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Abstract: Monitoring process variables in bioprocesses with complex expression systems, such as
filamentous fungi, requires a vast number of offline methods or sophisticated inline sensors. In this
respect, cell viability is a crucial process variable determining the overall process performance.
Thus, fast and precise tools for identification of key process deviations or transitions are needed.
However, such reliable monitoring tools are still scarce to date or require sophisticated equipment.
In this study, we used the commonly available size exclusion chromatography (SEC) HPLC technique
to capture impurity release information in Penicillium chrysogenum bioprocesses. We exploited the
impurity release information contained in UV chromatograms as fingerprints for development of
principal component analysis (PCA) models to descriptively analyze the process trends. Prediction
models using well established approaches, such as partial least squares (PLS), orthogonal PLS (OPLS)
and principal component regression (PCR), were made to predict the viability with model accuracies
of 90% or higher. Furthermore, we demonstrated the platform applicability of our method by
monitoring viability in a Trichoderma reesei process for cellulase production. We are convinced that
this method will not only facilitate monitoring viability of complex bioprocesses but could also be
used for enhanced process control with hybrid models in the future.

Keywords: cell viability; prediction; chromatogram fingerprinting; filamentous fungi; Penicillium
chrysogenum; Trichoderma reesei Rut-C30; HPLC-SEC

1. Introduction

Bioprocesses are dynamic in nature with varying process conditions rendering inconsistent
product quality. Process variability arises from changes in critical process parameters (CPPs) and
critical material attributes (CMAs) affecting key performance indicators (KPIs) and critical quality
attributes (CQAs) [1]. Therefore, process monitoring is of utmost importance to monitoring and
controlling changes in KPIs and CQAs to deliver consistent product quality. Furthermore, complex
expression systems, such as filamentous fungi, require cumbersome offline methods (e.g., staining) to
monitor process variables (e.g., cell viability [2,3]).

Viable biomass is one of the most important process variables in bioprocesses. Its reliable
estimation allows the determination of other essential variables for process understanding, such as
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growth rates, substrate uptake rates and biomass yield [4]. For filamentous bioprocesses, performance,
control strategies and productivity highly depend on cellular aspects, which calls for a segregated
view of biomass. The determination of viable biomass concentration via chemical methods such as
fluorescence staining using propidium iodide (PI) or fluorescein diacetate (FDA) is accurate but time
consuming. PI cannot cross the membrane of living cells and FDA is only hydrolyzed by metabolically
active cells, making both stains useful for determining viability. In an industrial setting, chemical
analytical methods are not preferred in comparison to physical techniques, which are capable of real
time measurement [5]. Thoroughly reviewed methods for measuring viable biomass include dielectric
spectroscopy, infrared spectroscopy and fluorescence [6,7]. However, inline sensors are prone to
high measurement noise and require chemometric knowledge to establish meaningful measurement
techniques. As filamentous organisms tend to develop special morphological forms consisting of
compact hyphal aggregation [8,9], process monitoring strategies are further complicated. For Penicillium
chrysogenum and Trichoderma reesei bioprocesses, this special morphology (known as “pellets”) featuring
dense biomass clumps rather than loose mycelia results in low mixing times and improved gas–liquid
mass transfer. But pellet morphology also leads to limitations in the transport of substrates and
oxygen [10], which negatively affects biomass growth and productivity. As a result, pellets need to
be compact enough to ensure a compact and productive biomass density and small enough to avoid
diffusional limitations in the pellet’s core. This balance is commonly controlled by optimized agitation
conditions, medium composition or spore inoculum levels. If mass transport into the pellet cannot be
maintained, the biomass will exhibit hyphal degradation beginning in the pellet’s core and a decline in
overall viability [11]. Consequently, most contributions dealing with the assessment of viable biomass
in filamentous cultivations identify a growth phase and a decline phase. The measurable onset of a
viability drop initiates the decline phase. Employing capacitance-based probes growth and decline
phases can be differentiated by an increase of conductivity, with error prone results, however [4,5].
Reliable monitoring strategies capable of identifying the onset of a cultivation’s decline phase are
essential in order to avoid over-feeding and further decline of biomass viability. In this respect, the
relationship between substrate availability and oxygen consumption is also a most relevant factor in
process control: limiting substrate feeding regimes can positively affect productivity in secondary
metabolite production while ensuring high viability due to less substrate oxidation and less oxygen
consumption within the pellet [12,13].

Spectroscopic and chromatographic data have been used in combination with statistical models
for process monitoring strategies and quantifying process variables. Optical sensors have been widely
used to measure and monitor different process variables, such as analyte concentration (e.g., product),
product quality attributes (e.g., glycosylation) and cell level responses (e.g., cell sub-populations) [14–17].
FDA promotes the implementation of process analytical technology (PAT) and quality by design (QbD)
in each unit operation of a bioprocess to monitor and control critical quality attributes (CQAs) [18,19].
In the biotech industry, such multivariate data analysis (MVDA) techniques are gaining acceptance
and are implemented in various leading pharmaceutical companies [20,21]. UV chromatography is
one of the most commonly used techniques in various bioanalytical assays. Recently, we employed
UV chromatography coupled with chemometric approaches to monitor cell lysis in Escherichia coli
bioprocesses [22] and for process development of downstream unit operations [23,24]. In a similar
approach, we used principal component analysis (PCA) with UV chromatographic data of samples
from twelve P. chrysogenum bioprocesses to monitor cell viability. In contrast to the previous study,
where we used a strong anion exchange monolithic column (CIMac QA, BIA separations, Sloveina),
in this study we used a size exclusion chromatography analytical column for better resolution of the
protein and nucleic acid profiles. Furthermore, the predictive power of the model was tested using
partial least squares (PLS), orthogonal partial least squares (OPLS) and principal component regression
(PCR). Based on the model results, the drop in cell viability was identified, and thereby used to define
the optimal time point of harvest or measures to maintain high viability through process control;
for instance, feeding profiles, power input and dissolved oxygen content [13].
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To summarize, in this study we exploit the use of data-driven models (DDM) for bioprocess
monitoring in complex expression systems using HPLC fingerprints as a versatile PAT tool. We analyzed
cultivation samples using a simple HPLC setup equipped with a SEC column. UV chromatogram
fingerprints at 260 nm with statistical models were used to predict and identify the decline of cell
viability in P. chrysogenum processes. The model results are compared and verified with state-of-the-art
viability assessment methods. To show the versatility of the methodology, we implemented the
developed workflow for another filamentous fungus strain, T. reesei Rut-C30, an industrial workhorse
for the production of cellulolytic enzymes [25].

2. Materials and Methods

2.1. Bioreactor Cultivations

2.1.1. Bioreactor Set-Up

P. chrysogenum cultivations were performed either in a Techfors S bioreactor (Infors HT, Bottmingen,
Switzerland, with 10 L maximal working volume) or in a DASGIP Mini parallel reactor system (working
volume 4 * 2.0 L, Eppendorf, Germany). All T. reesei cultivations were performed in the aforementioned
Techfors S bioreactor. The stirrer was equipped with three six bladed Rushton turbine impellers,
of which two were submersed and one was installed above the maximum liquid level for foam
destruction. For supplying pressurized air and oxygen (O2) Four aeration mass flow controllers
(Vögtlin, Aesch, Switzerland) were used. Dissolved oxygen concentration (DO2) was measured using
a dissolved oxygen probe (Hamilton, Bonaduz, Switzerland). pH was measured using a pH probe
(Hamilton, Bonaduz, Switzerland). CO2 and O2 concentrations in the off-gas were analyzed with an
off-gas analyser (M. Müller AG, Egg, Switzerland).

2.1.2. P. Chrysogenum

Samples from P. chrysogenum cultivations from both small scale (SS; working volume 2 L) and
laboratory scale (LS; working volume 10 L) setups were used for UV chromatographic data acquisition.
A total of nine small scale cultivations were tested in a DASGIP Mini parallel reactor system (Eppendorf,
Germany), and three lab scale cultivations were tested in a Techfors S bioreactor (Infors HT, Bottmingen,
Switzerland). The process profiles for the different scales were similar. In general, the batch was
inoculated with approximately 2·108 spores·L−1. During batch phase, pH was not controlled. The end
of the batch was defined as an increase in pH of 0.5 by convention. After the batch, the broth was
diluted with fed-batch medium (15% broth, 85% medium) and fed-batch was started. Details on batch
and fed-batch media can be found in [26]. The fed-batch process lasted for approximately 150–170 h.
Temperature was maintained at 25 ◦C and pH was controlled at 6.5 ± 0.1 by addition of 20% (w/v)
KOH or 15% (v/v) H2SO4, respectively. pH was measured using a pH probe (Hamilton, Bonaduz,
Switzerland). After an additional 12 h, nitrogen and phenoxyacetate feeds were started at constant
rates (6.5 mL·h−1 for nitrogen and 2 mL·h−1 for phenoxyacetate).

A feed-forward controller was implemented to maintain a constant specific glucose uptake rate
of biomass qS. Aeration was controlled at 1 vvm in batch and initial fed-batch. Dissolved oxygen
concentration was controlled between 40% and 90% during the batch phase and at the set-points 5.0,
22.5% or 40.0% during fed-batch, via adjustment of the gas mix using pressurized air, nitrogen and
oxygen. The different qS and dissolved oxygen values are listed in Appendix A Table A1. The agitation
conditions were maintained at 325–700 rpm stirring speed in all process phases.

2.1.3. T. reesei Rut-C30

For testing the versatility of our tool, a cultivation process with another industrially relevant
strain T. reesei Rut-C30 was done. The optimized media recipe for cultivation has been published
elsewhere [27]. In short, the pre-culture medium was supplemented with 10 g·L−1 glucose and
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1 g·L−1 peptone from casein. Batch-medium initially contained 10 g·L−1 lactose, 0.5 g·L−1 urea, 2 g·L−1

(NH4)3SO4, 2 g·L−1 KH2PO4, 0.5 g·L−1 MgSO4·7H2O and 0.5 g·L−1 CaCl2·2H2O mixed with 0.5 L·L−1

0.2 M Na2-HPO4-citric acid buffer (pH 5.0).
Next, a 500 mL pre-culture was inoculated with 5·108 spores·L−1 equally split in two 1000 mL

Erlenmeyer shake flasks. After 24 h at 28 ◦C and 180 rpm on a rotary shaker (Infors HT, Bottmingen,
Switzerland) the pre-culture was transferred to inoculate 4.5 L batch-medium in the reactor. During
the whole cultivation, the pH was constantly controlled at 5.0 ± 0.05 by automatic addition of 20%
(w/v) KOH or 20% (v/v) H2SO4. Following a drop in the CO2 off-gas signal indicating the end of batch,
a fed-batch with (NH4)3SO4 and 200 g·L−1 lactose feed was started. The initial specific lactose uptake
rate of biomass qS was set to 0.18 gLac·gX

−1
·h−1 and fed isocratic until end of process with an average

qS of 0.05 gLac·gX
−1
·h−1. The broth was held at 28 ◦C, pressurized at 1 bar and constantly aerated by

1.0 vvm. The stirrer was set to 600 rpm during the batch phase and 900 rpm during fed-batch phase.
The dissolved oxygen level was always controlled above 40% by the addition of pure O2 in the gas flow.

2.2. Viability Assays

The following published methods ([11,28]) for viability assessment were used in method
development for verification purposes.

2.2.1. P. Chrysogenum

PI Staining

The membrane impermeable dye PI binds to DNA. If subsequently excited at wavelengths of
488 nm, PI will emit in the red spectral section. This characteristic is used for viability assessment
according to the following method: Viability is estimated as a ratio between the fluorescence intensity
of an untreated sample and a microwaved, and hence non-viable negative control.

To investigate viability via propidium iodide (PI) staining according to [11], 200 µL of sample was
diluted 1:5 with phosphate buffered saline (PBS, 8 g·L−1 NaCl, 0.2 g·L−1 KCl, 1.44 g·L−1 and 0.24 g·L−1

KH2PO4, see [29]). In addition, 1 mL of sample was diluted 1:5 with PBS and microwave treated by
leaving it for 30 s at 940 W in a M510 microwave oven (Philips, Amsterdam, The Netherlands). One
milliliter of the microwave-treated sample was used for further investigation. In a next step, duplicates
of all samples (including microwave-treated and untreated samples) were centrifuged for 15 min at
500 rpm. 800 µL of supernatant was removed and 800 µL of PBS buffer was added. The pellet was
resuspended, and the washing step repeated; 100 µL of the resuspended sample was pipetted into a
microtiter well, and 1 µL of 200 µM PI solution (Sigma Aldrich, St. Louis, MO, USA) was added. The
PI was prepared by diluting a 20 mM PI stock solution in DMSO, 1:100 in PBS. After an incubation time
of 20 min at room temperature in darkness, the measurement was performed in a Tecan well-plate
reader (Tecan, Männedorf, Switzerland; ex./em. 535/600 nm). Each sample was measured six times
simultaneously using 96 well plates. Viability assessment was subsequently performed according to
the following equation:

Via = 1 − (FL_rednative / FL_redmicrowaved) (1)

where Via is the viability, FL_rednative is the red fluorescence signal of the untreated sample and
FL_redmicrowaved is the red fluorescence of the microwaved negative control. Viability was measured
in six replicates, leading to a maximum error of 5% for each sample.

2.2.2. T. reesei Rut-C30

FDA Staining

Assessment of viability was performed via fluorescein diacetate staining. FDA is a non-fluorescent
molecule. Esterase activity in live cells leads to hydrolyzation of FDA, resulting in fluorescent
fluorescein [30,31].
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For viability staining, 500 µL sample was diluted 1:10 in phosphate-buffered saline (PBS, 8 g·L−1

NaCl, 0.2 g·L−1 KCl, 1.44 g·L−1 and 0.24 g·L−1 KH2PO4). In total, 490 µL of this solution was incubated
with 10 µL of 12 mM FDA in an acetone solution for 5 min in the dark at room temperature prior to
flow cytometry analysis. The calculated viability is the ratio of metabolically active cells to the total
number of cells, similar to that described by [28]. Detailed information about the used CytoSense flow
cytometer (CytoBuoy, Woerden, Netherlands) is described elsewhere [30,31].

2.3. Data Analysis

2.3.1. Data Acquisition

P. Chrysogenum

Samples from twelve (9 SS and 3 LS) P. chrysogenum cultivations were used for acquiring UV
chromatographic data through size exclusion chromatography (SEC). UV chromatographic data have
been shown to contain process information with respect to nucleic acids (having maximum absorbance
at 260 nm) and protein impurities (having maximum absorbance at 280 nm) [23,24]. Significant changes
in the impurity release profiles, especially during metabolic stress and viability decline phases, can be
used to monitor process performance. The total number of samples from the SS and LS runs were 189 in
total. UV chromatographic data at 260 nm were recorded using a modular HPLC device (PATfinderTM)
purchased from BIAseparations (Ajdovscina, Slovenia). The setup comprised an autosampler (Knauer
Optimas), a pump (Azura P 6.1 L) and a UV detector (Azura MWD 2.1 L). The samples were loaded
onto a Tosho TSKgel G3000SWxl size exclusion chromatography (SEC) column purchased from Tosho
Bioscience LLC (Tokyo, Japan). A loading buffer with 20 mM potassium phosphate, 150 mM sodium
chloride, pH 7.0, was used. The flow velocity was kept constant at 0.75 mL·min−1. All samples were
centrifuged and filtered with a 0.22 µm PVDF filter. Random samples (one in every 10 samples) were
injected twice to ensure reproducibility and quality of the UV chromatographic data.

T. reesei Rut-C30

The collected samples from T. reesei Rut-C30 fed-batch were analyzed using the HPLC Dionex
UltiMate 3000 system (Thermo Fisher Scientific, MA, USA) equipped with autosampler, pump and UV
detector. The SEC column BioBasic SEC-300 x 4.6 mm (Thermo Fisher Scientific, MA, USA) heated to
30 ◦C was loaded with 5 µL of centrifuged and 0.22 µm PTFE filtered supernatant and run in isocratic
operation mode by 0.3 mL·min−1 20 mM K3PO4, 150 mM NaCl pH 7.0 buffer. Data were acquired at
260 nm by UV detection.

2.3.2. Data Pre-Processing

UV chromatographic data are prone to data misalignments and shifts along the retention time.
Therefore, several pre-processing steps are necessary prior to PCA modelling. As described in
previous studies [32], we used the optimal correction algorithm to correct misalignments in the raw UV
chromatographic data. Three alignment techniques, namely, icoshift [33], peak alignment using fast
Fourier transform (PAFFT) and recursive alignment using fast Fourier transform (RAFFT) [34], were
screened, and the optimal correction algorithm was chosen as described in [35]. The filamentous fungi
cultivations had variations in the estimated viability from the offline analytics; therefore, a smoothing
spline method was used to correct offline data prior to predictive models. All UV chromatographic
data were scaled and centered prior to establishing predictive models.

2.3.3. Descriptive Analysis (PCA)

PCA is one of the most commonly used chemometric techniques for compressing high volumes of
process data (e.g., spectroscopic sensors [36–38]) into few meaningful process features. We used PCA
models to identify process trends using UV chromatographic dataset at 260 nm. We chose to use UV
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chromatographic data at 260 nm, since the nucleic acids have maximal absorbance at 260 nm and can
be used for detecting and predicting viability decline. For clarity, we want to capture the differences in
the nucleic acid release pattern along the process using UV chromatographic data and chemometric
models. In short, PCA is an exploratory technique which decomposes the entire chromatographic
dataset to a few latent principal components. In a PCA model with UV chromatographic data, each
sample is represented as a score and is projected across different principal components (PCs) based on
its similarities or differences. The resulting score plots from the PCA model can be used to identify
possible groupings or trends between samples in the UV chromatographic data. The loadings explain
the retention time at which variance in the chromatographic data was significant. In general, the first
PCs explain most of the variance in the chromatographic dataset. PCA has been widely reviewed for
applications in process development and production [37,39,40].

2.3.4. Predictive Analysis

Three different modelling techniques were used for the prediction of viability using UV
chromatogram fingerprints at 260 nm; namely, partial least squares (PLS), orthogonal PLS (OPLS) and
principle component regression (PCR). The modelling techniques have been well defined and explained
in many publications [41–46]. PLS is the most commonly used multivariate method to assess the
relationship between a descriptor matrix X and the response matrix Y. PLS is usually used for prediction
of quantitative Y data; however, qualitative Y data can be used for discriminant analysis (PLS-DA).
OPLS is an extension of the supervised PLS regression. In simple words, OPLS uses information from
the Y matrix to decompose the X matrix into blocks of variation correlated and orthogonal to the Y
matrix. In PCR, as a first step the UV chromatographic dataset is rendered as a PCA model and the
scores from the model are used to predict the viability. The model results were evaluated based on the
root mean squared error of estimation (RMSEE) and 7-fold cross validation (RMSEcv). The workflow
for data acquisition, pre-processing, descriptive and predictive analysis was applied to the T. reesei
data to present the versatility of the tool.

2.3.5. Software

Pre-processing of chromatographic data, namely, peak alignment using correction techniques and
offline data correction, were done in MATLAB R2019a version 9.6 (Mathworks, MA, USA). PCA, PLS
and OPLS models were established in SIMCA v15.0.2 (Umetrics, Umea, Sweden). PCR models were
established in Python (using SpyDer version 3.3.6; distributed under the terms of the MIT License).

3. Results

3.1. Data Acquisiton

A total of 189 samples were drawn from small-scale and laboratory oratory scale runs from
the P. chrysogenum bioprocesses for offline and at-line analyses. Cell viability, biomass, product and
substrate concentrations with their respective rates and yields were calculated using standard analytical
techniques. An example time course of cell viability measured via PI treatment using a plate reader
as explained in Section 2.2.1 from one small-scale and laboratory scale run, is shown in Figure 1.
Both runs were conducted at a maximum qs setpoint of over 0.05 gX·gS

−1
·h−1. While the small-scale

cultivation’s qs setpoint could not be sustained due to a continuous loss in viability, the laboratory
scale run conducted at a high average qs value was stopped before a massive drop in viability occurred.
For comparison, the small-scale run SS4 was conducted at a low qs at consistently high viability.
This emphasizes that lower qs values help to sustain culture viability, as explained in our previous
work: using a design of experiments (DoE) approach, we demonstrated the positive effect of lower qs
setpoints in a reproducible manner [13].
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Figure 1. Exemplary drop in viability in Penicillium chrysogenum bioprocesses measured via PI staining
at prolonged high qs values in small-scale run 1; laboratory scale run 1 was stopped at the onset of
viability decline. For comparison, low qs values enabled consistently high viability in small-scale run 4.

3.2. Data Pre-Processing

Raw UV chromatograms at 260 nm were acquired using either the modular HPLC setup or a
Thermo system with a size exclusion chromatography (SEC) column. Shifts along the retention time in
the UV chromatograms as fingerprints were corrected using the PAFFT algorithm [47]. The comparison
of the raw data and the pre-processed data is shown in Figure 2.

Peak artefacts and shoulder peaks can be seen in the icoshift and RAFFT algorithms; this is
mainly due to aligning the tallest peak from all samples, where the entire data is shifted to give
maximum correlation with respect to alignment of the maximum absorbance. It can be inferred from
the heatmaps (Figure 2E–H) that PAFFT has removed misalignments, and therefore was chosen for
establishing descriptive and predictive models. The offline viability data were corrected to remove
noisy measurements using a smoothing spline function. The raw and smoothed viability data are
shown in Figure A1.
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Figure 2. Data alignment correction of UV chromatographic datasets from twelve P. chrysogenum
cultivations. A, Raw UV data; B, icoshift correction; C, PAFFT correction; D, RAFFT correction; E–H
heatmaps of the raw data and correction methods respectively.

3.3. Descriptive Analysis

Descriptive analysis was done as a first step on the UV chromatographic dataset from P. chrysogenum
processes using PCA models. Three PCA models were developed on (1) the small-scale runs, (2) the
laboratory scale runs and (3) the entire dataset to analyze the intrinsic variability between the samples
and cultivations. The score plot from the entire dataset is shown in Figure 3.Processes 2020, 8, x FOR PEER REVIEW 9 of 17 
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Explained variance from the first six PCs for the entire dataset were 47%, 30%, 10%, 6%, 3% and
2% (adding up to 96%); the remaining PCs were discarded. The PCA model with the entire dataset
shows an aggregated cluster at the center of the score plot. The processes, namely, SS 7, 8 and 9
have score spreading upwards and away from the aggregated cluster. It is interesting to note that
the aforementioned processes have the lowest viability values (as shown in Figure A1). The scores
from the PC2 of the PCA model were plotted across process time, as shown in Figure A2. The scores
from the LS runs have a similar trend, since the processes were run under similar conditions; however,
huge variability can be seen among the SS runs. We speculate the differences in the feeding regimes,
which in turn have dilution effects, caused said high variability in the SS runs. Nevertheless, using
descriptive analysis results, a golden batch approach (e.g., using exponentially weighted moving
average (EWMA)) can be used to set the standard deviation ranges from run-of-the-mill processes, and
significant process deviations can be analyzed. Furthermore, the PCA models were used to detect the
outliers from the UV chromatographic datasets based on the distance to model (DmodX) values. All
samples which had a DmodX values twice that of Dcrit were removed for further predictive analysis.

3.4. Predictive Analysis

Three predictive modelling techniques, namely, PLS, OPLS and PCR, were used to predict the raw
offline viability and the smoothed viability measurements based on the UV chromatographic datasets.
The prediction results for both raw and smoothed viability values from the aforementioned modelling
techniques for all samples from P. chrysogenum cultivations are shown in Figure 4.

Overall, the OPLS models showed best predictive results with an normalized root mean squared
error of cross validation (NRMSEcv) of 0.10 and 0.07 for the raw and smoothed viability measurements
respectively. It is important to note that irrespective of the scales the model was able to predict cell
viability with an accuracy of 90%. The PLS and PCR models showed close prediction accuracy to the
OPLS models. The NRMSEcv of the PLS models were 0.11 and 0.08 for the raw and smoothed viability
values, and for PCR models they were 0.12 and 0.10 respectively. The NRMSEcv of the two response
variables for all models are shown in Appendix A Table A2. The obtained information can be used
to detect the onset of a drop in viability and subsequently avoid further decline via adjustment of
fermentation parameters, such as the feed rate.

3.5. Tool Versatility

The developed tool and methodology were implemented in T. reesei Rut-C30 bioprocesses to
test its versatility. The PCA model showed a clear trend with respect to process time, as shown in
Appendix A Figure A2. The predictions for the cell viability based on PLS, OPLS and PCR models
rendered accurate results, with PLS having an RMSEcv of 0.05, OPLS—0.07 and PCR—0.07. The offline
measurements and the predictions from the PLS model over process time are shown in Figure 5.

However, we envision that a robust prediction model could be developed for T. reesei
processes with higher sample numbers, earlier decline in viability and changing process conditions.
The implementation of the workflow showed promising results for this additional organism,
highlighting the use of UV chromatographic data from HPLC-SEC for a broader application in
filamentous fungi processes.
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4. Discussion and Conclusions

UV chromatographic data have been widely used for process monitoring in upstream cultivations
and process development in downstream unit operations. With the rising advances in online liquid
handling systems and supervisory data analytical methodologies, UV chromatographic data as
fingerprints can be exploited for process monitoring, online state estimation and eventually, process
control. In this study, we used UV chromatographic samples from different scales and organisms
to descriptively analyze process trends, and using supervised prediction models, predicted the cell
viability. Although numerous sophisticated techniques are available based on conductivity, dielectric
spectroscopy and RAMAN spectroscopy for prediction of cell viability and monitoring bioprocesses,
these techniques require expensive hardware. The HPLC-SEC UV chromatographic data at 260 nm and
280 nm contain information regarding the nucleic acids and protein release profiles from the process.
In process optimization, the descriptive analysis can be used to follow process trends and identify
potential deviations, especially in pilot scale or large-scale production runs. Numerous statistical
methods are available to establish boundaries (usually ± 3 SD with a EWMA), and potential deviations
can be monitored and acted upon in a timely fashion.

Diffusional limitations within a fungal pellet primarily involve oxygen and occur in dense biomass
structures. However, it was shown that lower substrate availability decreases the consumption
of oxygen and can enhance pellet viability [12] as well. Consequently, a decrease in viability of
P. chrysogenum pellets could be detected and moderated via adjustments of the feeding profile, as
previously shown [13]. For this purpose, the chromatographic UV datasets show high predictive
power, as reported in the results section.

The descriptive score trends from the LS runs are shown in Figure A2. The OPLS models showed
high precision for predicting cell viability, and the methodology has been shown to work for another
filamentous fungi process; namely, T. reesei. Results from the prediction models from T. reesei further
highlighted the platform applicability of the presented methodology. Prediction models coupled with
online HPLC devices can pave way for predicting the cell viability in real time. Product concentration
and potential impurity information can be captured using the HPLC data, and feed-rates can be
controlled to boost productivity.

We further envision that supervised classification models could be used to distinguish different
phases of the process, and with the use of mechanistic descriptors, hybrid models could be used to
simulate the rate of decline in viability and thereby enable process control. All forms of analytical data
can be combined to holistically analyze the information gaps in the process, and promising modelling
techniques can be used to extract maximal information from such processes. Potential deviations can
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be encountered early on, and using structured risk-assessment and mitigation tools, the causes for
such deviations can be analyzed.
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Appendix A

Table A1. The average substrate uptake rates qs, average dissolved oxygen content and average
viability values of the P. chrysogenum cultivations from small scale (SS) and large scale (LS) cultivations.
Please note that some cultivations were stopped at the onset of a viability decline; therefore, the average
viability is relatively high at a comparatively low standard deviation.

Name Average qs
[gs/gx/h]

Average Dissolved Oxygen
Content [%] Average Viability [-]

LS1 0.054 ± 0.005 40.0 ± 5.4 0.79 ± 0.05
LS2 0.045 ± 0.004 40.0 ± 5.2 0.82 ± 0.09
LS3 0.017 ± 0.003 40.0 ± 5.1 0.88 ± 0.05
SS1 0.042 ± 0.004 40.0 ± 6.5 0.63 ± 0.24
SS2 0.038 ± 0.003 22.5 ± 4.1 0.68 ± 0.18
SS3 0.015 ± 0.004 05.0 ± 0.5 0.70 ± 0.17
SS4 0.026 ± 0.003 22.5 ± 3.9 0.88 ± 0.06
SS5 0.035 ± 0.003 22.5 ± 6.9 0.87 ± 0.03
SS6 0.018 ± 0.001 5.0 ± 0.5 0.78 ± 0.12
SS7 0.034 ± 0.005 22.5 ± 6.6 0.79 ± 0.06
SS8 0.033 ± 0.005 22.5 ± 5.0 0.78 ± 0.10
SS9 0.040 ± 0.012 5.0 ± 0.5 0.35 ± 0.18
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