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Abstract: Nowadays, psychological stress represents a burdensome condition affecting an increasing
number of subjects, in turn putting into practice several strategies to cope with this issue, including
the administration of relaxation protocols, often performed in non-structured environments, like
workplaces, and constrained within short times. Here, we performed a quick relaxation protocol
based on a short audio and video, and analyzed physiological signals related to the autonomic nervous
system (ANS) activity, including electrocardiogram (ECG) and galvanic skin response (GSR). Based on
the features extracted, machine learning was applied to discriminate between subjects benefitting from
the protocol and those with negative or no effects. Twenty-four healthy volunteers were enrolled for
the protocol, equally and randomly divided into Group A, performing an audio-video + video-only
relaxation, and Group B, performing an audio-video + audio-only protocol. From the ANS point of
view, Group A subjects displayed a significant difference in the heart rate variability-related parameter
SDNN across the test phases, whereas both groups displayed a different GSR response, albeit at
different levels, with Group A displaying greater differences across phases with respect to Group B.
Overall, the majority of the volunteers enrolled self-reported an improvement of their well-being
status, according to structured questionnaires. The use of neural networks helped in discriminating
those with a positive effect of the relaxation protocol from those with a negative/neutral impact based
on basal autonomic features with a 79.2% accuracy. The results obtained demonstrated a significant
heterogeneity in autonomic effects of the relaxation, highlighting the importance of maintaining a
structured, well-defined protocol to produce significant benefits at the ANS level. Machine learning
approaches can be useful to predict the outcome of such protocols, therefore providing subjects less
prone to positive responses with personalized advice that could improve the effect of such protocols
on self-relaxation perception.

Keywords: autonomic nervous system; ECG; galvanic skin response; heart rate; heart rate variability;
machine learning; mindfulness; neural networks; relaxation; signal processing; skin conductance;
wearable sensors; yoga

1. Introduction

Psychological stress affecting mental and physical health is continuously increasing in nowadays’
society, with several negative consequences on one’s quality of life [1]. Individuals try to cope with
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stress by following different strategies, from psychopharmacological to behavioral remedies, with
alternating fortunes. However, the efforts to find non-pharmacological therapies to tailor stress
and related disorders are continuously growing, and often take into account relaxation techniques,
including yoga, mindfulness and other similar methods [2,3].

According to literature, yoga and mindfulness, for example, have proven beneficial effects on the
autonomic nervous system (ANS) activity in several cohorts of patients. Indeed, despite a significant
heterogeneity of the effects brought by the practice, mainly due to the different study populations,
experimental settings and different techniques taken into account, beneficial effects were retrieved in
several autonomic domains, including heart rate (HR) reduction, heart rate variability (HRV) increase
and changes in blood pressure (see [3] for a review).

Specifically focusing on the ANS effects reported in young, non-diseased subjects, Sawane and
Gupta [4] randomized a cohort of individuals into two groups, one of which performed yoga and the
second one a swimming class. The authors found improvements in all autonomic parameters in both
groups, with the subjects performing yoga asanas responding better on high frequency, suggesting
increases in both ANS and parasympathetic activity. Other studies found just slight variations of ANS
parameters, mostly limited to the HR [5,6], often selected for its ease of detection with respect to other
parameters, including those related to the HRV.

In this framework, the use of wearable sensors was seen to be feasible, useful and minimally
obtrusive for autonomic assessment in several studies [7,8], and in particular this approach was
followed in stress monitoring and related perspective, with good success [9,10].

However, the continuous growth in relaxation techniques’ spread enabled several employers to
start adopting relaxation practices also at the workplace, often in very short sessions, undertaken in
crowded, non-structured environments, with debatable efficacy and doubtful benefits to the health of
the employees.

To this extent, to the best of our knowledge, no studies have investigated ANS activity
using wearable sensors during a quick relaxation session performed in the workplace in young,
non-diseased subjects.

In addition, relaxation protocols proposed to groups can be extremely efficient for some individuals,
leaving other ones without appreciable effects in terms of well-being enhancement. To understand the
psychophysiological specificities of each individual prior to the protocol administration could suggest
specific personalized exercises to maximize the outcome of relaxation even in non-fully-structured
environments. To this extent, the technological advancements in the domain of machine learning
and artificial intelligence could represent useful aids to properly solve this issue in a quantitative,
objective manner.

In light of all such considerations, in the aforementioned experimental setting, this pilot study
aimed at discovering whether wearable, minimally invasive, solutions are able to detect changes related
to the ANS activity during the presentation of a short video clip and of a short audio track related to the
seven chakras of yoga in a cohort of young individuals without concomitant conditions. Furthermore,
as an exploratory analysis, we also aim at investigating the potential usefulness of machine learning in
discriminating, prior to the relaxation, the subjects which are more prone to receive positive effects
from the protocol.

2. Materials and Methods

2.1. Study Population

For the present study, 24 healthy volunteers (5 males, 19 females, mean age 27.4 ± 5.5 years,
age range 18–38) were enrolled. All subjects gave their informed consent for inclusion before they
participated in the study. The study was conducted in accordance with the Declaration of Helsinki.

Exclusion criteria included the presence of associated cardiovascular or psychological/psychiatric
conditions, usage of medicaments, or inability/unwillingness to sign informed consent.
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2.2. Relaxation Procedure

The 24 subjects were randomly assigned to two groups, namely Group A and Group B.
After 3 min of resting, both groups were administered a relaxation protocol consisting of watching

a video clip related to the 7 chakras of the yoga tradition on a PC screen (Task 1). The video clip,
extracted from a 1-h long clip available on YouTube (San Bruno, CA, USA), lasted 210 s (3 and a half
min) and included both audio and video tracks related to the 7 yoga chakras consecutively, with
stimulation changing every 30 s (audio-video relaxation). The audio track was related to the classical
sounds of each chakra, whereas the video was composed of 7 kaleidoscopes, each displaying the color
of the corresponding chakra and containing the related symbol.

After this presentation, the subjects underwent a 3 min period of resting before undergoing the
second track, lasting 3 and a half min, composed of the same video track as in Task 1 for Group A
(video-only relaxation) and of the same audio track as in Task 1 for Group B but only a black screen in
front of them (audio-only relaxation).

In summary, the overall protocol consisted of those five phases:
- Baseline (3 min): basal measurement. The subject, seated in a comfortable chair, was asked to

relax during this phase;
- Task 1 (3 min, 30 s): presentation of audio and video relaxation protocol, as explained above;
- Inter-task (3 min): between-tasks resting state;
- Task 2 (3 min, 30 s): presentation of video (Group A) or audio (Group B) relaxation protocol,

as explained above;
- Recovery (3 min): post-task basal measurement. The subject was asked to relax during this

phase, similarly to the Baseline [7,11].

2.3. Signal Acquisition

Participants were equipped with devices for the acquisition of physiological signals, including
electrocardiogram (ECG) and galvanic skin response (GSR). Both signals were acquired with unobtrusive
wearable sensors manufactured by Shimmer Sensing, Inc. (Dublin, Ireland). More specifically, ECG
was acquired through the single-lead, Bluetooth Shimmer ECG Unit at a sample frequency of 500 Hz,
whereas GSR was captured at 51.2 Hz with the Shimmer3 GSR+ Unit according to a protocol already
described elsewhere [12].

Both devices were connected by Bluetooth to a tablet, running a graphical user interface developed
by Shimmer Sensing, Inc.

ECG and GSR signals were acquired during the five phases mentioned in the previous paragraph.

2.4. Psychological Questionnaires

The well-grounded, reliable [13] visual analogue scale for anxiety (VAS-A) [14] and state-trait
anxiety inventory (STAI) [15] questionnaires were administered to the volunteers before and after the
recording protocol to infer the state and trait anxiety for each of the subjects enrolled. Since STAI is
composed of both STAI-Y1 and STAI-Y2, the first of which related to the state anxiety and the second
one to the trait anxiety, only VAS-A and STAI-Y1 were repeated after the relaxation protocol.

2.5. Signal Analysis

2.5.1. ECG

The ECG signal was analyzed through a graphical user interface developed by our research group
with Matlab (Mathworks, Natick, MA, USA), allowing extraction, from the raw signal, the associated
tachogram according to the well-grounded Pan–Tompkins algorithm [16].

The interface also allows one to extract common time- and frequency-domain features associated
with the signal [17,18], including:

- time-domain features:
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• HR: number of heart beats occurring per time unit, expressed in bpm. The HR is normally related
to the activity of the sympathetic branch of the ANS;

• Standard deviation of normal-to-normal intervals between two consecutive R peaks of the ECG
signal (SDNN): measurement of the HRV, expressed in ms. SDNN is normally affected by both
sympathetic and parasympathetic components of the ANS [19];

• Changes in successive normal sinus (NN) intervals exceeding 50 ms (pNN50), expressed as a
percentage. Like other HRV measures, pNN50 also indicates the overall activity of the autonomic
nervous system; however, under certain experimental conditions, pNN50 is often considered as a
reliable indicator of the parasympathetic activity;

• Cardiac sympathetic index (CSI) extracted from the Lorenz plot. CSI is considered a reliable
indicator for the sympathetic activity [20].

- frequency-domain features:

• Normalized component of the ECG signal power spectral density at low frequency (0.04–0.15 Hz)
(nLF). nLF is normally considered to be related to both sympathetic and parasympathetic activity;

• Normalized component of the power spectral density of the ECG spectrum at high frequency
(0.15–0.4 Hz) (nHF). nHF is normally related to the parasympathetic activity;

• Low- vs. high-frequency components of the power spectral density of the ECG spectrum
(Low-to-High Frequency (LF/HF) ratio). LF/HF ratio is often considered as a sort of balance
between sympathetic and parasympathetic activity.

It is worth noting that all the frequency-domain parameters were extracted by the power spectral
density estimated by the Welch method [21].

2.5.2. GSR

GSR signal was analyzed through the Matlab-based software Ledalab V3.4.9 (General Public
License (GNU)) [22]. With the help of this tool, for each phase, the overall mean GSR signal and its
tonic component were extracted. For this study, the phasic component was not considered since the
study aimed at comparing the signal in the various experimental phases and not the single response to
a given stimulation.

2.6. Statistical Analysis

In this study, statistical analysis was performed with SPSS v.23 (IBM Corporation,
Armonk, NY, USA).

At first, we aimed to assess the normality of the variables’ distribution using the Shapiro–Wilk
Test [23].

In case of non-gaussianity, Friedman’s test followed by Wilcoxon signed rank test was performed to
compare the different phases, while Spearman’s test for correlation analysis was applied. Correlations
were further checked by applying the false discovery rate (FDR) test to control false positive cases.

2.7. Machine Learning

Based on the results from the statistical analysis, a machine learning approach was adopted using
the dedicated Matlab App “Classification Learner”. Several classifiers were trained using as input
the autonomic features extracted from both ECG and GSR signal as described in Section 2.5.1 and
Section 2.5.2. Such Matlab-based classifiers included tree, linear discriminant, quadratic discriminant,
logistic regression, support vector machine (SVM) and k-nearest neighbor (KNN). The output was set
to either “0” or “1” in case of “negative” or “no effect” or in case of “positive” effect of the relaxation
protocol, respectively. Such value was based on the variation in the self-reported anxiety through
STAI-Y1 scale: when the STAI-Y1 was increased after the treatment (i.e., increased anxiety), the output
was set to “0”, as in the case of no STAI-Y1 variation; conversely, when the STAI-Y1 score after the
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protocol was decreased, the output was set to “1” (i.e., decreased anxiety). Concerning the methodology,
we decided to use the cross-validation method as it appears to give a good estimate of the predictive
accuracy of the final model trained with all the data. This approach requires multiple fits but appears
to make efficient use of all the data, so it is recommended for small data sets. The best results were
obtained using 5-fold cross-validation.

3. Results

3.1. Normality Test

According to the normality tests, all the variables were found to be distributed other than gaussian,
therefore requiring all the statistical tests to be performed with non-parametric methods.

3.2. ECG Parameters

3.2.1. Group A

As stated above, the 12 subjects of Group A underwent the protocol foreseeing audio+video and
video only stimulation.

Here, both SDNN (F = 11.799, p = 0.019) and CSI (F = 9.667, p = 0.046) were significantly different
between the test phases.

Specifically, SDNN was decreased at Task 1 with respect to the Baseline (Z = −2.040, p = 0.041),
with a following increase at Inter-task (Z = −2.118, p = 0.034) and a subsequent decrease at Task 2
(Z = −2.001, p = 0.045) (Figure 1a).Processes 2020, 8, x  7 of 13 
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As for CSI, no significant variations were seen comparing the single phases one-by-one.
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3.2.2. Group B

No significant variations concerning ECG-related autonomic parameters were noticed for Group
B, undergoing the audio+video and audio only protocol.

The results obtained, divided into the two groups, are reported in Table 1.

Table 1. ECG features, expressed as means ± SDs, for the two groups, separately.

Group A

Feature Baseline Task 1 Inter-Task Task 2 Recovery

HR (bpm) 72.6 ± 17.4 71.5 ± 15.6 71.8 ± 14.3 71.1 ± 13.6 72.6 ± 14.0
SDNN (ms) 64.3 ± 28.6 57.7 ± 24.5 67.4 ± 20.4 61.5 ± 20.0 70.7 ± 25.8
pNN50 (%) 25.3 ± 20.0 24.9 ± 22.5 25.6 ± 21.1 26.4 ± 22.7 25.7 ± 20.5
CSI (ratio) 2.41 ± 0.92 2.41 ± 1.03 2.64 ± 0.88 2.50 ± 1.02 2.68 ± 0.64
nLF (n.u.) 0.54 ± 0.23 0.52 ± 0.25 0.60 ± 0.23 0.54 ± 0.26 0.57 ± 0.18
nHF (n.u.) 0.46 ± 0.23 0.48 ± 0.25 0.40 ± 0.23 0.46 ± 0.26 0.43 ± 0.18

LF/HF (ratio) 1.90 ± 1.79 1.93 ± 1.96 2.71 ± 2.60 2.25 ± 2.51 1.93 ± 1.68

Group B

Feature Baseline Task 1 Inter-Task Task 2 Recovery

HR (bpm) 78.6 ± 11.0 77.1 ± 10.7 77.6 ± 8.8 77.1 ± 9.6 77.3 ± 8.8
SDNN (ms) 52.6 ± 25.5 51.7 ± 27.1 53.9 ± 29.7 53.6 ± 25.9 60.4 ± 32.4
pNN50 (%) 15.3 ± 13.6 15.7 ± 14.0 14.4 ± 12.9 15.0 ± 13.3 15.4 ± 14.6
CSI (ratio) 2.78 ± 0.65 2.63 ± 0.53 2.76 ± 0.65 2.81 ± 0.77 2.99 ± 0.92
nLF (n.u.) 0.56 ± 0.11 0.56 ± 0.12 0.55 ± 0.12 0.62 ± 0.13 0.58 ± 0.15
nHF (n.u.) 0.44 ± 0.11 0.44 ± 0.12 0.45 ± 0.12 0.38 ± 0.13 0.42 ± 0.15

LF/HF (ratio) 1.43 ± 0.80 1.41 ± 0.59 1.40 ± 0.78 1.93 ± 1.03 1.81 ± 1.49

3.3. GSR Parameters

3.3.1. Group A

The 12 subjects belonging to this group displayed variation in both global (Friedman’s F = 14.533,
p-value = 0.006) and tonic (F = 23.533, p < 0.001) GSR along the duration of the experiment.

Such variations consisted of an increased global and tonic GSR at Task 1 with respect to the
Baseline (Wilcoxon’s Z = 1.961, p = 0.050 for global GSR; Z = 2.118, p = 0.034 for tonic GSR), and a
further increase for both parameters at Recovery with respect to Task 2 (Z = 2.981, p = 0.003 for global
GSR; Z = 3.059, p = 0.002 for tonic GSR) (Figure 1b,c).

3.3.2. Group B

Subjects from Group B only displayed a slight significance concerning the differences in GSR
signal. In particular, global GSR was changed along the experimental protocol (F = 9.533, p = 0.049),
with a particular increase at Recovery with respect to Task 2 (Z = 222.667, p = 0.008) (Figure 2).

The results obtained, divided into the two groups, are reported in Table 2.

3.4. Questionnaires

Overall, Group A subjects displayed a reduction of anxiety on both questionnaires (Z = −2.226,
p = 0.026 for VAS-A, Z = −2.584, p = 0.010 for STAI-Y1), whereas Group B subjects modified their
performances on VAS-A only (Z = −2.271, p = 0.023), without differences seen for STAI-Y1 (Z = −1.385,
p = 0.166).
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Table 2. GSR features, expressed as means ± SDs, for the two groups, separately.

Group A

Feature Baseline Task 1 Inter-Task Task 2 Recovery

GSR Global (µS) 2.34 ± 1.54 2.54 ± 1.71 2.78 ± 1.88 2.80 ± 1.92 3.21 ± 2.11
GSR Tonic (µS) 2.10 ± 1.56 2.32 ± 1.73 2.54 ± 1.85 2.59 ± 1.87 2.98 ± 2.05

Group B

Feature Baseline Task 1 Inter-Task Task 2 Recovery

GSR Global (µS) 1.43 ± 0.82 1.57 ± 1.01 1.46 ± 0.93 1.52 ± 1.02 1.80 ± 1.31
GSR Tonic (µS) 1.31 ± 0.76 1.47 ± 0.97 1.37 ± 0.90 1.40 ± 0.99 1.65 ± 1.26

3.5. Correlations between Autonomic Parameters and Questionnaires

After applying the FDR, just a few correlations remained significant between autonomic parameters
and questionnaires. In particular, significant positive correlations were seen between the difference
between post-test vs. pre-test in GSR global and tonic and the difference between post-test vs. pre-test
in VAS-A just in Group B subjects (r = 0.641, p = 0.025 for both GSR global and GSR tonic), whereas
subjects belonging to the Group A did not display any correlations between autonomic parameters
and questionnaires.

3.6. Machine Learning

Based on the two features more likely to discriminate between “positive” and “negative” or “no”
effects of the relaxation protocol (i.e., CSI and LF/HF), several classifiers were trained taking advantage
of the dedicated Matlab-based App.

Among them, the Subspace Discriminant classifier, trained on five cross validation cycles being
the optimal trade-off between performances and computational load, was selected as the most effective
one, providing a correct classification of the subjects in 79.2% of cases. The relative confusion matrix is
displayed in Figure 3.
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The data displayed revealed that the network correctly classifies the class “0” individuals (i.e.,
the subjects without a significant improvement of their well-being status) in 62.5% of cases, whereas
the class “1” subjects (i.e., those self-reporting a significant well-being improvement) were correctly
classified in 87.5% of cases.

4. Discussion

A quick, naturalistic relaxation protocol was seen to bring little difference in the autonomic
domains studied here. Despite having reported a reduction in the perceived state anxiety of the
majority of the subjects enrolled, confirmed by both VAS-A and STAI-Y1 results, the short duration of
the protocol and, probably, the naturalistic experimental setting prevented the autonomic nervous
system from displaying evident variations associated with the relaxation protocol. However, the trend
noticed between the two groups was slightly different, driving to hypothesize a different stress level
brought by the two distinct protocols to the volunteers.

More specifically, subjects from Group A displayed reduction in the HRV-related SDNN during
the presentation of both audio+video and video-only stimulation, suggesting that such relaxing stimuli
caused an overall autonomic reduction immediately during their presentation.

On the other side, the results obtained with the GSR analysis revealed an increased arousal
occurring after the presentation of the stimuli, as highlighted by the higher GSR values at Recovery
with respect to Task 2. A similar increase was also seen at Task 1 with respect to the Baseline, but only
limited to Group A, possibly representing a false positive evidence of the protocol.

Interestingly, GSR measurement was correlated, in particular among Group B subjects, with the
scores of the questionnaires related to state anxiety. In particular, subjects displaying higher increases
(or lower decreases) of the perceived anxiety state also display higher increases of the GSR signal after
the test completion. This fact demonstrated the coherence between some physiological signals related
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to emotional stress and the perceived, self-reported stress scale related to anxiety state. This result
confirms, and somewhat strengthens, previous evidence from existing literature highlighting the
valuable contribution of GSR in detecting stress levels [24–26].

Concerning the variations of the autonomic parameters, despite heterogeneity between study
protocols, existing literature is quite concordant about the positive effects on HRV brought by relaxation
procedures. For example, positive HRV variations, in terms of HRV-LF decreases and HRV-HF increases,
caused to healthy volunteers by mindfulness, were found by Nijjar and colleagues [27] and, earlier, by
Takahashi et al. [28]. More recently, in more structured protocols, it was demonstrated that HRV can be
considered as a reliable physiological marker for the capacity for self-regulation and adaptation [29],
physiological characteristics were demonstrated to be enhanced by mindfulness protocols [30].

Similar benefits were also seen for yoga practice, especially those taking into account slow
breathing protocols, as demonstrated by the review published by Nivethitha and colleagues [31].

Such autonomic benefits were seen for all subjects, independent of age [32,33], even though the
magnitude of such effects appeared to be higher for older than for younger adults, according to Pal
and colleagues [34].

In this regard, our protocol failed to replicate the majority of literature findings, probably because
of the experimental setting adopted in the present study. Such results demonstrate that, despite
a slight, yet significant variation in perceived stress scales brought by a brief relaxation protocol,
in turn correlated with the GSR signal, more structured protocols should be administered by qualified
trainers to allow detecting verisimilar autonomic changes referring to the beneficial effects of such
relaxation practices.

As such, the use of wearables in characterizing the autonomic pattern of a person (or a group
of persons) was seen to be highly acceptable by the end-user, providing useful information about
the health and well-being status of the subject. Furthermore, they appear to be affordable—from a
logistic point of view, featuring easy recharge, high portability and, somewhat, low cost—and reliable,
with good stability of the signal acquired and easy data analysis and interpretation, as already seen in
other works [7–10,35].

However, the key point of the present work, representing a further novelty of the approach
described here, dealt with the use of machine learning tools for the prediction of the relaxation protocol
outcome in this specific experimental setting.

To the best of our knowledge, this is the first scientific article to adopt this approach in the specific
domain of audio and video relaxation protocols to evaluate their effect on perceived anxiety as main
outcome. Indeed, just one recently published article, conducted on a large sample, went through
this topic, limited to the administration of relaxation music, retrieving predictive factors that might
influence therapeutic music listening outcomes [36].

In our research, the classifier adopted provided satisfying results, with classification accuracy
near 80%. The vast majority (87.5%) of positive responders to the protocol were correctly classified,
whereas among those not responding or negatively affected by the treatment, the correct classification
fell to 62.5%. This fact is likely to be due to the low number of individuals belonging to the latter group,
making the classifier training trickier and suggesting the need to enlarge the study population of this
pilot to collect more data allowing this gap to be filled. This step is of paramount importance for our
research since the main usefulness of the classifier is to identify a priori of possible non-responders to
the treatment, customizing the protocol based on their specific needs.

In future, the proposed approach could be employed on a large scale to optimize the outcome and
usefulness of relaxation treatments for stress reduction in workplaces.

Limitations

The results presented should be taken into account in light of some limitations. At first, a significant
gender-bias is present when considering the overall study population. Indeed, a larger number of
females are present with respect to males, accounting for a prevalence that could have masked
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potential differential effects of the relaxation protocol based on gender. At the same time, the relatively
small sample size, that is normal for a pilot study as is ours, has not been allowed to undergo
further comparison (e.g., based on gender, age, etc.), discovering underlying differential effects of the
relaxation at the autonomic level and to properly train the machine learning classifier, especially on
non-responders. In such context, with small samples, the use of intra-person approaches, in which
training and testing is performed on the same subject, could be a partial solution. However, we decided
not to follow this option to stay even more conservative in our results.

At the same time, given the small cohort of subjects enrolled and tested, we only used one
cross-validation value for assessing model performances. In future studies, on larger datasets,
the application of diverse cross-validation values would reveal the best approach to be used based on
the specific data included in the model.

Finally, another limitation concerns the methodology chosen for the relaxation that, in order
to keep the protocol as simple and naturalistic as possible, was based on audio and video tracks
downloaded from the popular web platform YouTube. Future studies, involving larger cohorts,
should take into account the possibility of developing ad hoc protocols with the assistance of yoga or
mindfulness qualified teachers.

5. Conclusions

The present study demonstrated the usefulness of the machine learning approach in identifying
potential non-responders to relaxation treatments, which should be carefully considered when
tailoring specific treatment protocols for stress reduction, based on their specific psychophysiological
characteristics to optimize the treatment outcome. In addition, we demonstrated that wearables are
able to detect autonomic changes eventually occurring during and after a relaxation protocol. However,
this study also proved that, despite subjective beneficial effects already perceived by the subjects even
after a short, non-structured relaxation procedure, a beneficial physiological response can be elicited
only by more structured interventions that should be applied by experienced trainers in well-defined
settings and locations.

This finding should be taken into consideration when undergoing protocols for stress reduction
on both healthy and diseased subjects and can be possibly applied, with the proper methodology,
in particular environments, including reduction of work-related stress and similar conditions.
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