
processes

Article

Quadratic Interpolation Based Simultaneous Heat
Transfer Search Algorithm and Its Application to
Chemical Dynamic System Optimization

Ebrahim Alnahari, Hongbo Shi * and Khalil Alkebsi
Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East
China University of Science and Technology, Shanghai 200237, China; barhooma97@hotmail.com (E.A.);
kalkebsi@hotmail.com (K.A.)
* Correspondence: hbshi@ecust.edu.cn; Tel.: +86-21-64252189

Received: 14 March 2020; Accepted: 14 April 2020; Published: 19 April 2020
����������
�������

Abstract: Dynamic optimization problems (DOPs) are widely encountered in complex chemical
engineering processes. However, due to the existence of highly constrained, nonlinear, and nonsmooth
environment in chemical processes, which usually causes nonconvexity, multimodality and
discontinuity, handling DOPs is not a straightforward task. Heat transfer search (HTS) algorithm is a
relative novel metaheuristic approach inspired by the natural law of thermodynamics and heat transfer.
In order to solve DOPs efficiently, a new variant of HTS algorithm named quadratic interpolation
based simultaneous heat transfer search (QISHTS) algorithm is proposed in this paper. The QISHTS
algorithm introduces three modifications into the original HTS algorithm, namely the effect of
simultaneous heat transfer search, quadratic interpolation method, and population regeneration
mechanism. These three modifications are employed to provide lower computational complexity,
as well as to enhance the exploration and exploitation capabilities. Therefore, the ensemble of these
modifications can provide a more efficient optimization algorithm with well-balanced exploration
and exploitation capabilities. The proposed variant is firstly investigated by well-defined benchmark
problems and then applied to solve four chemical DOPs. Moreover, it is compared with different
well-established methods existing in the literature. The results demonstrate that QISHTS algorithm
has the greatest robustness and precision than other competitors.

Keywords: dynamic system optimization; chemical engineering processes; heat transfer search
algorithm; quadratic interpolation; global optimization

1. Introduction

Many considerable chemical processes depend greatly on dynamic optimization, which aims
at optimizing the performance index of the whole process by implementing optimization control on
the established dynamic model [1,2], and these models generally contain dynamic variables with
values that vary with time [3]. The optimization problems that involve dynamic variables are called
dynamic optimization problems (DOPs); their dynamic systems are described by a set of algebraic and
differential equations. There are several main fields involving DOPs, such as parameter estimation and
optimal control for dynamic models. DOPs are also inherent in the reactor network synthesis, where
the differential modeling of chemical reactors produces the dynamic models [4]. Due to the existence
of highly constrained, nonlinear, and nonsmooth environments in chemical processes, which usually
causes nonconvexity, utilizing new global optimization approaches is required to find appropriate
solutions for solving DOPs efficiently.

The solution methods for DOPs can be simply classified into three methods, dynamic programming
(DP), indirect, and direct methods. The DP is an effective approach to solve DOPs. It relies on
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Bellman’s principle of optimality [5]. However, this method suffers from the issues of dimensionality.
Thus, in order to avoid such drawbacks, Luus proposed iterative dynamic programming (IDP) [6].
The IDP is an effective global optimization approach that can achieve the global optimum for multimodal
optimization problems and can reduce the dimension expansion. However, the computational time of
this approach is relatively large, since both control and state variables are required to be segmented [7];
therefore, this approach is merely appropriate for small-scale problems. The original DOP was
expanded in the indirect method to a Hamiltonian system using the Pontryagin maximum theory [8],
and this method is considered as the most precise approach to solve optimal control problems [9,10],
but the application of this method in practical DOPs is complex. Two different parametrization methods
are included in the direct methods, and they are the complete parametrization (CP) method and control
vector parametrization (CVP) method. The CP method is also named simultaneous method, and the
basic principle of this method is to segment both state and control variables simultaneously, while
the CVP method only segments the control variables. The CP method can preferably deal with path
constraint problems, but it results in a large-scale nonlinear programming (NLP) problem, and certain
techniques are needed to solve the NLP efficiently. The CVP method is used to translate the basic DOP
into an NLP problem; the dimension range of NLP problems in this method is much smaller than that in
the CP method; therefore, the CVP method has been incorporated with various optimization algorithms
to handle DOPs [11,12]. A number of deterministic methods have also been proposed for handling
DOPs; the gradient-based methods [13,14], such as the sequence quadratic program and Newton’s
algorithms, are considered as deterministic methods that can converge rapidly. However, they may
converge to local optima according to the degree of initial guess and nonlinearity [15]. Other types
of the deterministic methods are branch and bound algorithms [16,17]; they need rigorous bounds
on the parameters required or strict values for these parameters, which might lead to difficulty in
realization [15]. For detailed information about deterministic methods, the reader can refer to the
literature [15].

Meta-heuristic algorithms (MHAs) are inspired by varieties of natural phenomena; they mimic
some element of biology, ethology, physics, and swarm intelligence [18]. Comparing with other
deterministic methods, MHAs possess superior global perspective and make few assumptions about
the optimization problems. Due to the importance of dynamic optimization in chemical processes,
various MHAs have been presented for handling chemical DOPs in recent years, such as genetic
algorithm (GA) [19–21], differential evolution (DE) [22–25], ant colony optimization (ACO) [26,27],
simulated annealing (SA) [28,29], particle swarm optimization (PSO) [30–33], artificial bee colony
(ABC) [34], scatter search (SS) [35–37], line-up competition algorithm (LCA) [38], cuckoo search
(CS) [39], biogeography-based optimization (BBO) [40], and teaching-learning based optimization
(TLBO) [41].

Heat transfer search (HTS) algorithm is a relative new MHA presented by Patel and Savsani [42]; it
simulates the natural laws of heat transfer and thermodynamics. The main framework of this algorithm
basically consists of three basic phases: conduction phase, convection phase, and radiation phase.
The HTS algorithm has emerged as one of the most efficient methods, and it has been empirically
shown to be superior to other MHAs by its authors [42]. HTS and its modified variants have been
applied for solving various optimization problems [43–49]. However, as an efficient optimization
method, the report of the applications of HTS algorithm in engineering process optimization is still
rarely seen, especially in the areas of chemical process optimization. It is worth mentioning that
HTS-based algorithms have not been used to handle chemical DOPs. Thus, the main aim of this work
is to apply the HTS algorithm to solve real-world chemical DOPs and, hence, extend the practical
applications of this algorithm to the chemical dynamic optimization.

The exploration and exploitation capabilities of an MHA are generally contradictory to each
other, and it is important to utilize suitable techniques to keep these two abilities well-balanced.
Thus, to provide a more efficient HTS method with well-balanced exploration and exploitation
capabilities, three modifications are introduced into the original HTS algorithm, namely the effect
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of simultaneous heat transfer search (SHTS), quadratic interpolation (QI) method, and population
regeneration mechanism. Hence, a new version of HTS algorithm named QISHTS is proposed to
solve real-world chemical DOPs efficiently. In the QISHTS algorithm, the effect of SHTS is employed
to provide superior performance with lower computational complexity; the QI method is adopted
to improve the exploitation capability, whereas the population regeneration mechanism is used to
alleviate the probability of local optimum stagnation and, hence, enhance the exploration capability.

The main contributions of this work can be summarized as follows:

(1) A new variant of HTS algorithm named the QISHTS algorithm is presented by integrating the
effect of SHTS, QI method, and population regeneration mechanism. The ensemble of these
three modifications can provide a more efficient HTS method with well-balanced exploration and
exploitation capabilities.

(2) The performance of the QISHTS algorithm is investigated by a set of 18 well-defined benchmark
functions, and the obtained results are compared with those of other well-established MHAs.

(3) The proposed QISHTS algorithm is applied for solving four real-world chemical DOPs, including
two dynamic parameter estimation problems and two optimal control problems. To the best of
our knowledge, HTS-based algorithms have not been used for handling chemical DOPs, and our
work is the first attempt to utilize it for solving such problems.

(4) The effectiveness of the QISHTS algorithm in solving chemical DOPs is compared with those of
twelve well-established MHAs existing in the literature.

The rest of this paper is organized as follows. In Section 2, the basic formulation of DOPs is defined.
In Section 3, the basic theoretical principle of HTS algorithm is explained. In Section 4, the proposed
QISHTS algorithm is presented in detail. Some comparisons and investigation are shown in Section 5.
In Section 6, the QISHTS algorithm is applied to solve real-word DOPs. Finally, conclusions are
described in Section 7.

2. Dynamic Optimization Problems Formulation

In this study, the dynamic system of DOPs is addressed with algebraic and differential constraints,
and its mathematical formula can be given as follow [35]:

min obj = ψ(x(t), u(t), ρ)
Subjeted to :

f
( .
x(t), x(t), u(t),ρ

)
= 0

x(t0) = x0

hi(x(t), u(t),ρ) = 0 ,i = 1, . . . , m
gi(x(t), u(t),ρ) ≤ 0 ,i = 1, . . . , m
uL
≤ u(t) ≤ uU

ρL
≤ ρ ≤ ρU

t ∈
[
t0, t f

]
(1)

where ψ(x(t), u(t), ρ) represents the objective function, f indicates the set of differential equations
that exhibits the description of system dynamics, x(t) represents the vector of time-dependent state
variables, u(t) indicate the vector of time-dependent control variables, ρ are defined as the undetermined
parameters, and g and h represent the inequality and equality constraints, respectively.

In general, the optimization variables of DOPs in chemical processes contain both the
time-independent undetermined parameters ρ and time-dependent control variables u(t). In this
paper, two main types of DOPs are defined depending on the type of optimization variables, and these
two types are as follows:
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(1) Dynamic parameter estimation problems: In these problems, the optimization variables only
contain undetermined parameters, ρ [37].

(2) Optimal control problems: In these problems, the optimization variables only include control
variables, u(t) [13].

The detailed procedure of solving a generalized DOP can be summarized as follow: Firstly,
determine the type of DOP depending on its optimization variables. In other words, if the
time-independent undetermined parameters ρ exist, then it is a parameter estimation problem
which can be directly translated into an NLP problem. While, if the time-dependent control variables
u(t) exist, this problem is an optimal control problem which cannot be directly transformed into an NLP
problem; thus, a discretization approach such as control vector parametrization (CVP) method [11,12]
is required to translate it into an NLP problem. The time interval is divided by the CVP method into a
number of stages (N), wherein the control variables u(t) in every sup-interval are approximated by
means of basis functions, such as linear functions, constant functions, and wavelet-based functions.
Secondly, apply the optimization methods such as MHAs to optimize the undetermined parameters
that only exist after the transforming process. Then, utilize an ordinary differential equation integrator
for acquiring the objective function value (OFV), since the optimization parameters are required to be
integrated into Equation (1) during the solution process. Subsequent to these procedures, the solution
of a DOP can be finally output.

3. Heat Transfer Search (HTS) Algorithm

The HTS algorithm is a population-based optimization method; it is based on the natural laws of
heat transfer and thermodynamics, which states that “Any system always tries to achieve equilibrium
state with its surroundings” [42]. This algorithm considers three heat transfer phases (conduction
phase, convection phase, and radiation phase) to simulate the thermal equilibrium behavior of the
systems [42]. These three phases have important roles for setting the thermal equilibrium and reaching
an equilibrium state. The HTS algorithm begins with a randomly generated population (NP), which is
considered as a group of molecules, and these molecules try to achieve an equilibrium state with its
surroundings by interacting among themselves and their environment through the three phases of heat
transfer. The population is updated in each iteration by one of the three heat transfer phases, where a
uniformly distributed random number (Rn) is generated in the interval [0, 1] to decide which phase
should be activated to update the solutions in the particular iteration. In other words, if Rn ∈ [0, 0.3333],
the population is performed by the conduction phase, while if Rn ∈ [0.3333, 0.6666], the population
undergoes the radiation phase; whereas, if Rn ∈ [0.6666, 1], the population is performed by the
convection phase. In the HTS algorithm, the selection procedure of the updated solutions is carried
out by the greedy selection technique, which accepts the new solution only if it has a superior objective
value. After that, the inferior solutions are substituted by the elite solutions. Thus, the superior solution
can be obtained by performing the difference between the elite solutions and the current solution.
The whole search process of HTS algorithm is carried out through the essential operations of the
conduction, convection, and radiation phases, which are briefly explained in the following subsections.

3.1. Conduction Phase

The basic principle of this phase is that heat transfer occurs due to the conduction effect among
molecules of the substance. Thus, the molecules with higher energy transfer heat to the molecules with
lower energy for the sake of reaching a state of the thermal equilibrium, where the system makes an
attempt to neutralize the thermal imbalance. During the conduction phase of the algorithm, a new
solution is updated according to the subsequent equations:

Xnew
j,i =

 Xk,i +
(
−R2

n ∗Xk,i
)
, i f f (X j) > f (Xk)

X j,i +
(
−R2

n ∗X j,i
)
, i f f (X j) < f (Xk)

 i f FE ≤
FEmax

CDF
(2)
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Xnew
j,i =

 Xk,i +
(
−ri ∗Xk,i

)
, i f f (X j) > f (Xk)

X j,i +
(
−ri ∗X j,i

)
, i f f (X j) < f (Xk)

 i f FE ≥
FEmax

CDF
(3)

where Xnew
j,i represents the new updated solution; j = 1, 2, . . . , n; k denotes a randomly chosen solution;

j , k and k ∈ (1, 2, .., n); i indicates a randomly chosen decision variable where i ∈ (1, 2, .., m); Rn

denotes the random variable—it varies between 0 and 0.3333; ri is a random number in the range
[0, 1]; R2

n and ri correspond to the conductance parameters of the Fourier’s law of heat conduction [42];
FE represents the function evaluations; and CDF is the conduction factor—it is set to a value of 2 to
balance the exploration and exploitation in the conduction phase [42].

3.2. Convection Phase

The basic principle of this phase is that heat transfer takes place because of convection between
the system and the surrounding temperature. Thus, the mean temperature of the system interacts with
the surrounding temperature for the sake of establishing a state of the thermal equilibrium. In this
phase, the mean of the population members (denoted by Xms) is regarded as the mean temperature,
whereas the best solution (denoted by Xs) is regarded as the surrounding. In this part of the algorithm,
a new solution is updated utilizing the subsequent formula:

Xnew
j,i = X j,i + Rn(Xs −Xms ∗ TCF) (4)

TCF =

{
abs(Rn − ri), i f FE ≤ FEmax/COF
round(1 + ri), i f FE ≥ FEmax/COF

(5)

where Xnew
j,i is the new updated solution; j = 1, 2, . . . , n; i = 1, 2, . . . , m; Rn is the random variable—it

varies between 0.6666 and 1; ri is a random number in the interval [0, 1]; Rn and ri correspond to the
convection parameters of Newton’s law of cooling [42]; FE represents the function evaluations; TCF is
the temperature change factor; and COF is the convection factor—it is set to a value of 10 to balance
the exploration and exploitation in the convection phase [42].

3.3. Radiation Phase

The basic principle of this phase is that the system attempts to neutralize the thermal imbalance
through interacting with the surrounding temperature (i.e., best solution) or within the system (i.e.,
other solution). Here, the system tries to reach a state of the thermal balance. In this part of the
algorithm, a new solution is updated according to the subsequent equations:

Xnew
j,i =

 X j,i + Rn
(
Xk,i −X j,i

)
, i f f (X j) > f (Xk)

X j,i + Rn
(
X j,i −Xk,i

)
, i f f (X j) < f (Xk)

 i f FE ≤
FEmax

RDF
(6)

Xnew
j,i =

 X j,i + ri
(
Xk,i −X j,i

)
, i f f (X j) > f (Xk)

X j,i + ri
(
X j,i −Xk,i

)
, i f f (X j) < f (Xk)

 i f FE ≥
FEmax

RDF
(7)

where Xnew
j,i represents the new updated solution; j = 1, 2, . . . , n; i = 1, 2, . . . , m; k indicates randomly

chosen solutions; j , k where k ∈ (1, 2, . . . , n); Rn is the random variable—it varies between 0.3333 and
0.6666; ri is a random number in the range [0, 1]; Rn and ri correspond to the radiation elements of the
Stefan–Boltzmann law [42]; FE represents the function evaluations; and RDF is the radiation factor—it
is set to a value of 2 to balance the exploration and exploitation in the radiation phase [42].

The search process of HTS algorithm is carried out through the three aforementioned phases,
and the global optimum of a given problem can be estimated with these phases. In the HTS algorithm,
every phase is divided into two sub-phases controlled by different factors of heat transfer phases and
function evaluations. As the three phases of heat transfer almost have equivalent probability to transfer
heat, the values of design variables fluctuate gradually or abruptly. The exploration and exploitation
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of a search space can be represented by the large or small changes of the design variables. The overall
flowchart of the original HTS algorithm is illustrated in Figure 1.
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4. Quadratic Interpolation Based Simultaneous Heat Transfer Search (QISHTS) Algorithm

In this section, aiming at providing a more efficient HTS method with well-balanced exploration
and exploitation capabilities, three modifications are introduced into the original HTS algorithm,
namely the effect of simultaneous heat transfer search (SHTS), quadratic interpolation (QI) method,
and population regeneration mechanism. Thus, a new version of HTS algorithm named the quadratic
interpolation-based simultaneous heat transfer search (QISHTS) algorithm is proposed. In the QISHTS
algorithm, the effect of a SHTS is employed to provide superior performance with lower computational
complexity; the QI method is adopted to improve the exploitation capability, and the population
regeneration mechanism is used to enhance the exploration capability. These improvements are
described in detail in the subsequent subsections.



Processes 2020, 8, 478 7 of 26

4.1. Simultaneous Heat Transfer Search (SHTS)

In the original HTS algorithm, the search mechanism is carried out through one of the three
phases (conduction, convection, and radiation phase) in each iteration, where a random number (Rn)

is generated between 0 and 1 in each iteration to determine which one of the three phases should
be activated to update the new solutions. Thus, the population members are performed by either
conduction phase, convection phase, or radiation phase in each generation, and the overall procedure
is repeated until the stopping criterion is met. However, it should be obvious that randomly generating
the probability Rn in each iteration will lead to increase the computational complexity; meanwhile,
it does not guarantee a better solution. Besides, if any phase of the three phases gets more chances
during the optimization process, it will remarkably affect the overall performance of the algorithm.
Therefore, in order to overcome these drawbacks, the idea of a simultaneous heat transfer search (SHTS)
is incorporated into the original HTS algorithm. It is worth mentioning that all the three phases are
needed to be performed during the optimization process to get efficient functioning on the HTS [42].
Thus, in the SHTS, the process of generating the probability Rn in each iteration is cancelled, all the three
phases are performed simultaneously, and the population members will undergo all the three phases.
In other words, the entire population (NP) is divided into three sub-populations in each generation,
and every sub-population is specified for one of the three phases of HTS algorithm. Let NCD, NCV
and NRD be the set of population members for conduction phase, convection phase, and radiation
phase, respectively, where NCD + NCV + NRD = NP. Hence, three new best solutions ( f (xCD), f (xCV)

and f (xRD)) will be generated by the three phases in each iteration. The simultaneous operation of
performing the three phases in each iteration not only can help to provide superior performance; it
can also help to decrease the computational time. Therefore, the introduction of SHTS into the basic
HTS algorithm is beneficial to provide superior performance with lower computational complexity.
More details about SHTS can be found in the literature [47].

4.2. Quadratic Interpolation Method

The quadratic interpolation (QI) is a nonlinear one-dimensional optimization operator, which
utilizes a parabola for fitting the shape of the objective function close to the optima. This operator
can reach the minimum in the initial space. This method was firstly applied in the improved
controlled random search [50]. Subsequently, it has been integrated into various MHAs, such as
differential evolution [51], genetic algorithms [52], and the Alopex-based evolutionary algorithm [53]
for solving complex continuous optimization problems. Moreover, it was also combined with
teaching-learning-based optimization [41] for handling dynamic optimization problems. The main
principle of a QI operator is to use three known points (e.g., two randomly chosen members and the
most outstanding member in the whole population) for the sake of forming a quadratic curve, which is
used for approximating the shape of the objective function. Hence, the extreme point of the quadratic
function can approximate the optima of the objective function [53]. Assume that x1 =

(
x1

1, x2
1, . . . , xD

1

)
,

x2 =
(
x1

2, x2
2, . . . , xD

2

)
, and x3 =

(
x1

3, x2
3, . . . , xD

3

)
are the three selected members that use the QI method to

generate a new member
(
xQI

)
, then it can be calculated as follows:

xQI =
(
x1

QI, x2
QI, ...., xD

QI

)
(8)

xd
QI = 0.5

[(xd
3 − xd

2)
2

f (x1)] + [(xd
1 − xd

3)
2

f (x2)] + [(xd
2 − xd

1)
2

f (x3)]

[(xd
3 − xd

2) f (x1)] + [(xd
1 − xd

3) f (x2)] + [(xd
2 − xd

1) f (x3)]
d = 1, 2, . . . , D (9)

where f (x1), f (x2) and f (x3) represent the fitness values of the three selected members, respectively.
In the proposed method, the three members (XCD, XCV and XRD) obtained by the conduction

phase, convection phase, and radiation phase in each iteration are selected to execute the QI method to
generate a new member (XQI). The new generated XQI is evaluated; if it is superior to the existing
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one, then it will be accepted and used to replace the Xworst. In this method, the quadratic interpolation
among different individual members can help to enhance the exploitation capability.

4.3. Population Regeneration Mechanism

In the proposed method, the solution extremely relies on the initial population members, which do
not often contain a global optimum solution. Moreover, the solutions may tend to quickly group around
local optima during the optimization process, which will lead to reduce the exploration capability of
the algorithm. As a challenging task in various MHAs is how to alleviate the probability of local optima
stagnation, therefore, the population regeneration mechanism is introduced into the proposed method
to avoid local optima and to search for superior solutions. In the proposed mechanism, the population
regenerator is utilized to regenerate the population when the fittest solution keeps identical without
significant changes for a predefined number of function evaluations (PDNFES). This regeneration
mechanism is carried out by flip population way, and its mathematical formula is given as:

X f lip
j,i = (L j,i + U j,i) −X j,i; i f Ri ≤ PV (10)

where X f lip
j,i represents an opposite point of the population member X j,i—it is produced by observing

symmetry about the midpoint of its bound of ith design variable and jth population, respectively; L
and U indicate the lower and upper bounds, respectively. Ri is a random number in the range [0, 1],
and PV is the population flip probability factor—it is a specific value between 0 and 1.

The population regeneration process is applied to all the three phases; it can help to alleviate
the probability of local optima stagnation and improve the exploration capability. In this mechanism,
two important controlling parameters (PDNFES and PV) play an important role in the performance of
the proposed algorithm. Thus, the setting values of these two parameters are set differently among the
optimization problems.

4.4. The Overall Process of QISHTS Algorithm

By simultaneously integrating the SHTS, QI method, and population regeneration mechanism to
the original HTS algorithm, we present a new version of HTS algorithm called the QISHTS. The overall
flowchart of the QISHTS algorithm is illustrated in Figure 2, and the overall process of the QISHTS
algorithm is described in detail below:

• Step 1. Define the population size (NP), the function optimization goal, the maximum number of
function evaluations (FEmax), the setting values of two controlling parameters (PDNFES and PV),
the current function evaluations CFES = 0, and the stopping criteria.

• Step 2. Randomly generate the main population xi, i = 1, 2, . . . , NP within the lower and
upper boundaries [L, U] of the decision variables and calculate the objective function values
f (xi), i = 1, 2, . . . , NP.

• Step 3. Determine the best individual (Xbest, fbest) in the population according to the fitness.
• Step 4. Randomly divide the whole population members into three sub-populations (NCD, NCV

and NRD) and assign every sub-population to one of the three phases, where NCD, NCV and NRD are
the set of population members for the conduction, convection, and radiation phase, respectively.

• Step 5. Generate the new solutions by the conduction phase, convection, and radiation phase.
Step 6. Select the three best members (XCD, XCV and XRD) obtained by the conduction phase,
convection phase, and radiation phase to generate a new member (XQI) by the QI method according
to Equations (8) and (9).

• Step 7. Bound the new solution to the search domain.
• Step 8. Evaluate the new solution; if the new obtained solution is superior to the existing one,

then accept it and use it to replace the worst one.
• Step 9. If the stopping criteria is met, then output the final solution. Otherwise, return to step 3.
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5. Numerical Experiments and Discussions

In this section, in order to investigate the performance of the QISHTS algorithm, it is experimented by a
set of well-defined traditional benchmark problems, and the computational results obtained by this algorithm
are compared with those of other well-established MHAs. Moreover, to further evaluate the overall
effectiveness of the new variant, comparisons between QISHTS algorithm and several state-of-the-art DEs are
also conducted. The competitors were tested on these benchmark problems previously, and these problems
offer challenge to an MHA. Hence, these benchmark problems are employed for the experimentation,
and the above-mentioned algorithms are considered for the comparison with the proposed variant.
The detailed mathematical formulation of each function with its dimension, range value, and optimum
value are illustrated in Table 1. These benchmark problems involve different characteristics and can be
classified into three types: f 1 − f 6 are unimodal functions, f 7 − f 11 are multi-modal high-dimensional
functions, and f 12 − f 18 are multimodal low-dimensional functions. The considered benchmark functions
are appropriate for testing the exploration and exploitation capability of an MHA.

Table 1. The traditional benchmark problems used in investigation.

Test Function Dimension Range Optimum

f1 =
∑n

i=1 x2
i 30 [−100, 100] 0

f2 =
∑n

i=1|xi|+
∏n

i=1|xi| 30 [−10, 10] 0

f3 =
∑n

i=1

(∑i
j=1 x j

)2
30 [−100, 100] 0

f4 = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0
f5 =

∑n
i=1(bxi + 0.5c)2 30 [−100, 100] 0

f6 =
∑n

i=1 ix4
i + random[0, 1] 30 [−1.28, 1.28] 0

f7 =
∑n−1

i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
30 [−30, 30] 0

f8 =
∑n

i=1 −xi sin
(√
|xi|

)
30 [−500, 500] −418.98 × 105

f9 =
∑n

i=1

[
x2

i − 10 cos(2πxi) + 10
]

30 [−5.12, 5.12] 0

f10 = −20 exp
(
−0.2

√
1
n
∑n

i=1 x2
i

)
− exp

(
1
n
∑n

i=1 cos 2πxi
)
+ 20 + e 30 [−32, 32] 0

f11 = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

f12 =

[
1

500 +
∑25

j=1
1

j+
∑2

i=1 (xi−ai j)
6

]−1
2 [−65, 65] 9.9800 × 10−1

f13 =
∑11

i=1

[
ai −

xi(b2
i +bix2)

b2
i +bix3+x4

]2
4 [−5, 5] 3.0000 × 10−4

f14 = 4x2
1 − 2.1x4

1 + x6
1/3 + x1x2 − 4x2

2 + 4x4
2 2 [−5, 5] −1.0316

f15 =
(
x2 −

5.1
4π2 x2

1 +
5
πx1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 5] 3.9800 × 10−1

f16 =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)

]
×

[
30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)
] 2 [−2, 2] 3

f17 = −
∑4

i=1 ci exp
[
−
∑3

j=1 ai j(x j − pi j)
2
]

3 [1, 3] −3.86

f18 = −
∑4

i=1 ci exp
[
−
∑6

j=1 ai j(x j − pi j)
2
]

6 [0, 1] −3.322

5.1. Comparison of QISHTS with MHAs

In this section, to investigate the performance of the QISHTS algorithm, the results obtained by QISHTS
algorithm are compared with the results of other MHAs, such as cuckoo search (CS) [54], gravitational
search algorithm (GSA) [55], artificial bee colony (ABC) [56], animal migration optimization (AMO) [57],
heat transfer search (HTS) [42], and improved heat transfer search (IHTS) [44]. To conduct a fair comparison
with the considered competitors, a common experimental platform is needed. Thus, the maximum
number of function evaluations (FEmax) is set as follows: 150,000 for functions f 1, f 5, and f 10; 200,000 for
functions f 2 and f 11; 500,000 for functions f 3, f 4, and f 7; 300,000 for functions f 6, f 8, and f 9; 10,000 for
functions f 12, f 14, f 15, and f 17; 40,000 for function f 13; 3000 for function f 16; and 20,000 for function f 18.
Furthermore, the population size (NP) is set to 50, and each method is tested 25 times independently
for each benchmark problem. The experimental parameters settings and results of the competitors are
derived from the literature [44]. The controlling parameters of the QISHTS algorithm are set as follows:
the population flip probability factor (PV) is set to 0.1 for all the test functions; the predefined number of
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function evaluations (PDNFES) is set as 1000 for the test functions whose overall function evaluations (FEs)
are larger than 100,000, and 150 for the test functions whose overall FEs are less than 50,000. The best results,
such as the best Mean and Std obtained by the compared algorithms, are bolded. Besides, each algorithm is
ranked between 1 and 7 in accordance to its corresponding results; the algorithm which obtains the perfect
result is ranked 1, whereas the algorithm with the worst result is ranked 7.

Table 2 displays the comparative results of f 1 to f 6 for the QISHTS algorithm with other algorithms;
it can be seen from the results table that the QISHTS, IHTS, and the basic HTS algorithm has achieved
the greatest results on functions f 1 and f 2, followed by the other algorithms. Furthermore, the HTS and
QISHTS algorithms can obtain the best solution on f 3. On functions f 4 and f 6, the QISHTS performs
significantly superior to the other competitive methods. On function f 5, the QISHTS and AMO algorithms
achieve global mean values. Comparing with IHTS and the original HTS algorithm, the performance of
QISHTS is improved on f 3, f 4, f 5, and f 6. From the mean rank and final rank of all competitive methods,
it can be seen that the QISHTS algorithm shows the best overall effectiveness on unimodal functions,
followed by the IHTS, HTS, and the rest of the algorithms. Hence, it can be observed from the results that
the exploitation capability of the QISHTS algorithm is enhanced by the proposed improvements.

Table 2. Computational results of f 1–f 6 for the QISHTS algorithm with other meta-heuristic algorithms
(MHAs) in Investigation 1. (The results of the competitors are adapted from the literature [44]). CS:
cuckoo search, GSA: gravitational search algorithm, AMO: animal migration optimization, ABC:
artificial bee colony, HTS: heat transfer search, IHTS: improved heat transfer search, and QISHTS:
quadratic interpolation based simultaneous heat transfer search.

Function CS GSA ABC AMO HTS IHTS QISHTS

f 1

Mean 5.6565 × 10−6 3.3748 × 10−18 2.9860 × 10−20 8.6464 × 10−40 0.0000 0.0000 0.0000
STD 2.8611 × 10−6 8.0862 × 10−19 2.1455 × 10−20 1.0435 × 10−39 0.0000 0.0000 0.0000
Rank 7 6 5 4 1 1 1

f 2

Mean 2.0000 × 10−3 8.9212 × 10−9 1.4213 × 10−15 8.2334 × 10−32 0.0000 0.0000 0.0000
STD 8.0959 × 10−4 1.3340 × 10−9 5.5340 × 10−16 3.4120 × 10−32 0.0000 0.0000 0.0000
Rank 7 6 5 4 1 1 1

f 3

Mean 1.1400 × 10−3 1.1260 × 10−1 2.4027 × 103 8.8904 × 10−4 0.0000 2.5658 × 10−36 0.0000
STD 6.0987 × 10−4 1.2660 × 10−1 6.5696 × 102 8.7256 × 10−4 0.0000 7.3407 × 10−36 0.0000
Rank 5 6 7 4 1 3 1

f 4

Mean 3.2388 9.9302 × 10−10 1.8523 × 101 2.8622 × 10−5 7.8547 × 10−43 2.3219 × 10−33 0.0000
STD 6.6440 × 10−1 1.1899 × 10−10 4.2477 2.3468 × 10−5 2.1944 × 10−42 4.9053 × 10−33 0.0000
Rank 6 4 7 5 2 3 1

f 5

Mean 5.4332 × 10−6 3.3385 × 10−18 3.0884 × 10−20 0.0000 1.3920 × 10−1 1.3906 × 10−7 0.0000
STD 2.2446 × 10−6 5.6830 × 10−19 4.0131 × 10−20 0.0000 4.5100 × 10−1 2.7467 × 10−7 0.0000
Rank 6 4 3 1 7 5 1

f 6

Mean 9.6000 × 10−3 3.900 × 10−3 3.2400 × 10−2 1.7000 × 10−3 1.7370 × 10−3 1.5430 × 10−3 1.0744 × 10−4

STD 2.8000 × 10−3 1.3000 × 10−3 5.9000 × 10−3 4.7058 × 10−4 7.5904 × 10−4 6.3685 × 10−4 8.9991 × 10−5

Rank 6 5 7 3 4 2 1

Mean Rank 6.16 5.16 5.66 3.50 2.66 2.50 1.00

Final Rank 7 5 6 4 3 2 1

Table 3 shows the comparative results of f 7 to f 11 for the QISHTS algorithm with the other
algorithms; it can be observed from the results table that, on function f 7, the ABC algorithm can
find the best results, followed by other algorithms, while the IHTS and the HTS algorithms do not
achieve the best results, whereas the QISHTS algorithm has shown more success on this function.
Moreover, the QISHTS, IHTS, HTS, AMO, and ABC algorithms can find the best solution on functions
f 9 and f 11. On functions f 8 and f 10, the QISHTS performs significantly superior to the other competitive
methods. Comparing with IHTS and the original HTS algorithm, the performance of the QISHTS is
improved on f 7, f 8, and f 10. From the mean rank and final rank of each competitor, it can be seen that
the QISHTS shows the greatest overall effectiveness, followed by the AMO, IHTS, ABC, and the rest of
the algorithms. Thus, it can be observed from the results that the exploration ability of the QISHTS
algorithm is enhanced by the proposed improvements.
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Table 3. Computational results of f 7 to f 11 for the QISHTS algorithm with other MHAs in Investigation
1. (The results of the competitors are adapted from the literature [44]).

Function CS GSA ABC AMO HTS IHTS QISHTS

f 7

Mean 8.0092 2.0082 × 101 4.4100 × 10−2 4.1817 2.6156 × 101 2.2876 × 101 2.0024 × 101

STD 1.9188 1.7220 × 10−1 7.0700 × 10−2 2.1618 3.0311 4.3741 8.1310 × 10−1

Rank 3 5 1 2 7 6 4

f 8

Mean −9.1492 × 103
−3.0499 × 103

−1.2507 × 104
−1.2569 × 104

−1.2569 × 104
−1.2569 × 104 −5.9959 × 104

STD 2.5314 × 102 3.3886 × 102 6.1118 × 101 1.2384 × 10−7 5.7799 × 10−1 3.7130 × 10−12 1.1102
Rank 6 7 5 4 3 2 1

f 9

Mean 5.1220 × 101 7.2831 0.0000 0.0000 0.0000 0.0000 0.0000
STD 8.1069 1.8991 0.0000 0.0000 0.0000 0.0000 0.0000
Rank 7 6 1 1 1 1 1

f 10

Mean 2.3750 1.4717 × 10−9 1.1946 × 10−9 4.4409 × 10−15 2.8741 × 10−14 2.8599 × 10−14 8.8818 × 10−16

STD 1.1238 1.4449 × 10−10 5.0065 × 10−10 0.0000 5.6806 × 10−15 4.3511 × 10−15 0.0000
Rank 7 6 5 2 4 3 1

f 11

Mean 4.4900 × 10−5 1.265 × 10−2 0.0000 0.0000 0.0000 0.0000 0.0000
STD 8.9551 × 10−5 2.1600 × 10−2 0.0000 0.0000 0.0000 0.0000 0.0000
Rank 6 7 1 1 1 1 1

Mean Rank 5.80 6.20 2.60 2.00 3.20 2.60 1.60

Final Rank 6 7 3 2 5 3 1

Table 4 displays the comparative results of f 12 to f 18 for the QISHTS algorithm with the other
algorithms; it is observed that, the QISHTS, IHTS, HTS, AMO, and ABC algorithms can find the
best solution on function f 12. On function f 13, the QISHTS ranks first, followed by the rest of the
algorithms, while the IHTS and the HTS algorithms do not achieve the best results, whereas the
QISHTS algorithm has shown more success on this function. Moreover, the QISHTS, IHTS, HTS,
AMO, and ABC algorithms can find the best solution on functions f 9 and f 11. On functions f 8 and
f 10, the QISHTS performs significantly superior to the other competitive methods. Comparing with
IHTS and the original HTS algorithm, the performance of the QISHTS is improved on f 7, f 8, and f 10.
From the mean rank and final rank of each competitor, it can be seen that the IHTS shows the greatest
overall effectiveness, followed by the QISHTS, HTS, and the rest of the algorithms. Hence, it can be
observed from the results that the exploration ability of the QISHTS algorithm is enhanced by the
proposed improvements.

Table 4. Computational results of f 14–f 23 for the QISHTS algorithm with other MHAs in Investigation
1. (The results of the competitors are adapted from the literature [44]).

Function CS GSA ABC AMO HTS IHTS QISHTS

f 12

Mean 9.9810 × 10−1 5.9533 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1

STD 4.8277 × 10−4 3.4819 3.7921 × 10−16 3.3858 × 10−12 3.3993 × 10−16 3.3993 × 10−16 3.3993 × 10−16

Rank 6 7 4 5 1 1 1

f 13

Mean 5.0310 × 10−4 4.8000 × 10−3 7.4715 × 10−4 3.9738 × 10−4 5.3397 × 10−4 3.4416 × 10−4 3.1988 × 10−4

STD 1.1180 × 10−4 3.3000 × 10−3 2.1481 × 10−4 4.4503 × 10−5 3.9577 × 10−4 1.8313 × 10−4 3.0497 × 10−5

Rank 4 7 6 3 5 2 1

f 14

Mean −1.03163 −1.03163 −1.0316 −1.0316 −1.03163 −1.03163 −1.03163
STD 1.5821 × 10−7 4.7536 × 10−16 1.1269 × 10−14 5.2006 × 10−11 4.5325 × 10−16 4.5325 × 10−16 6.5323 × 10−8

Rank 7 3 4 5 1 1 6

f 15

Mean 3.9790 × 10−1 3.9790 × 10−1 3.9790 × 10−1 3.9790 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9790 × 10−1

STD 3.2449 × 10−6 0.0000 5.3819 × 10−8 0.0000 5.6656 × 10−17 5.6656 × 10−17 5.5872 × 10−17

Rank 7 1 6 1 4 4 3

f 16

Mean 3.0013 3.7403 3.0000 3.0018 3.0000 3.0000 3.0000
STD 2.6000 × 10−3 1.6055 2.6164 × 10−5 5.5000 × 10−3 0.0000 0.0000 3.7456 × 10−4

Rank 5 7 3 6 1 1 4

f 17

Mean −3.8628 −3.8625 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628
STD 1.4043 × 10−5 3.8767 × 10−4 1.3654 × 10−10 1.3669 × 10−15 9.0649 × 10−16 9.0649 × 10−16 1.6997 × 10−16

Rank 6 7 5 4 2 2 1

f 18

Mean −3.321 −3.3220 −3.3220 −3.3220 −3.2837 −3.2935 −3.3228
STD 7.5186 × 10−4 4.7967 × 10−16 8.5733 × 10−10 5.085 × 10−6 5.6553 × 10−2 5.1824 × 10−2 4.8300 × 10−2

Rank 4 1 2 3 7 6 5

Mean Rank 5.57 4.71 4.28 3.85 3.00 2.42 3.00

Final Rank 7 6 5 4 2 1 2
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5.2. Comparison of QISHTS with State-Of-The-Art DEs

In order to further observe the overall effectiveness of the proposed variant, another comparison
between the QISHTS algorithm with well-established state-of-the-art DEs is conducted. These methods,
such as opposition-based differential evolution (ODE) [58], self-adaptive differential evolution
(SaDE) [59], modified differential evolution (MoDE) [60], composite differential evolution (CoDE) [61],
and modified differential evolution with p-best crossover (MDE-pBX) [62], have efficient robustness
and global search ability. The experimental results of the competitors are acquired from [63]. To be
consistent with the reference, a common experimental platform is required. Thus, the population size
(NP) is set at 100, the dimension (D) of each benchmark problem is set at 30, as well as each method is
repeated 25 times independently for all test problems. Moreover, the maximum number of function
evaluations (maxFEs) is set differently for each function, as given in Table 5. The controlling parameters
of the QISHTS algorithm after conducting many trials are set as: PDNFES = 103 and PV = 0.1. The best
mean (Mean) and standard deviations (Std) results obtained by the compared methods are bolded.

Table 5. Computational results for the QISHTS algorithm with the state-of-the art different evolutions
(DEs) in Investigation 2. (The results of the competitors are adapted from the literature [63]). FEs:
function evaluations, ODE: opposition-based differential evolution, SaDE: self-adaptive differential
evolution, MoDE: modified differential evolution, CoDE: composite differential evolution, MDE-pBX:
modified differential evolution with p-best crossover, and QISHTS: quadratic interpolation based
simultaneous heat transfer search.

F FEs ODE SaDE MoDE CoDE MDE-pBX QISHTS

f 1 150,000
Mean 2.24 × 10−27 1.62 × 10−48 6.51 × 10−4 2.28 × 10−7 1.24 × 10−3 0.00
STD 2.72 × 10−27 4.46 × 10−48 2.81 × 10−3 8.29 × 10−8 4.83 × 10−3 0.00
Rank 3 2 5 4 6 1

f 2 150,000
Mean 1.52 × 10−11 6.11 × 10−45 2.89 × 10−3 1.16 × 10−7 4.17 × 10−8 0.00
STD 1.06 × 10−11 1.54 × 10−44 1.23 × 10−2 3.79 × 10−8 1.85 × 10−7 0.00
Rank 3 2 6 5 4 1

f 5 150,000
Mean 2.32 × 104 1.00 × 104 6.05 × 102 6.25 × 104 8.12 × 103 0.00
STD 1.76 × 103 1.65 × 103 5.43 × 102 1.91 × 103 1.18 × 104 0.00
Rank 5 4 2 6 3 1

f 7 500,000
Mean 2.52 × 101 1.28 × 101 4.51 3.33 4.70 × 101 0.00
STD 1.1000 5.86 5.30 1.96 3.15 × 101 0.00
Rank 5 4 3 2 6 1

f 8 300,000
Mean 6.99 × 103 3.55 × 101 4.14 × 103 1.21 × 10−12 1.22 × 103 3.74 × 10−4

STD 3.08 × 102 6.34 × 101 6.51 × 102 8.72 × 10−13 4.34 × 102 0.00
Rank 6 3 5 1 4 2

f 9 300,000
Mean 3.60 × 101 1.43 6.01 × 101 1.02 × 10−11 7.80 0.00
STD 1.91 × 101 1.13 1.41 × 101 1.73 × 10−11 2.25 0.00
Rank 5 3 6 2 4 1

f 10 150,000
Mean 3.53 × 10−14 4.02 × 10−15 7.70 1.31 × 10−4 1.77 × 10−2 8.88 × 10−16

STD 2.04 × 10−14 6.49 × 10−16 1.82 3.74 × 10−5 9.30 × 10−2 0.00
Rank 3 2 6 4 5 1

f 11 200,000
Mean 2.47 × 10−4 2.79 × 10−3 2.49 × 10−1 4.19 × 10−9 4.92 × 10−3 0.00
STD 1.35 × 10−3 6.61 × 10−3 2.33 × 10−1 3.72 × 10−9 1.24 × 10−2 0.00
Rank 3 4 6 2 5 1

Mean Rank 4.12 3 4.87 3.25 4.62 1.12

Final Rank 4 2 6 3 5 1

It can be seen from Table 5 that, although the SaDE algorithm can find the greatest result among
DEs on functions f 1, f 2, and f 10, the QISHTS algorithm shows more success and ranks first on all these
benchmark functions. The MoDE algorithm can obtain the best results among the DEs on function f 5,
but it wins the second place after the QISHTS algorithm, which ranks first on this function. On functions
f 7, f 9, and f 11, CoDE can find the best results among the DEs, but the QISHTS shows more success and
wins first on these functions. From the mean rank and final rank of each competitor, it can be observed
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that the QISHTS ranks first on the whole benchmark functions; it performs significantly better than
other competitive DEs, which prove that the proposed algorithm possesses efficient robustness for
handling optimization problems.

6. Application to Chemical Dynamic System Optimization

In this section, in order to further evaluate the effectiveness of the QISHTS method in solving
real-world optimization problems, the proposed algorithm is used to handle four chemical DOPs
(two dynamic parameter estimation problems and two optimal control problems), involving different
levels of difficulty. Moreover, the results obtained by the QISHTS algorithm are compared with
those of twelve well-established algorithms, such as linearly decreasing inertia weight particle swarm
optimization (LDWPSO) [64], comprehensive learning particle swarm optimization (CLPSO) [65],
differential evolution with self-adapting control parameters (jDE) [66], artificial bee colony (ABC) [56],
self-adaptive differential evolution (SaDE) [59], real-coded biogeography-based optimization
(RCBBO) [67], hybrid biogeography-based optimization with differential evolution (DEBBO) [68],
teaching-learning-based optimization (TLBO) [69], nonlinear inertia weighted teaching-learning-based
optimization (NIWTLBO) [70], biogeography-based learning particle swarm optimization (BLPSO) [71],
generalized oppositional teaching-learning-based optimization (GOTLBO) [72], and quadratic
interpolation based teaching-learning-based optimization (QITLBO) [41]. These methods are very
well-known due to their good performance, as well as they were examined on these DOPs previously in
the literature [41]; thus, they were selected for comparison with the proposed method. The experimental
parameter settings of the first twelve algorithms refer to corresponding literatures. To conduct
a fair comparison, the population size (NP) is set to 50, and each algorithm is tested 30 times
independently for the all problems. To be consistent with the references, the maximum number of
function evaluations (maxFEs), as well as the acceptable precision (Ap), are used for recording the
performance criteria, and these parameter values are set differently among the DOPs, as listed in Table 6.
Moreover, the controlling parameters of the QISHTS algorithm (PDNFES and PV) after conducting
many trials are also set differently for each problem, as shown in Table 6. Some performance criterions
are used for the effectiveness comparisons; these criterions, such as the best, mean, and worst objective
function values and also the standard deviations (Std) obtained by the competitive algorithms on
30 independent runs, are listed. Besides, the success rate (SR) is given to show the ability of the
algorithm in obtaining an acceptable solution with precision Ap before the maximum number of
function evaluations is reached. Furthermore, the execution time (T) is also given to display the runtime
complexity of all competitors. In order to facilitate the comparisons, the greatest results among the
competitive methods are bolded. Moreover, each algorithm is ranked between 1 and 13 in accordance
to its corresponding results; the algorithm which obtains the perfect result is ranked 1, whereas the
algorithm with the worst result is ranked 13.

Table 6. Parameter setting values for recording the performance criterion. maxFEs: maximum number
of function evaluations, Ap: acceptable precision, PDNFES: predefined number of function evaluations,
PV: population flip probability factor, and CSTR: continuous stirred tank reactor.

Dynamic Optimization Problem maxFEs Ap PDNFES PV

First-order reversible series reaction problem 1000 0.000002 10 0.1
Catalytic cracking of gas oil problem 1000 0.0030 10 0.1

Multi-modal CSTR problem 10,000 0.1400 100 0.3
Six-plate gas absorption tower problem 10,000 0.1125 100 0.3

6.1. Dynamic Parameter Estimation Problems

In this subsection, the proposed QISHTS algorithm is applied for solving two dynamic parameter
estimation problems. Moreover, the computational results are compared with those of twelve
well-established algorithms.
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6.1.1. First-Order Reversible Series Reaction Problem

This problem indicates the first-order reversible chain reaction [16,73]. In this reaction system

(A K1
→ B K2

→ C), three parts (A, B, and C) are included, since only the concentrations of the first two parts
(A with B) were measured, while the last part (C) is not available in the model used for estimation.
The mathematical equation of this model takes the form as follows:

min
θ

10∑
µ=1

2∑
i=1

(
ẑµ,i − z̃µ,i

)2

S.t.


.
z1 = −θ1z1
.
z2 = θ1z1 − θ2z2

z0 = (1, 0), t ∈ [0, 1]
[0, 1] ≤ θ ≤ [10, 10]

(11)

where ẑµ and z̃µ are defined as the vectors of the fitted point and experimental values, respectively, z1

and z2 represent the mole fractions of the first two parts (A and B), respectively, and θ1 and θ2 indicate
the parameter vectors of the first and second reactions, respectively. The measurement data of this
problem are derived from [4].

Table 7 displays the comparative results obtained by the QISHTS algorithm and other competitors
for this problem. It can be seen from results table that the QISHTS algorithm can find the best results
in terms of best, mean, std, and worst objective function value among all the comparative algorithms,
followed by the QITLBO, NIWTLBO, ABC, and other competitors. While Figure 3a displays the
convergence graph of the proposed algorithm, from Figure 3a and Table 7, it is obvious that the QISHTS
algorithm has the best robustness, precision, and stability in performance. Figure 3b displays the
fitting state trajectories with experimental points, which implies that a good agreement is obtained
between the fitting state trajectories and the experimental points for this problem. Referring to the
success rate, the QISHTS algorithm achieves a value of 100%, which means that it can successfully find
trusted solutions in all the total runs. Considering the execution time, GOTLBO ranks first, followed
by DEBBO and JDE, while the QISHTS takes 17.26 s to obtain the corresponding results.

Table 7. Results of the compared algorithms for the first-order reversible series reaction model. Best:
the best objective function value, Mean: the mean objective function value, STD: the standard deviation,
Worst: the worst objective function value, SR: success rate, and T(S): time (second).

Method Best Mean STD Worst SR T(S) Rank

LDWPSO 1.18620 × 10−6 1.25679 × 10−6 8.30596 × 10−8 1.47490 × 10−6 100% 18.03 11
CLPSO 3.73979 × 10−6 1.98549 × 10−4 1.54809 × 10−4 5.19505 × 10−4 0.00% 17.97 12

jDE 1.18585 × 10−6 1.18586 × 10−6 1.43989 × 10−11 1.18589 × 10−6 100% 15.60 5
ABC 1.18584 × 10−6 1.18585 × 10−6 2.52200 × 10−11 1.18597 × 10−6 100% 17.52 4
SaDE 1.18585 × 10−6 1.18643 × 10−6 1.11590 × 10−9 1.19024 × 10−6 100% 17.90 8

RCBBO 9.85416 × 10−6 1.68216 × 10−3 2.87773 × 10−3 9.61824 × 10−3 0.00% 18.23 13
DEBBO 1.18585 × 10−6 1.18664 × 10−6 1.55322 × 10−9 1.19254 × 10−6 100% 15.46 10
TLBO 1.18585 × 10−6 1.18598 × 10−6 2.84734 × 10−10 1.18703 × 10−6 100% 15.62 6

NIWTLBO 1.18584 × 10−6 1.18585 × 10−6 5.14840 × 10−11 1.18613 × 10−6 100% 18.92 3
BLPSO 1.18585 × 10−6 1.18650 × 10−6 1.13912 × 10−9 1.19090 × 10−6 100% 18.06 9

GOTLBO 1.18585 × 10−6 1.18611 × 10−6 5.20662 × 10−10 1.18805 × 10−6 100% 15.29 7
QITLBO 1.18584 × 10−6 1.18585 × 10−6 2.06093 × 10−12 1.18586 × 10−6 100% 17.48 2
QISHTS 1.18584 × 10−6 1.18584 × 10−6 0.00000 1.18585 × 10−6 100% 17.26 1
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6.1.2. Catalytic Cracking of Gas Oil Problem

This problem indicates the catalytic cracking process of gas oil to gasoline and other miscellaneous
products. It involves three components (A, Q, and S), which represent the gas oil, gasoline, and other
products, respectively. Only the concentrations of the first two components (A with Q) are available in
this model, and the reaction design contains nonlinear reaction kinetics. This problem is formulated
as below:

min
θ

10∑
µ=1

2∑
i=1

(
ẑµ,i − z̃µ,i

)2

S.t.



.
z1 = −(θ1 + θ3)z2

1.
z2 = θ1z2

1 − θ2z2

z0 = (1, 0)
t ∈ [0, 0.95]
[0, 0, 0] ≤ θ ≤ [20, 20, 20]

(12)

where θ1, θ2, and θ3 indicate the rate constants of the respective reactions, and z1 and z2 represent the
mole fractions of the first two components (A with Q), respectively. The measurement data of this
problem are acquired by utilizing parameter values [12,8,2], with a small amount of accidental error
added, and are available in [4].

Table 8 displays the comparative results obtained by the QISHTS algorithm and other competitors
for this problem. While Figure 4a displays the convergence graph of the proposed algorithm, Figure 4b
displays the fitting state trajectories with experimental points. From Figure 4a and Table 8, it can be
seen that the QISHTS algorithm can find the greatest results in terms of best, mean, std, and worst
objective function values among all the comparative algorithms, followed by the QITLBO, TLBO, SaDE,
and other competitors, meaning that the QISHTS algorithm has the best robustness and precision.
Moreover, it can be observed from Figure 4b that a good agreement is obtained between the fitting state
trajectories and the experimental points for this problem. Considering the success rate, the QISHTS
algorithm achieves a value of 100%, which means that it can successfully find trusted solutions in all
the total runs. Referring to the execution time, the DEBBO algorithm ranks the first, followed by the
jDE, GOTLBO, and other competitors, while the QISHTS algorithm takes 32.14 s to obtain these results.

Table 8. Results of the compared algorithms for the catalytic cracking of gas oil model.

Method Best Mean STD Worst SR T(S) Rank

LDWPSO 2.65569 × 10−3 2.65663 × 10−3 1.15296 × 10−6 2.66061 × 10−3 100% 32.10 6
CLPSO 2.71167 × 10−3 3.54925 × 10−3 7.98382 × 10−4 6.06821 × 10−3 37% 35.17 13

jDE 2.65567 × 10−3 2.65702 × 10−3 2.73064 × 10−6 2.66749 × 10−3 100% 30.18 7
ABC 2.65674 × 10−3 3.13821 × 10−3 1.33151 × 10−3 8.51756 × 10−3 83% 32.53 11
SaDE 2.65567 × 10−3 2.65587 × 10−3 2.91411 × 10−7 2.65698 × 10−3 100% 32.41 4

RCBBO 2.68559 × 10−3 3.47463 × 10−3 1.00151 × 10−3 6.97048 × 10−3 53% 32.35 12
DEBBO 2.65582 × 10−3 2.78029 × 10−3 4.26505 × 10−4 4.85929 × 10−3 90% 29.82 10
TLBO 2.65567 × 10−3 2.65578 × 10−3 1.32328 × 10−7 2.65626 × 10−3 100% 30.59 3

NIWTLBO 2.65567 × 10−3 2.73768 × 10−3 4.49100 × 10−4 5.11551 × 10−3 97% 36.61 9
BLPSO 2.65568 × 10−3 2.65901 × 10−3 7.55110 × 10−6 2.68741 × 10−3 100% 34.17 8

GOTLBO 2.65568 × 10−3 2.65649 × 10−3 1.54447 × 10−6 2.66225 × 10−3 100% 30.22 5
QITLBO 2.65567 × 10−3 2.65570 × 10−3 8.30733 × 10−8 2.65607 × 10−3 100% 34.31 2
QISHTS 2.65567 × 10−3 2.65568 × 10−3 1.81904 × 10−9 2.65599 × 10−3 100% 32.14 1
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Figure 4. (a) Convergence graph of QISHTS algorithm for the catalytic cracking of gas oil model.
(b) Fitting state trajectories and experimental points for the catalytic cracking of gas oil model.

6.2. Optimal Control Problems

In this subsection, the proposed QISHTS algorithm is applied for solving two optimal control
problems. Moreover, the computational results are compared with those of twelve well-established
methods. Due to the existence of time-dependent control variables u(t) in these problems,
a discretization approach such as the control vector parametrization (CVP) method [11,12] is utilized
to discretize these problems. To be consistent with the reference, the time interval is divided by the
CVP method into 20 stages with equal length, wherein the control variables u(t) in every sup-interval
are approximated by piece-linear functions.
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6.2.1. Multi-Modal Continuous Stirred Tank Reactor (CSTR) Problem

This model is defined as a multi-modal problem; it basically represents the optimal control of
a first-order reversible chemical reaction performed in a continuous stirred tank reactor (CSTR) [12].
This problem offers a challenge to the optimization methods, since it mainly involves two local
optimums. The gradient-based optimization methods usually fall into the inferior local optimum.
The mathematical equation of this problem can be formulated as below:

min
u

J =
t f∫
0

(
x2

1(t) + x2
2(t) + 0.1 ∗ u2(t)

)
dt

S.t.


.
x1 = −(2 + u)(x1 + 0.25) + (x2 + 0.5) exp

( 25x1
x1+2

)
.
x2 = 0.5− x2 − (x2 + 0.5) exp

( 25x1
x1+2

)
x(0) = [0.09, . 0.9]
0 ≤ u(t) ≤ 5.0, t f = 0.78

(13)

Table 9 displays the comparative results obtained by the QISHTS algorithm and other competitors
for this problem. It can be seen from results table that the BLPSO algorithm gets the greatest results in
terms of best, mean, std, and worst objective function values among all the comparative algorithms,
while the QISHTS gets the second-best results, followed by the QITLBO, LDWPSO, DEBBO, and the rest
of the competitors. Figure 5a shows the convergence graph of the proposed algorithm, and Figure 5b
displays the optimal control trajectory for this problem. It is obvious from Figure 5 and Table 9 that,
although the QISHTS algorithm is worse than BLPSO, its performance is clearly superior to that of
other competitors. Referring to the success rate, the QISHTS algorithm achieves a value of 100%,
which means that it can successfully find the acceptable accuracy in all the total runs. Considering the
execution time, the NIWTLBO ranks first, followed by the BLPSO and other algorithms, while the
QISHTS algorithm spends 455.86 s to obtain these results.

Table 9. Results of the compared algorithms for the multi-modal CSTR model.

Method Best Mean STD Worst SR T(S) Rank

LDWPSO 1.3311 × 10−1 1.3317 × 10−1 3.89 × 10−5 1.3329 × 10−1 100% 458.99 4
CLPSO 1.4920 × 10−1 1.6569 × 10−1 8.35 × 10−3 1.7957 × 10−1 0.00% 478.32 12

jDE 1.3315 × 10−1 1.3327 × 10−1 6.96 × 10−5 1.3341 × 10−1 100% 456.75 6
ABC 1.3968 × 10−1 1.4788 × 10−1 4.51 × 10−3 1.5592 × 10−1 3% 464.76 11
SaDE 1.3315 × 10−1 1.3338 × 10−1 2.32 × 10−4 1.3421 × 10−1 100% 458.89 7

RCBBO 1.3346 × 10−1 1.3550 × 10−1 2.07 × 10−3 1.4314 × 10−1 97% 463.42 9
DEBBO 1.3317 × 10−1 1.3324 × 10−1 4.37 × 10−5 1.3333 × 10−1 100% 457.52 5
TLBO 1.3311 × 10−1 1.3700 × 10−1 2.03 × 10−2 2.4445 × 10−1 97% 466.63 10

NIWTLBO 1.3383 × 10−1 2.3744 × 10−1 2.75 × 10−2 2.4515 × 10−1 7% 419.09 13
BLPSO 1.3310 × 10−1 1.3311 × 10−1 1.03 × 10−5 1.3314 × 10−1 100% 448.59 1

GOTLBO 1.3311 × 10−1 1.3392 × 10−1 4.30 × 10−3 1.5669 × 10−1 97% 460.76 8
QITLBO 1.3311 × 10−1 1.3314 × 10−1 2.39 × 10−5 1.3320 × 10−1 100% 460.91 3
QISHTS 1.3310 × 10−1 1.3312 × 10−1 1.98 × 10−5 1.3318 × 10−1 100% 455.86 2
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Figure 5. (a) Convergence graph of the QISHTS algorithm for the multi-modal CSTR model. (b)
Optimal control trajectory for the multi-modal CSTR model. u portrays the optimal control variable of
this problem.
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6.2.2. Six-Plate Gas Absorption Tower Problem

This model mainly includes the determination of two optimal control variables (u1 and u2) in a
nonlinear six-plate gas absorption tower [74]. The mathematical equation of this problem can be given
as follows:

minJ =
t f∫
0

(
6∑

i=1
x2

i +
2∑

i=1
u2

i

)
dt

S.t.



.
x1 =

{
−[40.8 + 66.7(ν1 + 0.08x1)]x1 + 66.7(ν2 + 0.08x2)x2 + 40.8u1

}
/w1

.
x2 =

{
40.8x1 − [40.8 + 66.7(ν2 + 0.08x2)]x2 + 66.7(ν3 + 0.08x3)x3

}
/w2

.
x3 =

{
40.8x2 − [40.8 + 66.7(ν3 + 0.08x3)]x3 + 66.7(ν4 + 0.08x4)x4

}
/w3

.
x4 =

{
40.8x3 − [40.8 + 66.7(ν4 + 0.08x4)]x4 + 66.7(ν5 + 0.08x5)x5

}
/w4

.
x5 =

{
40.8x4 − [40.8 + 66.7(ν5 + 0.08x5)]x5 + 66.7(ν6 + 0.08x6)x6

}
/w5

.
x6 =

{
40.8x5 − [40.8 + 66.7(ν6 + 0.08x6)]x6 + 66.7(ν7 + 0.08x7)x7

}
/w6

wi = νi + 0.16xi + 75, i = 1, . . . , 6
ν = [0.7358, 0.7488, 0.7593, 0.7593, 0.7677, 0.7744, 0.7797, 0.7838]T

x(0) = [−0.0342,−0.0619,−0.0837,−0.1004,−0.1131,−0.1224]T

0 ≤ u1 ≤ 0.04, 0 ≤ u2 ≤ 0.09, t f = 5

(14)

Table 10 displays the computational results obtained by the QISHTS algorithm and other
competitors for this problem. Figure 6a displays the convergence graph of the proposed algorithm,
and Figure 6b shows the optimal control trajectories for this problem. From Figure 6a and Table 10,
it can be seen that the QISHTS algorithm can find the greatest results in terms of best, mean, std,
and worst objective function values among all the comparative algorithms, followed by the jDE, BLPSO,
QITLBO, and other competitors, meaning that the QISHTS algorithm has the best robustness and
precision. Considering the success rate, the QISHTS algorithm achieves a value of 100%, which means
that it can successfully find trusted solutions in all the total runs. Referring to the execution time,
the jDE algorithm ranks the first, followed by the SaDE, NIWTLBO, and the rest of the competitors,
while the QISHTS algorithm spends 558.96 s to obtain these results.

Table 10. Results of the compared algorithms for the six-plate gas absorption tower model.

Method Best Mean STD Worst SR T(S) Rank

LDWPSO 1.1244 × 10−1 1.1245 × 10−1 6.86 × 10−6 1.1246 × 10−1 100% 552.45 6
CLPSO 1.1321 × 10−1 1.1390 × 10−1 2.07 × 10−4 1.1420 × 10−1 0.00% 554.22 13

jDE 1.1243 × 10−1 1.1243 × 10−1 1.14 × 10−6 1.1244 × 10−1 100% 548.63 2
ABC 1.1286 × 10−1 1.1326 × 10−1 1.85 × 10−4 1.1357 × 10−1 0.00% 588.13 12
SaDE 1.1244 × 10−1 1.1245 × 10−1 5.95 × 10−6 1.1247 × 10−1 100% 549.59 6

RCBBO 1.1244 × 10−1 1.1247 × 10−1 1.55 × 10−5 1.1251 × 10−1 93% 584.34 8
DEBBO 1.1243 × 10−1 1.1244 × 10−1 1.17 × 10−6 1.1244 × 10−1 100% 583.57 4
TLBO 1.1244 × 10−1 1.1248 × 10−1 1.97 × 10−5 1.1253 × 10−1 87% 581.01 10

NIWTLBO 1.1257 × 10−1 1.1280 × 10−1 1.68 × 10−4 1.1333 × 10−1 0.00% 549.69 11
BLPSO 1.1243 × 10−1 1.1243 × 10−1 2.96 × 10−8 1.1243 × 10−1 100% 618.02 2

GOTLBO 1.1244 × 10−1 1.1247 × 10−1 2.74 × 10−5 1.1254 × 10−1 90% 582.16 8
QITLBO 1.1243 × 10−1 1.1244 × 10−1 5.14 × 10−6 1.1246 × 10−1 100% 561.71 4
QISHTS 1.1243 × 10−1 1.1243 × 10−1 2.45 × 10−8 1.1243 × 10−1 100% 558.96 1
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7. Conclusions

Many complex chemical engineering processes depend much on dynamic optimization. Due to
the existence of highly constrained, nonlinear, and nonsmooth environments in chemical engineering
processes, which usually causes nonconvexity, using efficient global optimization algorithms to
reach appropriate solutions for handling DOPs is still a relatively difficult task. The heat transfer
search (HTS) algorithm is a relative novel metaheuristic approach inspired by the natural law of
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thermodynamics and heat transfer. In order to handle the DOPs, a new variant of the HTS algorithm
called the quadratic interpolation based simultaneous heat transfer search (QISHTS) algorithm is
presented in this paper. The QISHTS algorithm introduces three modifications into the original HTS
algorithm, namely the idea of simultaneous heat transfer search (SHTS), quadratic interpolation (QI)
method, and population regeneration mechanism. The effect of the SHTS is employed to provide
superior performance with lower computational complexity, the QI method is adopted to improve the
exploitation capability, and the population regeneration mechanism is used to alleviate the probability
of local optimum stagnation, hence enhancing the exploration ability. Thus, the ensemble of these three
modifications can provide a more efficient optimization algorithm with well-balanced exploration and
exploitation abilities.

To demonstrate the effectiveness of the QISHTS algorithm, it is investigated by a set of
18 well-defined benchmark problems. Moreover, the obtained results are compared with those
of other well-established methods. Furthermore, it is applied for solving four real-world chemical
DOPs, involving varying levels of difficulty, and the computational results obtained by QISHTS
algorithm are compared with those of twelve well-established methods. The results demonstrate that
the QISHTS algorithm has the perfect robustness and precision than other the methods tested.
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