVG_POOL(xinverted residual)

result = FULLY_CONNECTED(xaveraged)

return result
end function
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Table 3. Tensor sizes during a network run. The tensor sizes are displayed in the form:
f eature maps × height × width. The batch size is ignored.

Operation Input Tensor Output Tensor

MobileNetV2 CNN specialized on images with acetic acid solution 3 × 224 × 298 32 × 7 × 10
MobileNetV2 CNN specialized on images through the green lens 3 × 224 × 298 64 × 7 × 10

MobileNetV2 CNN specialized on images with iodine solution 3 × 224 × 298 32 × 7 × 10
Concatenation (receives a list of tensors) − 256 × 7 × 10

Inverted residual block 256 × 7 × 10 32 × 7 × 10
Global average pool 32 × 7 × 10 32

Fully connected 32 4

Image with 
acetic acid 
solution

Inverted 
residual
block

Fully 
connected

Image with 
acetic acid 
solution

Image with 
acetic acid 
solution

Image with 
acetic acid 
solution

Image with 
acetic acid 
solution

Image 
through 
green lens 

Image with 
iodine 
solution

Global
average
pool

Result

Mobilenetv2

Mobilenetv2

Mobilenetv2

Figure 2. Forward pass through the ensemble.

3.4. Handling of Imbalanced Datasets

As can be observed in Figure 3, the distribution of the training samples was imbalanced among
the four classes, approximately half of the samples belonging to Class 0 (normal), and under 5% to
Class 3 (cancer). In this section, we describe the effect of class imbalance on the model performance and
experiment with three strategies to better handle it. For all of the experiments described in this section,
we used a single MobileNetV2 model tuned as described in Section 3.2.2 and only on the images
involving acetic acid solution. If the metrics used were influenced by the class-specific population size,
then we could get misleading results; for example, if a dataset contained 99% healthy patients and
we tried to detect unhealthy ones, a model that always classified a patient as healthy would have a
misleading score of 99% accuracy. Another option was to calculate the metrics separately per each class
and then average. However, this could also be problematic in scenarios where there is an important
class with low performance and multiple other less important classes with higher performance. In both
cases, through measurement, the score of the model could get boosted artificially. We believe that the
most precise view was obtained by investigating the performance of each class separately.
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Figure 3. The training data contain 51.28%, 15.61%, 28.43%, and 4.66% samples of each class,
corresponding to 1540, 469, 854, and 140 images.

We chose a very simplistic metric, the true positive rate, which is also known as recall. Averaged
across the four classes, this metric would not be descriptive enough to study the effects of class
imbalance. However, if calculated separately for each class, then it enabled us to detect if the
model became biased in recognizing certain classes to the detriment of others due to the training
population structure. The per-class true positive rate was given by the percentage of true positives in
the population having as ground truth that class; that is, we divided the true positives by true positives
plus false negatives with respect to a certain class. We calculated the true positive rate by investigating
the confusion matrix for the validation set. Given a confusion matrix M, the element Mi,j counts the
elements labeled with class i, but predicted as class j. Equation (4) presents a confusion matrix; the
diagonal bold elements are true positives, and the rest are misclassifications. Each row of the matrix
presents the population belonging to a certain class. Equation (5) shows the formula for calculating
the true positive rate tpri for class i. Given that the true positive rates were expressed as percentages,
the measurements were agnostic of the number of elements contained in each class.

M =


m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4

 (4)

tpri =
mi,i

∑4
j=1 mi,j

(5)

The results on the acetic acid images are depicted in Figure 4. Looking at both training data
distribution and class recall, we could make the following observations:

1. Class 0 had the most samples and achieved the highest true positive rate.
2. Class 3 (cancer) yielded good results compared to the other classes, despite the reduced number

of samples. This class was probably easier to distinguish from the others because of its distinctive
visual features.
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3. Both Classes 1 and 2 had a smaller number of samples compared to Class 0, and a lower true
positive rate.

4. Class 1 had fewer samples than Class 2 and also a lower true positive rate.

Based on these observations, we noticed that except for Class 3, the amount of training samples
correlated with the class true positive rate. Based on this finding, we presumed that the model would
perform better if presented with a higher volume of training data. The diversity of the samples was
also important.
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Figure 4. True positive rate (recall) for each class for the validation set: 91.66%, 41.66%, 65%, and 86.66%.

3.4.1. Loss Function

Because of the dataset imbalance, the trained model might be biased to better recognize certain
classes to the detriment of others. This happens because during training, the model is exposed to
an uneven number of samples from the different classes; therefore, the model parameters are more
updated in a certain direction. To counter this phenomenon, we made the model focus more on
the detrimental classes during training. This could be achieved by manipulating the loss function.
By default, we trained the model using the cross entropy loss, shown in Equation (6). The weighted
cross entropy loss, depicted in Equation (7), uses a weight vector ~w to put more importance on some of
the classes. In the focal loss [41], the easier examples are decayed using a factor (1 − P(~xi))

γ, as shown
in Equation (8).

E~x,~y = −
N

∑
i
~yiln(P(~xi)) (6)

WE~x,~y,~w = −
N

∑
i
~yi[~w � ln(P(~xi))] (7)

F~x,~y = −
N

∑
i
~yi[(1 − P(~xi))

γ � ln(P(~xi))] (8)
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E~x,~y cross entropy loss function;
WE~x,~y,~w weighted cross entropy loss function;
F~x,~y focal loss function;
~x list containing network input tensors;
~y list containing one-hot-vectors indicating the ground truths;
~w four-dimensional vector of class weights;
N number of training samples;
i index through the training samples;

P(~xi)

function outputting a four-dimensional vector with the probabilities of input ~xi to belong to each
of the classes; obtained by running a forward pass through the network with input ~xi and
applying softmax;

ln natural logarithm;
γ scalar decaying the loss for easier examples;

�
element-wise multiplication between two vectors; that is, element i from the first vector gets
multiplied by element i from the second vector, and the result vector has the same dimensions as
the product factors.

As noted in Equation (6), the simple cross entropy loss already has a mechanism for countering
the class imbalance. The network does not learn at the same rate from all examples. As the
probability P(~xi) goes to one, the logarithm goes to zero. Therefore, as the model gets more confident,
the learning saturates.

The weighted cross entropy loss is useful when some classes are more important than others or
need more attention during training. We experimented with two variants: one in which we kept the
class weights ~w fixed according to population size and the other in which the class weights ~w were
recalculated after each epoch, based on the class error rates. The error rate et,i for epoch t and class i is
one minus the true positive rate:

et,i = 1 − tprt,i (9)

The error rate is also equal to the sum of false negatives for a certain class. We applied a
transformation φ to each error rate et,i to provide more importance to higher error rates. The class
weights are calculated following Equation (10).

wt,i =
φ(et,i)

∑4
j φ(et,j)

(10)

If we set φ(x) = x (i.e., the identity function), then the weights would be directly proportional to
the error rates. If we set φ(x) = exp(x), then we would get the softmax function. In our experiments,
we set φ(x) to x3, exp(x), exp(10x), and exp(100x). On each epoch, the loss function puts more focus on
the needed classes. This was more efficient when we trained for a longer period and progressed slowly.
Consequently, we used a smaller learning rate of 10−5 compared to 10−4 used during normal training.

The focal loss distributes its attention at an even more granular level than the weighted cross
entropy loss. Instead of focusing on a certain class, the focal loss uses different weights for each
training sample regardless of the class to which it belongs.

3.4.2. Conclusions on Handling Class Imbalance

From our experiments, as detailed in Section 4.4, we note that the weighted cross entropy loss
with dynamic weighting on each epoch and a φ(x) = exp(100x) worked best and provided a better
balanced model, as can be observed in Figure 5. We extended this approach to the other images, but
it only offered benefits in the case of those with acetic acid and those through the green lens. In the
case of iodine solution images, the performance of the model degraded. Next, we constructed an
ensemble from the models trained with weighted cross entropy for acetic acid and green lens images,
while keeping the normally trained model for iodine solution images. The ensemble showed the
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same performance as the one built from the classical models (i.e., trained with simple cross entropy);
therefore, it might be possible that the ensemble has a positive impact on class imbalance.
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Figure 5. True positive rate comparison between the model trained with weighted cross entropy loss
and simple cross entropy loss. Only images with acetic acid were used. The class weighting was
recalculated in each epoch according to the model error (one minus true positive rate), and we applied
a transformation φ(x) = exp(100x). As can be observed, the model trained with class weighting
provided better balanced true positive rates.

3.5. Implementation Details

3.5.1. Network Evaluation

We measured the accuracy, recall, precision, and F1 score. Recall, precision, and F1 score are
metrics used for binary classification; however, they were adapted to multiple class problems by using
a one versus rest approach; that is, if an instance contained the class in question, it was considered
positive; if it contained any other class, it was considered negative; the results calculated on the four
classes were averaged. The researcher can choose to average using equal weighting or a weighting
according to the size of the population of each class. For our problem, we chose equal weighting.
As noted in Section 3.4, most of the images displayed normal cervices that were easily distinguished by
the model. If we weighted according to population size, then we would get an overly optimistic result.

3.5.2. Training Details

We used an Adam optimizer with β1 = 0.9, β2 = 0.999, ε = 10−8, weight_decay = 0. The learning
rate was set to 10−4 for training the individual MobileNetV2 networks and the ensemble. The networks
were trained in isolation and kept fixed weights while training the ensemble. For the experiments
related to the handling of dataset imbalance, the learning rate was modified to 10−5 for those trained
with weighted cross entropy and 10−3 for those trained with focal loss. During training with weighted
cross entropy loss, most attention was directed to certain classes each epoch, while others received little
training. To assure convergence, we recommend a smaller learning rate. For focal loss, we recommend
a higher learning rate because the focal objective diminishes the intensity of the network updates.
We trained for a predefined number of iterations, which was specific to each problem. The number
of iterations was set to a higher value than necessary so that the model entered the overfitting zone.
The state of overfitting was assessed visually by the developer by plotting the loss and the other metrics
on both training and test sets. While training, each time that the accuracy on the test set increased,
a new checkpoint of the model was saved. Thus, at the end of the training, we were left with the
best version of the model that found the equilibrium between underfitting and overfitting. For the
experiments on dataset imbalance handling, instead of accuracy, we used the harmonic mean of the
per-class true positive rate as a criterion for saving model checkpoints, and we will describe this in
more detail in Section 4.4.
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3.5.3. Ensemble Inverted Residual

The ensemble inverted residual unit is especially important because it analyzes all images at once.
As described in [32], the “expansion ratio” is the ratio between the number of feature maps used by
the inner layer of the inverted residual and the number of feature maps used by the input (bottleneck)
layer. We used an expansion ratio of 5; thus, the inner convolutions of the inverted residual had
5 × 256 = 1280 feature maps. As an additional regularization technique, we added two dropout layers
inside the inverted residual unit after the input convolution and the internal convolution, each having
a drop probability of 60%. Table 4 summarizes the structure of the inverted residual. For fine-tuning
the ensemble, we reduced the learning rate to 10−8 and the dropout drop probability from 60% to 20%.

Table 4. Ensemble inverted residual unit design.

Layer Type Parameters

Convolution input feature maps = 256; output feature maps = 1280; filter size = 1
Batch normalization -

ReLU -
Dropout 60% drop probability

Convolution input feature maps = 1280; output feature maps = 1280; filter size = 3
Batch normalization -

ReLU -
Dropout 60% drop probability

Convolution input feature maps = 1280; output feature maps = 32; filter size = 1
Batch normalization -

4. Results

4.1. MobileNetV2: Comparison with Other Networks and Parameter Tuning

We chose the following models as baselines: VGG19 [42], ResNet18 [37], DenseNet [43],
ResNeXt-101 [44], and MobileNetV2 [32]. All models were pretrained on ImageNet [40], and ResNeXt
was additionally trained in a weakly supervised manner on 940 million public images [44]. We
fine-tuned those models on the images involving acetic acid solution. In our work, we tuned the
MobileNetV2 architecture to better fit the current problem as described in Section 3.2.2 and compared
it to the baselines as shown in Table 5. The metrics between ResNet18, MobileNetV2, and ResNeXt-101
were very close to one another, even though the size and depth of each of those networks were very
different. Normally, we would expect the ResNeXt-101 model to outperform the others by a larger
margin, but we believe that it was a too complex model to be applied to a dataset of this size. From the
baselines, VGG19 performed the best. We believe that the results could be explained by the capability
of each network to fight overfitting: VGG19 had two dropout layers with a 50% probability of dropping
activations from the fully connected layers, while the other networks had less aggressive dropout
or were entirely missing it. The increase in performance from our model came from its ability to
counter overfitting. We addressed this by using a pretrained model, by diminishing the size of the
last convolutional layer from 1280 to 32 filters, as explained in Section 3.2.2, and by adding after the
last convolution an aggressive two-dimensional dropout layer with a 70% probability of dropping
connections. As explained in Section 3.5.3, the ensemble inverted residual also presented two dropout
layers, each having a 60% chance to drop a connection while training.
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Table 5. Baselines and tuned MobileNetV2 metrics measured on the acetic acid images.

Model Accuracy Precision Recall F1 Score

DenseNet 63.75% 55.26% 39.20% 43.61%
ResNet18 64.16% 44.54% 34.04% 37.40%

MobileNetV2 64.58% 45.03% 35.48% 38.04%
ResNeXt-101 64.58% 48.30% 35.41% 39.04%

VGG19 68.75% 49.26% 40.74% 44.42%
MobileNetV2 tuned (ours) 71.24% 66.39% 52.70% 57.69%

4.2. Training on Different Image Types

After testing our tuned MobileNetV2 network on images with acetic acid solution, we extended
to images through the green lens and with iodine solution. We ended up having three networks
specialized in each type of image. If we trained a single network on all types of images, then we
obtained a lower performance than from any of the specialized networks, which further supported the
need for an ensemble that could take advantage of all image types at once. A possible explanation is
that it is easier to compare two instances that shared the same context than comparing two instances
belonging to different contexts. In our case, the types of images, acetic acid, green lens, and iodine
solution, were the context, and each image was an instance. Moreover, the image types were very
different from one another, and the ratio of acetic acid images was much bigger than the others. Thus,
when training on all image types at the same time, green lens and iodine solution images turned into
noise instead of being useful. We used the three specialized models to build an ensemble, which in turn
outperformed all specialized networks. We also turned our system into a binary classifier, in which
Classes 0 and 1 (normal and CIN1, respectively) were considered 0 and Classes 2 and 3 (CIN2/3 and
cancer, respectively) were considered 1. We did not perform any additional training or model changes
for this task; we simply used the four-class model and recorded the metrics as if we had a binary
problem. Table 6 presents the results of the ensemble and compares it to the specialized networks and
the network trained on all images at once.

Table 6. Results of the network trained on all images at once, of networks specialized on individual
image types and of the ensemble in both four class and binary mode. For the ensemble, we provide a
simpler version and another one fine-tuned through training with a smaller learning rate. Where we
mention MobileNetV2, we refer to the model modified as described in Section 3.2.2.

Model Accuracy Precision Recall F1 Score

MobileNetV2 trained on all image types 63.98% 45.45% 38.27% 40.39%
MobileNetV2 trained on acetic acid images 71.24% 66.39% 52.70% 57.69%
MobileNetV2 trained on green lens images 75.00% 81.80% 75.00% 75.24%

MobileNetV2 trained on iodine solution images 75.00% 79.80% 75.00% 74.62%
Ensemble, four class mode 81.25% 85.04% 81.25% 81.20%

Ensemble, binary classification mode 89.58% 89.65% 89.58% 89.57%
Ensemble fine-tuned, four class mode 83.33% 86.41% 83.33% 83.55%

Ensemble fine-tuned, binary classification mode 91.66% 91.66% 91.66% 91.66%

For better measuring the performance of the fine-tuned ensemble, we included ROC curves
(receiver operating characteristic) for both binary and multiple-label classification measured on the
test set. In the case of multiple-label classification, we used a one versus the rest approach, in which
we analyzed each class separately. The analyzed class would have label 1, while all other classes
shared label 0. The model could be encouraged to have a higher recall (also known as sensitivity or
true positive rate) at the cost of more false positives, or on the contrary, have a lower recall, but also
fewer false positives. Our model is not binary in nature; its output is an array with four elements,
one for each class. The first step was to run the softmax function over the output to transform it into
a four-element array containing probabilities. In the usual case of multiple-label classification, we
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simply looked at the maximum element from the array to determine the result. However, to calculate
the ROC curves, which are suited for binary classification, we analyzed each class in turn versus the
rest of the classes. To bias the model in the desired direction (better recall versus less false positives),
we looked at two elements from the array of probabilities (which contained four elements): one which
corresponded to the analyzed class and the other was its strongest candidate. The strongest candidate
was determined by taking the maximum over the other three candidates. We subtracted the probability
of the strongest candidate from the probability of the analyzed class and compared it to a threshold.
This threshold could take values from one to minus one, corresponding to the extreme cases when the
model was certain on the analyzed class and all other candidates had zero probability and to the case
when the model was certain on a candidate and all other probabilities were zero. Please note that all
four probabilities summed to one because they were computed using the softmax function. The model
could be influenced by leveraging the difference between the probabilities of the analyzed class and
the best candidate. As noted, this difference could take values in the range [−1, 1]. We compared this
difference with a threshold: if the difference was greater than the threshold, we considered outcome
one (the analyzed class was detected), otherwise we considered outcome zero (another class was
detected). By setting different values to this threshold in the range [−1, 1], we could compute the ROC
curve for a certain class; this is illustrated in Figure 6. When we set a smaller threshold (including
negative), we encouraged a higher recall, since it would be more likely that the calculated difference
would be higher than the threshold, resulting in a positive outcome. Setting the threshold to minus
one would make the model always return a positive outcome. On the contrary, if we set a higher
threshold, the probability differences would be less likely to be bigger then the threshold, favoring
precision and fewer false positives. Setting the threshold to one would make the model always return
a negative outcome. If the threshold was zero, then the classification was unchanged.
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Figure 6. ROC curves for the multiple label classification for the fine-tuned ensemble. Each curve is
calculated using a one versus the rest approach.

For the binary version of the ensemble, we used a similar approach, with a minor modification.
In the binary classification problem, we needed to separate patients with CIN2/3 lesions and cancer
from the other less affected patients, with CIN1, and with no lesions. Classes 2 and 3 represented
severely affected patients (Outcome 1 in the binary classification problem) and Classes 0 and 1
less affected patients (Outcome 0 in the binary classification problem). In this case, we calculated
the difference between the probabilities of the best candidates for Outcome 1 (CIN2/3 and cancer
patients) and Outcome 0 (normal and CIN1 patients). In other words, we calculated two maximums
corresponding to the two candidates, the maximum of the probabilities of Classes 2 and 3 (best
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candidate for Outcome 1 in the binary classification problem) and the maximum of the probabilities of
Classes 1 and 0 (best candidate for Outcome 0 in the binary classification problem). We subtracted
the probabilities of the two best candidates and compared these to a threshold having values in the
interval [−1, 1] as before. The ROC curve for the binary classifier is found in Figure 7.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te
ROC binary classification

Class 1 (AUC 0.948)

Figure 7. ROC curve for the binary classification for the fine-tuned ensemble.

4.3. Time Complexity

We believe that in this domain, the accuracy, recall, and precision of the model are the most
important measures. Nevertheless, knowing that sometimes neural networks could be computationally
expensive, we measured the execution time of our model to make sure it could be run conveniently on
a computer without GPU since we expected that most computers or servers do not own one. At the
same time, we compared the time obtained with the other baseline models to emphasize the speedup
gained by using the MobileNetV2 [32] architecture. The measurements were performed on Google
Colab virtual machines, with two CPU Intel(R) Xeon(R) 2.30 GHz and approximately 12.7 gigabytes of
RAM. For measuring the execution speed, we fed to the network a single image at a time since this
was the most likely scenario to be found in practice. We calculated the average execution time for each
model on the whole test set. The results are displayed in Table 7. As can be noticed, the ensemble
network could process a single input set of seven images in less than half of a second when running
on a CPU.

Table 7. Execution times for the networks’ forward passes.

Model Execution Time (milliseconds)

ResNeXt-101 904
VGG19 831

DenseNet 233
ResNet18 102

MobileNetV2 (original model) 66
MobileNetV2 (having our modifications) 59

Ensemble 390

4.4. Handling of Dataset Imbalance

To assess how well a model was balanced, we analyzed the true positive rate per each class. We
aimed to create a less biased model; that is, one that did not perform very well on certain classes to the
detriment of others. Even though we recorded the per-class true positive rate, we would still like to
have a single value that described the ability of the model to be both accurate and balanced. Therefore,
we chose to take the harmonic mean of the per-class true positive rate. The harmonic mean penalizes
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imbalanced models more than the arithmetic mean because lower values in the members of the mean
decrease the result of the harmonic mean more than the result of the arithmetic mean. In this section,
we describe three series of experiments.

At first, we performed a series of experiments on the images involving acetic acid solution for
determining which training procedure yielded the most balanced model for our task. The best results
were reported in the case of weighted cross entropy with weights being dynamically recalculated each
epoch. The transformation used for the weights calculation was φ(x) = exp(100x) as described in
Section 3.4. The results of this experiment are reported in Table 8.

Table 8. Results for experiments regarding dataset imbalance. We used the MobileNetV2 tuned model
as described in Section 3.2.2 and the images involving an acetic acid solution. TPR stands for true
positive rate.

Training Method Accuracy Class 0
TPR

Class 1
TPR

Class 2
TPR

Class 3
TPR

TPR
Harmonic

Mean

Cross entropy loss 71.24% 91.66% 41.66% 65.00% 86.66% 64.69%

Focal loss, γ = 1 67.08% 86.66% 53.33% 55.00% 73.33% 64.40%

Focal loss, γ = 2 66.66% 66.66% 61.66% 56.66% 81.66% 65.45%

Focal loss, γ = 5 66.25% 93.33% 40.00% 56.66% 75.00% 59.97%

Weighted cross entropy, weights fixed to the
ratio of each class in the training population 67.08% 91.66% 50.00% 48.33% 78.33% 62.14%

Weighted cross entropy, weights recalculated
each epoch, φ(x) = x3 71.66% 83.33% 53.33% 70.00% 80.00% 69.52%

Weighted cross entropy, weights recalculated
each epoch, φ(x) = exp(x) 70.41% 86.66% 46.66% 71.66% 76.66% 66.70%

Weighted cross entropy, weights recalculated
each epoch, φ(x) = exp(10x) 70.00% 78.33% 55.00% 66.66% 80.00% 68.43%

Weighted cross entropy, weights recalculated
each epoch, φ(x) = exp(100x) 71.25% 80.00% 65.00% 61.66% 78.33% 70.33%

Next, we validated the best performing approach on the other baseline models to see if it brought
similar qualities of better balancing the classification bias. As can be observed from the numbers in
Table 9 and Figure 8, this method created better balanced models for DenseNet [43], VGG [42], and
MobileNetV2 [32], but did not bring any advantage for ResNet18 [37] and ResNeXt-101 [44]. Moreover,
for ResNet18, we used a different transform of φ(x) = exp(x) to make the training converge. These
results showed that this method could decrease the classification bias on the imbalanced datasets, but it
is not guaranteed to work for every combination of model, dataset, and meta-parameters. In practice,
it requires a careful meta-parameter fine-tuning, especially the learning rate and the transformation
used for calculating the weights. The idea of the method is to work on the harder problem more,
an intuitively correct idea that is not new in machine learning. However, neural networks’ learning is
very complex and most often converges to different local minima. In practice, the developer should
experiment with more solutions and choose the best working one. The method described in this section
could be an important candidate.
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Table 9. Results for training using the weighted cross entropy versus simple cross entropy on the
baselines models. The transformation applied to the errors is φ(x) = exp(100x) as explained in
Section 3.4, except for VGG, where we applied a transformation of φ(x) = exp(x). The training of this
network did not converge having the other transformation. Some of the models trained with weighted
cross entropy record better-balanced true positive rates as measured by the harmonic mean. In the
table, TPR stands for true positive rate, WCE stands for weighted cross entropy, and CE stands for
cross entropy.

Loss Model Image
Types Accuracy Class 0

TPR
Class 1

TPR
Class 2

TPR
Class 3

TPR

TPR
Harmonic

Mean

CE DenseNet Acetic acid 66.66% 86.66% 40.00% 33.33% 66.66% 49.05%
WCE DenseNet Acetic acid 65.41% 85.00% 45.00% 46.66% 85.00% 59.54%
CE ResNet18 Acetic acid 65.00% 96.66% 38.33% 51.66% 73.33% 57.61%

WCE ResNet18 Acetic acid 61.66% 75.00% 56.66% 35.00% 80.00% 55.51%
CE VGG Acetic acid 65.83% 88.33% 33.33% 60.00% 81.66% 56.95%

WCE VGG Acetic acid 63.75% 83.33% 46.66% 50.00% 75.00% 59.91%
CE MobileNetV2 Acetic acid 65.41% 86.66% 56.66% 41.66% 76.66% 60.39%

WCE MobileNetV2 Acetic acid 64.16% 70.00% 53.33% 65.00% 68.33% 63.43%
CE ResNeXt-101 Acetic acid 65.00% 96.66% 50.00% 50.00% 63.33% 60.48%

WCE ResNeXt-101 Acetic acid 67.08% 95.00% 35.00% 51.66% 86.66% 57.15%

As a next step, we applied this training method to the rest of the images involving the green
lens and the iodine solution and finally to the ensemble as a whole. This method proved beneficial
for the images with an acetic acid solution and those through the green lens. In the case of those
with an acetic acid solution, the overall accuracy did not change much, but the model was better
balanced, while in the case of images through the green lens, both overall accuracy and class balance
got better. Unfortunately, in the case of iodine solution images, the performance of the model degraded.
For this reason, we decided to experiment with an ensemble formed from the models trained with
weighted cross entropy for the images with acetic acid and through the green lens, but used the classical
training procedure (simple cross entropy) for images with iodine solution. The ensemble convolutional
network was trained with weighted cross entropy just like the other networks. We measured the overall
accuracy and true positive rate per each class for this ensemble as we did for the single networks.
At the same time, we did the same measurement for the ensemble trained classically. The results were
surprising; both models displayed the same numbers for overall accuracy and true positive rate per
each class. The ensemble made a much better use of the data available, taking advantage of both visual
features and the relationships between multiple images. The ensemble adapted to the different image
representations and provided the same outcome despite the differences in the image representations
provided by the MobileNetV2 networks that were trained in different ways. In our opinion, this
stability is an advantage. It can also mean that the image relationships might be more important than
the individual image features in the overall performance of the system. Table 10 displays the results of
this experiment. Figure 9 is a visualization of Table 10, each subplot displaying the comparison of the
per-class true positive rates for the training on a certain type of image.
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Figure 8. Per-class true positive rate comparison between models trained with cross entropy and
with weighted cross entropy. Each plot displays the result for a different model. These plots are a
visualization of the data from Table 9, and the same training procedures and models are used.
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Table 10. Results for training the ensemble and the single networks on the different image types
with weighted cross entropy versus simple cross entropy. The transformation applied to the errors is
φ(x) = exp(100x) as explained in Section 3.4. The network trained with weighted cross entropy on
iodine solution images is not included in the ensemble trained with weighted cross entropy and is
replaced with the one trained with cross entropy because it has a better performance. Both ensembles
trained with weighted cross entropy and simple cross entropy share the same accuracy and per-class
true positive rates. Please note that in this comparison, we did not fine-tune any of the ensembles.
In the table, TPR stands for true positive rate, WCE stands for weighted cross entropy, and CE stands
for cross entropy.

Loss Model Image Types Accuracy Class 0
TPR

Class 1
TPR

Class 2
TPR

Class 3
TPR

TPR
Harmonic

Mean

CE MobileNetV2 Acetic acid 71.24% 91.66% 41.66% 65.00% 86.66% 64.69%
WCE MobileNetV2 Acetic acid 71.25% 80.00% 65.00% 61.66% 78.33% 70.33%
CE MobileNetV2 Green lens 75.00% 91.66% 58.33% 83.33% 66.66% 72.65%

WCE MobileNetV2 Green lens 77.08% 83.33% 58.33% 83.33% 83.33% 75.26%
CE MobileNetV2 Iodine solution 75.00% 83.33% 50.00% 75.00% 91.66% 71.12%

WCE MobileNetV2 Iodine solution 72.91% 91.66% 58.33% 75.00% 66.66% 70.94%
WCE/CE Ensemble All images 81.25% 91.66% 58.33% 83.33% 91.66% 78.49%
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Figure 9. Per-class true positive rate comparison between models trained with cross entropy and
with weighted cross entropy. Each plot displays the result for a different type of image, except for the
ensemble, which takes advantage of all image types at once. These plots are a visualization of the data
from Table 10, and the same training procedures and models are used.

4.5. Network Activation Visualization

The images from colposcopy contain noise in different forms, such as time displayed by the
camera, speculum, vaginal walls, light reflections, and sometimes additional objects such as cotton
buds used for cleaning up the cervix. We wanted to find if the network picked those features resulting
in overfitting. We used a method named GradCAM++[45] to visualize the areas of the image that
triggered the result of the network. GradCAM++ is a generalization over a previous version named
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GradCAM [46]. In both methods, the mask used for visualization is calculated by multiplying the
activations from the forward pass through a chosen network layer with certain weights calculated
using the backpropagation of the result through that layer. We applied this visualization technique
to our ensemble, which received as input seven images, resulting in seven network activation heat
maps. We computed the heat maps based on the last convolutional layer of each of the three networks
composing the ensemble. We used the final convolutional layer because choosing deeper layers
provided better localization abilities [46]. Therefore, on a single ensemble run, we obtained seven
heat maps for the seven images: the first five were calculated on the convolutional network specific to
acetic acid images, and the other two heat maps were calculated on the networks relevant to the green
lens and iodine solution images. The activation heat maps were a very useful tool to provide clues
about model errors and to give ideas for further improvement. From our analysis on the test set, we
concluded that the network ignored the text displayed by the camera and was resistant to objects such
as cotton buds and other medical devices present sometimes during colposcopy. However, in some
cases, it showed problems in distinguishing the cervix area from the vaginal walls and sometimes
the speculum walls; it also became distracted by the strong light reflections. However, these adverse
effects were only present in a limited number of samples. We believe that increasing the data volume
for training could teach the network to better handle these cases. Figure 10 displays selected samples of
images and their associated network activations heat maps, these examples present both positive and
negative behaviors. Furthermore, the work in [47] details a method for preprocessing the cervigrams
by removing the speculum, vaginal walls, and light reflections from the image. This could be a possible
enhancement of the system.

4.6. Note on Reproducibility

All of the experiments were implemented in Python, using the PyTorch framework. Even though
PyTorch is a great framework for building deep learning software, it has certain limitations with
regards to measurement reproducibility. According to the documentation of PyTorch [48], if using
different PyTorch releases, commits, or platforms, then the results of the experiments might differ.
Additionally, in the documentation [48], it is mentioned that: “results need not be reproducible between
CPU and GPU executions, even when using identical seeds”. All of our experiments were carried out
in the cloud, either in Google Colab or by renting different GPU units for limited periods. The control of
the host was achieved using Jupyter notebooks or the web interface available in Google Colab if using
that environment. Therefore, we used a multitude of environments, including virtual machines run in
the cloud. Consequently, we can not guarantee that our measurements are reproducible. However,
if trying to reproduce, then we expect that the results will not diverge by a large margin. Together with
the source code, we included the model checkpoints that resulted from the experiments; those will
provide reproducible results provided they are tested in the same way. Eventually, a researcher could
make good use of the checkpoints by applying the transfer learning techniques.
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Figure 10. The network activations computed with GradCAM++[45] on the last convolutional layer of
each network composing the ensemble. We partitioned this image into four columns, each containing
the input of a single ensemble run and the corresponding activation heat maps. As can be noted, most
of the time, the system looks at the relevant portions of the image, disregarding the noise. It does not
pick up the text displayed by the camera, and it also does not take into account the cotton bud, nor the
medical device displayed in Columns 1 and 3. In Columns 3 and 4, on the green lens images, the system
gets distracted by the vaginal walls and by the light reflections, which could have a negative impact;
even so, the majority of the images seem to be robust to these problems. The image was created by the
authors from the dataset samples available at [33]. The source code presented in the Supplementary
Materials covers the functionality for creating such visualizations.

5. Discussion

In deep learning, there is an infinite set of variations to be chosen from when it comes to network
structure, parameters, and training procedures. For this reason, you might hear from some people
that deep learning is like “art”; this expresses the freedom and lack of constraints in designing a
solution. We approached this problem with an incremental strategy similar to gradient descent. It
was impossible to find the best solution; therefore, we searched for a setup that worked well among
a predefined set of experiments, then we explored additional aspects while keeping the tested ones
fixed. For choosing the correct set of experiments at each step, the researcher relies on intuition and
prior knowledge. In this section, we describe the journey we took for arriving at the final solution and
highlight the most important ideas.

We started with a very simplistic approach, which used a single neural network pretrained on
ImageNet [40]. As was noted in the results displayed in Table 5, despite the networks being pretrained,
the accuracies were low, most models reporting approximately 64% on the test set. Upon analysis
of the results, we concluded that the main reason for the low accuracy was overfitting; thus, we
chose a model having a lower capacity, MobileNetV2 [32], and applied to it as much regularization as
possible. The most important and less intuitive modification was to change the size, in terms of the
number of feature maps (channels), of the last convolutional layer. This modification constrained the
capacity of the network while preserving the already learned structure from the ImageNet pretraining.
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Furthermore, as explained in Section 3.2.2, the last convolutional layer of the MobileNetV2 acts as an
adapter, transforming the internal representation of the network to the output representation; thus, it
makes sense to change this adapter to better fit the required task. Another regularization technique was
the two dimensional dropout layer inserted at the end of the convolution. As you can see, even though
the MobileNetV2 network had a smaller capacity compared to other deeper networks, it still needed
additional regularization to be effective on this task. If the dataset were larger and more diverse, we
could decrease the regularization and take advantage of the full capacity of the network or use more
complex models such as the ResNext101 [44] model, which provided the highest capacity and was
pretrained on the greatest amount of images [44]. Therefore, the aspects related to regularization
could change from one scenario to another, but it is useful to have the knowledge or methodology to
better regularize a model, depending on the task. This paper presented such an example. Moreover,
datasets on specific medical topics can be much more scarce and reduced in volume compared to
others. For this reason, it is important to be able to adapt the existing models to specific tasks that
are constrained by a lower volume of data. Our tuning of the MobileNetV2 network resulted in an
accuracy of approximately 71%.

Once we decided on the MobileNetV2 network using the experiments made on the images having
the acetic acid solution, we extended the solution to the rest of the dataset input, the images through
the green lens and with the iodine solution. On those types of images, we reported accuracies of 75%
for both image types. The increase in accuracy was most probably due to the distinctive features of
these types of images. The green lens helped in creating a stronger contrast against the red color of
the cervical lesions. Upon the application of the iodine solution, the abnormal areas changed color,
becoming yellow or orange, which made a strong contrast with the dark red color of the iodine solution.
These types of images were easier to visualize, even for humans.

Up to this point, we explored all the types of images available; however, we did not take advantage
of the existing relations between them and of the temporal sequence displayed by the first five images
with the acetic acid solution. This was achieved using the ensemble, which provided the best accuracy
reported in this paper of 83% for the four-class problem and 91% for binary classification. A very
important aspect to note about the design of the ensemble was the use of representation learning.
In the ensemble, we did not use the final output of the MobileNetV2 networks; instead, we used an
internal network representation that preserved the spatial information and the relevant features for
this classification task. We chose as image representation the output of the last convolutional layer
from the MobileNetV2 network. This was a tensor of size 7 × 10 × 32 for acetic acid images and
iodine solution images and of size 7 × 10 × 64 for green lens images. Thus, when constraining the
size of the last convolutional layer in the MobileNetV2 layer, we also had in mind the computation
of image representations. If the size of the representation was too large, the network might overfit
instead of capturing the generic and useful features. The representations of the images were not
learned by the ensemble; they were learned in the previous steps when training the single networks.
We tried fine-tuning the ensemble as a whole so that the ensemble could adjust the computation of
the representations, but the accuracy was lower, probably due to overfitting issues. For analyzing
and relating the seven images together, we used an additional convolutional network made out of
a single inverted residual unit, whose structure is described in Table 4. An alternative to this is to
use a recurrent neural network; this can be the subject of future research. In our case, we chose the
convolutional network over the recurrent version because it does not pose the vanishing and exploding
gradient problem and because the sizes of the image representations and the sequence length were
both small and made the training through a convolutional network feasible.

Another direction of our study was the handling of the dataset imbalance in the context of the
current problem. The first step was to analyze the already existing model (trained with classic cross
entropy) to assess the effects of this phenomenon. We used the true positive rate recorded per each
class as a measure of classification bias. In an ideal scenario, all classes should present a 100% true
positive detection rate; however, in practice, the classes having a higher number of samples performed
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much better than those with a reduced number of samples. This can be noticed by viewing Figure 3
and Figure 4 in parallel. It also meant that the model could perform better if presented with more data.
We should also know that sometimes a higher true positive rate for one class could be attributed to
biased learning, and while the model tended to better recognize one class, the rest of the classes would
have a lower detection rate; this is especially true for classes that are harder to discriminate. Through
our experiments, we tried to reduce this classification bias; ideally, the model should classify samples
as if there would be an even distribution between the classes. Apart from the cross entropy loss, we
experimented with another two standard losses for imbalanced datasets, the weighted cross entropy
and focal loss [41]. For the current problem, we obtained the best results with the weighted cross
entropy having a dynamic weight calculation based on the training time reported errors per each epoch.
The idea of the training algorithm was to work constantly towards recognizing the harder classes. This
method levels the classification bias among the classes; however, it does not guarantee keeping the
overall accuracy the same. From our experiments, the overall accuracy stayed approximately the same
for the acetic acid solution images, increased for the green lens, because it worked on the problem
areas, while for the iodine solution, the overall accuracy dropped. Looking at the true positive rate
for each class provided a transparent and accurate view on the behavior of the model; nevertheless,
comparing the performance of multiple models this way is hard. Which criteria should be used?
Are some classes more important than others? What if a model performs very well on most of the
classes, but very poorly on a certain one? For our task, we tried to encourage a model that had a good
overall accuracy while distributing its classification bias as evenly as possible. Being inspired by the
F1 measure score, which computes the harmonic mean between precision and recall, we computed
the harmonic mean of the true positive rates of the classes. The harmonic mean penalizes the smaller
values more then the arithmetic mean; thus, imbalanced models would get penalized more, but the
overall accuracy is also taken into account. We used this measure for evaluating the effectiveness of
the tested strategies. After performing these experiments on each type of image separately, we applied
them on the ensemble by training each of the composing models with the established strategy and
then the ensemble network as well. Unfortunately, this method did not yield any improvement for
the ensemble; the true positive rate per each class was the same as those reported by simple training
through cross entropy. The most probable explanation is that the ensemble network already made
the best out of the available data, and any training variation around the same model was not able to
bring additional advantages. Even though the ensemble could not be improved by these methods,
we consider that the results obtained on the single networks and the analysis of the model behavior
concerning the class imbalance are important pieces of information. Additionally, it is necessary to
raise the awareness of the practitioners about these problems and about the traps of measuring the
performance of a model in the context of an imbalanced dataset. Most of the time, the practitioner
might not even realize that the dataset being used is imbalanced; an investigation to find this needs to
be done.

Unfortunately, the method used (dynamically weighted cross entropy based on training time
errors) has some disadvantages as well. The most notable one, which we also emphasize in Section 4.4,
is that it does not always work. In certain cases, it even makes the training diverge. However,
with proper parameter selection, we expect that it provides good results most of the time. Another
notable problem is that the parameter selection could be a complicated process, which requires
more experiments. To make matters worse, the training time increases greatly for each experiment,
because a smaller learning rate and slow progression across more epochs are required for this method
to be effective. In this paper, we employed a transformation to the errors φ(x) = exp(100x), which
was specific to this problem; for other cases, the researchers would need to find the appropriate
transformation through experimentation. This is both an advantage since it allows for greater flexibility,
but can also be seen as a disadvantage, as it is not generic enough. Nevertheless, in our opinion, this
method is worth being taken into account when dealing with imbalanced datasets.
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The last experiment that we did was for visualizing the network activations. Most often, the
models are evaluated by several metrics that describe their performance from different perspectives.
However, the network visualization, even though less popular, could be used as a complementary
means of network evaluation and understanding. In this case, there are no numbers to quantify the
performance. Still, by observing the activations and reasoning about them, we can draw conclusions
about the network. One way is to hunt for overfitting factors, for example if we notice that the network
is paying attention to image features that should not matter for the classification problem. In our case,
the pictures contained certain noise, such as text displayed by the camera and medical devices. At first,
we were worried especially about the text displayed by the camera. We considered hiding that text or
resizing the pictures in such a way that it disappeared. Fortunately, the network automatically learned
that it was not a relevant feature for our problem. We found out about this through the network
activations’ visualization. On the other hand, we learned that the model was sometimes distracted by
the vaginal walls and the strong light reflections, a phenomenon also described in the paper [47].

6. Conclusions

We proposed a method for analyzing multiple colposcopy images at once and achieved 83% and
91% accuracies in the four-class and binary classification problems. In this paper, we did not design
a network architecture that solved a generic problem; instead, we applied the recent technological
advances in deep learning to a specific problem and dataset. For arriving at the solutions described,
we performed more than 100 experiments, each consisting of training a network. To keep the article
readable and avoid getting lost in less important details, we documented only the relevant findings.
In our opinion, one of the hardest obstacles encountered was overfitting. It was overcome through
very careful design and parameter tuning. While arriving at our solution, we brought the following
innovations:

1. The comparison of multiple convolutional network models on the current dataset.
2. The use of the MobileNetV2 architecture for colposcopy image understanding and the tuning

of this architecture for a dataset with a reduced size. We would like to emphasize that
this architecture should not be used only in scenarios where execution speed and memory
consumption are constrained; it should also be an important candidate whenever there is a need
for a light-weight solution, when overfitting is a major concern, and when fast experimentation is
required.

3. The design of a convolutional ensemble composed of multiple MobileNetV2 networks for
taking advantage of different kinds of images available in a colposcopy procedure. The use
of representational learning was an important aspect of the ensemble design and training.

4. The techniques used for handling the dataset imbalance cannot be considered original; however,
their application to this specific dataset and model were.

Apart from the design of the network, the current paper stresses the importance of properly
measuring the performance from the perspective of dataset imbalance, an aspect that many times is
neglected by researchers. Furthermore, we believe that the use of the network activations’ visualization
could complement the usual network evaluation. This could help in targeting the problems of
the model.

We will end this paper by highlighting the advantages, disadvantage, and further research
directions. The current solution presented the following advantages:

1. Resistant to overfitting and well adapted to reduced datasets.
2. Can take advantage of different types of images at the same time.
3. Fast execution speed and low memory consumption. If this might not be of interest to the

end-user, it is important in the experimentation and design phase, allowing performing more
experiments and better parameter tuning given that both computational power and time are not
unlimited resources.
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4. Even with the current regularizations in place, the model promises further performance gains if
presented with more data, as noted in Section 3.4. Furthermore, if enough data is available, the
regularizations can be relaxed to allow learning of more complex features.

5. Adaptable, in the sense that additional MobileNetV2 networks could be added or removed from
the ensemble to fit a different setting.

The limitations of the proposed solution were:

1. Suboptimal if applied to a very large dataset.
2. Would not be able to take advantage of a large sequence of images because we used a

convolutional network instead of a recurrent one for modeling the ensemble.
3. Does not take advantage of multiple image scales.
4. Does not provide hints to the user on the location of the cervical lesions in the image, which

would have been a very useful feature.
5. In our opinion, the reported results were encouraging to further research in this direction;

however, there is still considerable room for improvement, and applying the system to the real
world is not feasible at this moment.

There are many possibilities for modeling the task of colposcopy image classification, and as
variations, one could try to replace the ensemble inverted residual unit with a recurrent network, try
out visual attention mechanisms, images at higher resolutions or at multiple scales, and aligning the
images when processing more of them. Using unsupervised learning could provide another research
direction in which extracted features are compared and clustered. Moreover, segmentation would be
very useful for this system, because it would indicate the problematic tissues to the physician. Such
features can be used as the subject of further research.

Colposcopy plays a very important role in the prevention of cervical cancer and it has the
potential to save human lives. We believe that this procedure would greatly benefit from computer
image processing and the deep learning technology. We hope that such practices will have a positive
impact on medicine and will be deployed in many production systems soon.

Supplementary Materials: The experiments’ source-code and model checkpoints are available in the Git
repository: https://github.com/vlad-danaila/MobileNetV2_Ensemble_for_Cervical_Precancerous_Lesions_
Classification.
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