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Abstract: Polypropylene (PP) is flammable material, which brings latent danger to the environment
and human society. Therefore, developing new environmentally friendly and effective flame-retardant
is one of the most important ways to improve the flame retardancy of PP and improve safety during
its lifetime. Herein, we describe the synthesis of five sym-2,4,6-trisubstituted-s-triazine derivatives,
namely, N2,N4,N6-triphenyl-1,3,5-triazine-2,4,6-triamine (TAT), N2,N4,N6-tris(4-bromophenyl)-1,3,5-
triazine-2,4,6-triamine (TBAT), N2,N4,N6-tris(4-chlorophenyl)-1,3,5-triazine-2,4,6-triamine (TCAT), 4,4′,4”-
((1,3,5-triazine-2,4,6-triyl) tris(azanediyl)) triphenol (THAT), and N2,N4,N6-tris(4-methoxyphenyl)-
1,3,5-triazine-2,4,6-triamine (TMAT), from the reaction of cyanuric chloride and p-substituted aniline
employing conventional heating or microwave irradiation. The prepared compounds characterized
by different techniques, such as Fourier-transform infrared (FTIR), Ultra-Violet and Visible (UV-Vis),
Nuclear Magnetic Resonance spectroscopy (1H-NMR and 13C-NMR), Thermogravimetric Analysis
(TGA), and differential scanning calorimetry (DSC). The effect of substituent on the aniline moiety
has great impact on its thermal stability, as observed from the TGA and DSC data. Based on the TGA
and DSC results, three triazine derivatives TAT, TBAT, and TMAT were used as charring agents in
the presence of different proportions of ammonium polyphosphate (APP) to form an intumescent
flame-retardant (IFR) system, to improve the flame retardancy of PP. The flammability property of PP
was investigated by a vertical burning test (UL94). The results of UL94 revealed that the TXAT/APP
(IFR) system influence the PP and could improve the flame retardancy of PP. Best results were obtained
with the mass ratio of APP and TXAT 2:1. When the IFR loading was 25 wt%, it displayed great
influence and passed V-0 with TMAT, and V-1 with both TAT and TBAT in the UL94 test.

Keywords: trisubstituted triazine; thermal stability; flame retardant; polypropylene; UL94

1. Introduction

As one of the most widely used polymers, polypropylene (PP) plays a significant role in our daily
lives, and is extensively used in numerous applications, such as in the electrical and insulation field,
building materials, transportation aspects, etc. [1–5]. However, PP is also considered a flammable
material, releasing smoke and toxic or corrosive gases, which brings latent danger to the environment
and human society, and strongly limits its uses. Therefore, developing a new environmentally friendly
and effective flame-retardant (FR) agent is one of the most important methods to improving the flame
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retardancy of PP, and the safety during its lifetime. In addition, applying FR is needed to achieve
excellent flame-retardant properties [1,6,7].

Based on that, and due to the flammability of PP, many researchers conducted intensive studies
and came up with great efforts to improve the flame retardancy of PP. They suggested that adding
flame-retardant agents into PP is one of the most effect methods to adapt its flammability and improve
the safety during its uses [6–8].

The most common effective flame retardant agent is the one containing halogen (usually bromine)
and antimony trioxide synergistic systems [7,9]. However, applying this type of FR agent is limited,
since halogenated FR agent during burning produces large amounts of corrosive gases and smoke,
which affects the environment and human life [10,11]. Alternative FR additives are metal oxides,
such as magnesium hydroxide and aluminum hydroxide. However, to obtain the same level of
halogenated FR, a high loading amount of metal oxide is required, which will destroy PP’s mechanical
properties remarkably [7–9,12,13].

In recent years, many researchers have focused on developing halogen-free flame-retardant agents,
such as intumescent flame retardant (IFR) additives. IFR is considered a class of ecofriendly flame
retardant additive with the effectiveness of isolating heat and oxygen transfer, cutting the release
of smoke, being nontoxic, and avoiding dripping; it is considered to be one of the greatest capable
candidates for its qualities, such as being low loading, protecting polymer matrix properties, being
environmentally friendly, etc. [4,7,13].

Generally, IFR has three main constituents: (i) an acid source, such as ammonium polyphosphate
(APP); (ii) a carbon source, such as a charring agent to form a charred layer, which acts as a physical
barrier to reduce heat and mass transfer between gas and condensed phase over the creation of
intumescent char cover. Finally, (iii), a blowing agent, such as nitrogen-containing material to produce
abundant incombustible gases [8,14–16].

Mainly, APP is used as an acid catalyst and as a blowing agent because of its high contents of
nitrogen and phosphorus. The charring agents, which presently used are generally small molecular
compounds, such as s-triazine derivatives. These types of derivatives are highly nitrogen-containing
compounds; during burning, they make multicellular swollen char on the polymer surface. The swollen
char displays good adherence and offers an efficient barrier effect against the spread of the flame.
In addition, it forms char, which can expand below the action of the blowing source to offer an
intumescent char layer, to decrease heat transfer between the heat source and the polymer surface, and
limit fuel transfer between polymer and the flame [4,8].

In recent years, various novel charring agents have been investigated and showed high flame
retardant efficiency and stability, such as phenolic resin [17], polyamide [18,19], expandable graphite [20,21],
etc. Recently, several s-triazine derivatives have been reported as charring agents due to their high
nitrogen containing compounds, which can participate in the formation of a high efficiency, stable,
char layer [22–26]. These types of derivatives performed excellent synergistic intumescent flame
retardant effects with APP [27–31].

The ingredient cyanuric chloride [32–35] is the starting material used to prepare s-triazine
derivatives via nucleophilic substitution reaction of the active chlorine atoms at the s-triazine ring
with different nucleophiles [35–38]. Therefore, the structure of s-triazine derivatives are designed by
controlling the substituent groups attached to the s-triazine ring at different temperatures [39].

By taking into account all of these aspects, the present work represents the synthesis and
characterization of five sym-2,4,6-trisubstituted s-triazine derivatives (TXAT) based on the different
substituent attached to the s-triazine ring. Theses derivatives containing aniline, p-bromoaniline,
p-chloroaniline, p-hydroxyaniline, and p-methoxyaniline. The influence of substituent on their thermal
stability were considered. Moreover, the prepared TXAT derivatives with higher limiting oxygen
index (LOI) values were used together with APP at different weight ratios to improve the flame
retardancy of PP. The UL94 V-0 rating was used to find out the flame retardancy properties of the
reported compounds.
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2. Materials

Polypropylene resin was provided from SABIC (PP 595A, Riyadh, Saudi Arabia). Ammonium
polyphosphate commercial grade (phase ll, the degree of polymerization ≥1000) was purchased from
Hubei Jusheng Technology Co. Ltd. (Wuhan, China). Cyanuric chloride (98%), aniline derivatives, and
all solvents were purchased from Sigma-Aldrich (Chemie GmbH, Taufkirchen, Germany). Hydrazine
hydrate (80%) purchased from Alpha Chemika (Mumbai, India). FTIR (KBr, cm−1) recorded on
Shimadzu 8201 PC spectrophotometer (Shimadzu, Ltd., Kyoto, Japan). Nuclear Magnetic Resonance
(NMR) spectrum (1H and 13C) recorded on JEOL-NMR (400 MHZ) spectrometer (JEOL, Ltd., Tokyo,
Japan). Elemental microanalysis (CHN) measured by using Perkin-Elmer 2400 CHNS/O Series II
elemental analyzer (PerkinElmer, Inc., 940 Winter Street, Waltham, MA, USA).

3. Methods

3.1. General Method for the Synthesis of sym-2,4,6-trisubstituted-s-Triazine

For the synthesis of the target compounds, two methods were used, as follows:
Method A: conventional heating
Cyanuric chloride 1 (1.84 g, 10 mmol) in 100 mL acetonitrile was added dropwise to a mixture of

aniline derivatives 2a–e (30 mmol), K2CO3 (100 mmol) in acetonitrile (100 mL) at 0 ◦C. After complete
addition, the reaction mixture stirred at 0 ◦C for 1 h, then at room temperature for another 1 h, and
finally refluxed for 16–18 h. The solvent was removed under vacuum and then excess of water was
added. The final products were isolated by filtration, washed with ethanol-water, and then dried at
room temperature to afford the pure products.

Method B: microwave irradiation
Cyanuric chloride 1 (10 mmol) in 25 mL dioxane was slowly added to a mixture of aniline

derivatives 2a–e (30 mmol) and K2CO3 (30 mmol) in 20 dioxane at 0 ◦C. After complete addition,
the reaction mixture was stirred at room temperature for 20 min and then irradiated in a microwave
oven at 600 W for 20–25 min using a Galanz microwave oven, connected with a refluxing condenser.
The solvent was removed under reduced pressure and the solid obtained was washed with water,
dried, and then recrystallized to afford the pure product.

3.1.1. N2,N4,N6-triphenyl-1,3,5-triazine-2,4,6-triamine (TAT); 3a

The product obtained as an off-white solid in 84% yield (A), 95% yield (B), mp 230–232 ◦C
(Lit. [40,41] 29–230 ◦C (isopropanol); in 93 % yield); λmax (nm) in MeOH: 275; FTIR (cm−1): 3370 (NH),
1500 (C=N), 1620, 1495 (C=C), 1260 (C−N); 1H-NMR (DMSO-d6, δ ppm): 6.8–8.0 (m, 15H, Ar–H), 9.3
(s, 3H, NH).

3.1.2. N2,N4,N6-tris(4-bromophenyl)-1,3,5-triazine-2,4,6-triamine (TBAT); 3b

The product was obtained as a white solid in yield 84% (A), 98% (B); mp 268–270 ◦C; λmax (nm) in
MeOH: 283; FTIR (cm−1): 3380 (N-H), 1550 (C=N), 1600, 1440 (C=C), 1250 (C–N), 620 (C–Br); 1H–NMR
(Supplementary Materials, DMSO-d6, δ ppm): 7.45 (d, J = 8.8 Hz, 6H, Ar), 7.76 (d, J = 7.2 Hz, 6H, Ar),
9.47 (s, 3H, NH). 13C–NMR (Supplementary Materials, DMSO-d6, δ ppm): 113.8, 122.2, 131.1, 139.2, 163.9.
Anal. Calc. for C21H15Br3N6 (587.89): C, 42.67; H, 2.56; N, 14.22. Found C, 42.88; H, 2.64; N, 14.41.

3.1.3. N2,N4,N6-tris(4-chlorophenyl)-1,3,5-triazine-2,4,6-triamine (TCAT); 3c

The product was obtained as an off-white solid in yield 82% (A), 96% (B); mp 245–246 ◦C (Lit. [42],
mp 212–214 ◦C in yield 22%); λmax (nm) in MeOH: 280; FTIR (cm−1): 3390 (NH), 1550 (C=N), 1630,
1420 (C=C), 1240(C–N), 730(C–Cl); 1H–NMR (Supplementary Materials, DMSO-d6, δ ppm): 7.33 (d,
J = 8.8 Hz, 6H, Ar), 7.82 (d, J = 6.6 Hz, 6H, Ar), 9.48 (s, 3H, NH); 13C–NMR (Supplementary Materials,
DMSO-d6, δ ppm): 121.9, 125.9, 128.2, 138.9, 164.0. Anal. Calc. for C21H15Cl3N6 (457.74): C, 55.10; H,
3.30; N, 18.36. Found C, 55.23; H, 3.42; N, 18.55.
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3.1.4. 4,4′,4”-((1,3,5-triazine-2,4,6-triyl) tris(azanediyl)) triphenol (THAT) 3d

The product obtained as a white powder; in yield 89% (A), 97%(B), mp 285–287 ◦C (Lit. [43,44]
yield 89%); λmax (nm) in MeOH: 275; FTIR (cm−1): 3400 (NH), 1500 (C=N), 1630, 1430 (C=C), 1260
(C–N), 1050 (C–O); 1H–NMR (Supplementary Materials, DMSO-d6, δ ppm): 7.50 (d, 6H, J = 6.8 Hz,
Ar), 7.88 (d, 6H, J = 6.0 Hz, Ar), 8.71 (s, 3H, NH); 9.03 (s, 3H, OH) ppm; 13C–NMR (Supplementary
Materials, DMSO-d6, δ ppm): 115.0, 128.4, 131.6, 133.8, 161.5. Anal Calc for C21H18N6O3: C, 62.68; H,
4.51; N, 20.88. Found C, 62.81; H, 4.65; N, 21.01.

3.1.5. N2,N4,N6-tris(4-methoxyphenyl)-1,3,5-triazine-2,4,6-triamine (TMAT); 3e

The product was obtained as a grey solid in yield 83% (A), 96% (B); mp 215–217 ◦C (Lit. [42],
mp 212–214 ◦C in yield 22%); λmax (nm) in MeOH: 278; FTIR (cm−1): 3400 (NH), 1500 (C=N), 1640,
1450 (C=C), 1260 (C–N), 1040 (C–O); 1H–NMR (Supplementary Materials, CDCl3, δ ppm): 3.78 (9H,
s, OCH3), 6.81 (d, J = 9.6 Hz, 6H, Ar), 7.04 (brs, 3H, NH), 7.38 (d, J = 9.6 Hz, 6H, Ar); 13C–NMR
(Supplementary Materials, CDCl3, δ ppm): 55.5, 113.9, 122.8, 131.6, 155.9, 164.5. Anal. Calc. for
C24H24N6O3 (444.19): C, 64.85; H, 5.44; N, 18.91. Found C, 65.01; H, 5.68; N, 18.73.

3.2. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)

The TGA performed on a TA Q500 thermal analyzer (Waters LLC, New Castle, DE, USA) with
flow rate of 60 mL/min, starting from room temperature to 800 ◦C. Around 6 mg of sample was placed
in an alumina crucible and heated from 25 ◦C to 800 ◦C with the heating rate of 10 ◦C/min under N2

atmosphere; data were collected in Table 1.
Differential scanning calorimetry (DSC) was conducted on TA Instruments DSC Q1000 (Waters

LLC, New Castle, DE, USA) in the range between 80 ◦C and 400 ◦C under nitrogen atmosphere.
The 5–8 mg samples were placed in the aluminum pans and measured under N2 at the heating rate of
10 ◦C/min. Each sample was analyzed three times and readings were averaged.

Table 1. FTIR (cm−1) and Ultra-Violet and Visible (UV)-Visible (λmax nm) data for compounds 3a–e.

Compound FT-IR (cm−1) λmax (nm)

TAT; 3a 3370 (NH), 1500 (C=N), 1620, 1495 (C=C), 1260 (C-N) 275
TBAT; 3b 3380 (NH), 1550 (C=N), 1600, 1440 (C=C), 1250 (C-N) 283
TCAT; 3c 3390 (NH), 1550 (C=N), 1630, 1420 (C=C), 1240 (C-N) 280
THAT; 3d 3400 (NH), 1500 (C=N), 1630, 1430 (C=C), 1260 (C-N) 275
TMAT; 3e 3400 (NH), 1500 (C=N), 1640, 1450 (C=C), 1260 (C-N) 278

3.3. Flammability Test UL94

The vertical burning test was investigated according to the UL94 test standard with the sample
dimension of 130 × 13 × 3.2 mm. Before mixing PP, all additives were dried in vacuum oven at 70 ◦C
for 24 h. All samples were prepared by mixing PP with different proportions of APP and TXAT using a
two-roll mill mixing (Rheomixer XSS-300, Shanghai Ke Chuang, Shanghai, China) at a temperature
range of 170 ◦C–180 ◦C for 10 min, and the roll speed was maintained 100 rpm. The formulations of
prepared composites in the shape of vertical bars are listed in Table 2.

Table 2. Thermal degradation parameters for 3a–e.

Sample
ID

Temperature
Range (◦C)

Mass Loss
(%)

Tg
(◦C)

CR at
600 ◦C

LOI at
600 ◦C

CR at
800 ◦C

LOI at
800 ◦C

TAT 320–440 50 145 29 29.1 20 25.5
TBAT 330–440 60 140 35 31.5 22 26.3
TCAT 240–340 80 143 15 23.5 6 19.9
THAT 330–450 50 143 45 35.5 35 31.5
TMAT 350–450 50 141 45 35.5 36 31.9
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4. Results and Discussion

4.1. Synthesis of sym-2,4,6-trisubstituted-s-triazine Derivatives

The preparation of the target compounds were performed in one step reaction using conventional
heating or microwave irradiation, as shown in Scheme 1. First, the reaction was carried out at
0 ◦C, due to the high reactivity of the first substitution, and then heated gradually to 80–100 ◦C, or
irradiated by microwave at 600 W. Microwave irradiation always afforded the products in shorter
reaction times (Section 3.1) with high yields and purities, as observed form their spectral data
(Supplementary Materials).
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4.2. Characterization of the Target Products

4.2.1. FTIR Spectroscopy

The FTIR spectrum for compounds 3a–e illustrated in Table 1 and Supplementary Materials showed
absorption peaks in the range 3370–3400 cm−1, and were attributed to N-H bond and characteristic
peaks in the range 2850–2930 cm−1 related to C-H sp3 and sp2. The absorption peaks at 1569 and
1550 cm−1 were attributed to C=N bond of the s-triazine ring. The absorption peaks at 1642, 1495,
and 1430 cm−1 were attributed to C=C of the phenyl ring, while the absorption peaks in the range
1240–1260 cm−1 attributed to C-N bond (Table 1).

4.2.2. UV-Vis Spectra

The UV-Vis spectroscopies of the prepared compounds 3a–e were measured in methanol (Figure 1).
The results showed that the prepared compounds have λmax in range at 275–283 nm, depending on the
type of substituent attached to the aniline moiety, as shown in Table 1 (Figure 1). The substituent effects
had a clear impact on the λmax as shown in Table 1, where the electron-withdrawing substituents,
such as chloro (Cl) and bromo (Br), shifts λmax to longer wavelength (Bathochromic shift) than
electron-donating substituents, such as hydroxyl (OH) and methoxy (OMe) group. This behavior
can be explained by considering that, the p-position favors the extension of p-conjugation and the
formation of highly delocalized in the excited state [45].

4.2.3. Thermogravimetric Analysis (TGA)

The thermal parameters of the prepared compounds 3a–e (TAT, TBAT, TCAT, THAT, and TMAT,
respectively) were evaluated using the thermogravimetric technique (TGA). Degradation curves of
3a–e are shown in Figure 2 and summarized in Table 2. The results from thermal degradation data
of 3a–e showed that all compounds have good thermal stability and started to degrade in range
240–350 ◦C, which is expected to have good char residue [27].



Processes 2020, 8, 581 6 of 11
Processes 2020, 8, x FOR PEER REVIEW 6 of 12 

 

 
Figure 1. UV-Vis spectrum of sym-2,4,6-trisubstituted s-triazine derivatives (TXAT) in methanol. 

4.2.3. Thermogravimetric Analysis (TGA) 

The thermal parameters of the prepared compounds 3a–e (TAT, TBAT, TCAT, THAT, and 
TMAT, respectively) were evaluated using the thermogravimetric technique (TGA). Degradation 
curves of 3a–e are shown in Figure 2 and summarized in Table 2. The results from thermal 
degradation data of 3a–e showed that all compounds have good thermal stability and started to 
degrade in range 240–350 °C, which is expected to have good char residue [27]. 

 
(a) (b) 

Figure 2. Thermogravimetric Analysis (TGA) degradation curves for (a) TCAT, THAT; (b) TBAT(p-
Br), TAT(p-H), TMAT (p-MeO) derivatives. 

As shown in Table 2 the compounds (TAT, TBAT, TCAT, THAT, and TMAT) have one main 
degradation steps in a range of 320–440 °C (TAT), 330–440 °C (TBAT), 240–340 °C (TCAT), 330–450 
°C (THAT) and 350–450 °C (TMAT), with mass loss 5% (TAT, THAT & TMAT), 6% (TBAT) and 80% 
(TCAT). 
  

Figure 1. UV-Vis spectrum of sym-2,4,6-trisubstituted s-triazine derivatives (TXAT) in methanol.

Processes 2020, 8, x FOR PEER REVIEW 6 of 12 

 

 

Figure 1. UV-Vis spectrum of sym-2,4,6-trisubstituted s-triazine derivatives (TXAT) in methanol. 

4.2.3. Thermogravimetric Analysis (TGA) 

The thermal parameters of the prepared compounds 3a–e (TAT, TBAT, TCAT, THAT, and 

TMAT, respectively) were evaluated using the thermogravimetric technique (TGA). Degradation 

curves of 3a–e are shown in Figure 2 and summarized in Table 2. The results from thermal 

degradation data of 3a–e showed that all compounds have good thermal stability and started to 

degrade in range 240–350 °C, which is expected to have good char residue [27]. 

 
0 100 200 300 400 500 600 700 800

0

20

40

60

80

100
W

e
ig

h
t 
[%

]

Temperature [°C]

 P-Br

 P-Me

 P-H

 

(a) (b) 

Figure 2. Thermogravimetric Analysis (TGA) degradation curves for (a) TCAT, THAT; (b) TBAT(p-

Br), TAT(p-H), TMAT (p-MeO) derivatives. 

As shown in Table 2 the compounds (TAT, TBAT, TCAT, THAT, and TMAT) have one main 

degradation steps in a range of 320–440 °C (TAT), 330–440 °C (TBAT), 240–340 °C (TCAT), 330–450 

°C (THAT) and 350–450 °C (TMAT), with mass loss 5% (TAT, THAT & TMAT), 6% (TBAT) and 80% 

(TCAT). 

  

Figure 2. Thermogravimetric Analysis (TGA) degradation curves for (a) TCAT, THAT; (b) TBAT (p-Br),
TAT (p-H), TMAT (p-MeO) derivatives.

As shown in Table 2 the compounds (TAT, TBAT, TCAT, THAT, and TMAT) have one main
degradation steps in a range of 320–440 ◦C (TAT), 330–440 ◦C (TBAT), 240–340 ◦C (TCAT), 330–450 ◦C
(THAT) and 350–450 ◦C (TMAT), with mass loss 5% (TAT, THAT & TMAT), 6% (TBAT) and 80% (TCAT).

The results in Table 2 indicated that TMAT and THAT are thermally more stable and have higher
char residue (CR) than TAT, TBAT, and TCAT. This attributed to the type of substituent at the aniline
ring attached to the s-triazine moiety, where compounds with an electron-donating group, such as
methoxy group in TMAT and hydroxy group in THAT showed higher CR at 600 ◦C and 800 ◦C (45 and
35, respectively). On the other hand, compounds with a weak electron-withdrawing group, such as
bromine in TBAT and chlorine in TCAT showed lower CR, as shown in Table 2. The bromo derivative
TBAT showed higher CR at 600 ◦C and 800 ◦C (35 and 22, respectively); compared to its analogs of
the chloro derivative TCAT at the same temperatures (15 and 6, respectively); this might be due to
the difference in the electronegativity property. While, the unsubstituted derivative TAT was in the
middle, as shown in Table 2.

The CR could be utilized for the limiting oxygen index (LOI) evaluation. To find out the correlation
between the CR and LOI, the van Krevelen equation indicated below was used [46,47].

LOI = 17.5 + 0.4 (CR)
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LOI, defined as the minimum concentration of O2, supports the combustion to sustain in a mixture
of O2 and N2 [43,44]. Materials displaying LOI values greater than 26 are classified as self-extinguishing
material, while compounds with lower LOI than 26 are considered flammable material [47]. The LOI
for TAT, TBAT, TCAT, THAT, and TMAT were calculated at 800 ◦C (Table 2). The results showed that
the type of substituent has a clear effect on LOI values, where the chloro derivative TCAT showed
the least LOI at 800 ◦C (19.9) compared to its analogs of the bromo derivative TBAT (26.3). On the
other hand, the methoxy TMAT and the hydroxy derivatives showed the highest LOI values, while the
unsubstituted was in the middle, as shown in Table 2.

4.2.4. Differential Scanning Calorimetry (DSC)

The thermal transitions of 3a–e was studied using differential scanning calorimetry technique
under nitrogen atmosphere. The DSC data were collected from the second run, as all samples were
heated first to 100 ◦C to confirm the removal of any trace of solvent, then cooled down with the same
rate to 30 ◦C. Then the second run was heated from 30 ◦C to 300 ◦C at a scan rate of 10 ◦C/min to
determine the glass transition temperatures (Tg).

The results summarized in Table 2 and shown in Figure 3, reveals that the Tg of the tested
compounds 3a–e were in the range of 140–145 ◦C and are slightly similar to each other.Processes 2020, 8, x FOR PEER REVIEW 8 of 12 
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4.2.5. Flammability of PP and Its Composites UL-94

Based on the CR and LOI data, three derivatives TAT 3a, TBAT 3b, and TMAT 3e were selected
and mixed with APP in different weight ratios to afford several IFRs. These mixtures were used in PP
to yield PP/IFRs composites. The UL94 test was used to evaluate the flame retardant performance
of neat PP, PP/3a, PP/3b, or PP/3e and PP/IFRs to provide a qualitative classification of the samples
used in this work (Table 3). Pure PP is highly combustible, and cannot pass the UL94 test. When the
weight ratio was 25 wt% of the TAT 3a, TBAT 3b or TMAT 3e and 75 wt% PP, the composite (PPx,
PPy, and PPz, respectively, Table 3) did not pass the UL94 rating. However, there was a remarkable
enhancement of UL-4 rating of IFR-PP composite when APP was added to the TXAT/PP composite.
When the weight ratio of APP to TAT was 1:1 and the IFR loading was 25 wt % (PPa), the UL94 rating
was V-2. The same rating was noticed with the same ratio of TBAT/APP (PPb) and TMAT/APP (PPc), as
shown in Table 3. For further increase of the weight ratio of TXAT: APP (1:2) and using loading 25 wt%
with 75 wt% PP, the UL94 rating remarkably improved and the char layer formed during combing
could be observed obviously, which is unlike from that in neat PP and other PP composites. When
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the weight ratio of APP to TAT was 2:1 and when the IFR loading was 25 wt% (PP1), the UL94 rating
improved and reached the V-1 rating of the UL94 tests, which is better than pure TXAT/PP with the
same ratio (PP, PPx and PPa, Table 3). As for APP with TBAT (PP2) with the same weight ratio of 2:1,
the UL94 rating also improved and reached the V-1 rating of the UL94 test, which is better than pure
PP, TBAT/PP (PPy) and TBAT/APP (1:1)/PP (PPb). As for APP with TMAT (PP3) with the same weight
ratio of 2:1, the UL94 rating also improved and reached the V-0 rating of the UL94 test, which is better
than pure PP, TMAT/PP (PPz) and TMAP/APP (1:1)/PP (PPc).

Table 3. Flammability test of the prepared polypropylene (PP) composite.

Sample ID PP (wt%) APP (wt%) FR (wt%) UL94 Drip

PP neat 100 0 0 N/R Yes
PPz 75 0 25 N/R Yes
PPx 75 0 25 N/R Yes
PPy 75 0 25 N/R Yes
PPc 75 12.5 12.5 V-2 a Yes
PPa 75 12.5 12.5 V-2 a Yes
PPb 75 12.5 12.5 V-2 a Yes
PP3 75 16.66 8.33 V-0 b No
PP1 75 16.66 8.33 V-1 c No
PP2 75 16.66 8.33 V-1 c No

a V-2 allows flaming drips; b V-0 rating is the highest flame-retardant rating for materials; c V-1 rating allows
non-flaming drips.

Moreover, PP3 sample even reaches UL94 V-0 rating without dripping, while other flame retardant
samples reach UL94 V-1 rating. This showed that PPc composite is highly efficient in improving the
flame retardancy of PP among all PP composites.

These results demonstrated that the combination of TXAT and APP would cause huge enhancement
of flame retardant performance of PP, especially with TMAT derivative. These results agreed with the
results obtained in Table 2.

Photographs of PP1, PP2, and PP3 specimens after UL94 tests are shown in Figure 4, it shows that
neat PP is in a melted form without obvious char residues; however, char residues were observed for
PP1, PP2, and PP3 specimens.
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5. Conclusions

The sym-2,4,6-trisubstituted triazine derivatives 3a–e were prepared, characterized, and used
as charring agents along with ammonium polyphosphate (as acid source) to construct intumescent
flame-retardant systems, which could enhance the flame retardant performance of polypropylene.

The char residue (CR) and limiting oxygen index (LOI) values were calculated from the
thermogravimetric analysis (TGA) data. The results showed that TMAT (3e) and THAT (3d) have CR
31.5% and 31.9%, respectively, at 800 ◦C with LOI (35 and 36, respectively); while the unsubstituted
aniline TAT and the halogenated derivatives TBAT, and TCAT showed CR (20%, 22%, 6%, respectively)
with LOI (25.5%, 26.3%, 19.9%, respectively). Accordingly, the three derivatives with highest LOI
values (TAT, TBAT, and TMAT) were selected and mixed with ammonium polyphosphate (APP) in
different weight ratio to construct the IFR system. Combustion behavior showed that PP/IFR blends
could acquire significant LOI values, and pass the UL94 V-0 rating. The PP/IFR blends achieve the
UL94 V-0, indicating the flame-retardant efficiency is improved. When the components mass ratio of
APP: TXAT in the IFR system was (2:1, respectively), the IFR offered the most effective flame retardancy
in PP. When the mass ratio of APP and TXAT is 1: 1, the PP/IFR has a UL94 V-2 rating with high
dripping. This has satisfactorily proved that IFR is very effective in PP.

Finally, the electron-donating group on the aniline residue attached to the s-triazine ring has a
great effect on the thermal stability and intumescent flame retardant behaviors, as observed from TGA
data and UL94 V-0.

Efforts on the synthesis and characterization of different generation of sym-trisubstituted s-triazine
derivatives are in progress in our lab, which might have special interest as flame retardant agents in
the industrial field.
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