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Abstract: Bacterial cellulose as polysaccharide possessing outstanding chemical purity and a unique
structure compared with wood cellulose, attracts great attention as a hydrocolloid system. It was
shown, that at intense mechanical action on a neat bacterial cellulose film in presence of water,
the gel-like dispersions are obtained. They retain stability in time (at least, up to several months)
and temperature (at least, up to 60 ◦C) without macro-phase separation on aqueous and cellulose
phases. The main indicator of the stability is constant viscosity values in time, as well as fulfilling the
Arrhenius dependence for temperature dependence of viscosity. Flow curves of diluted dispersions
(BC content less than 1.23%) show strong non-Newtonian behavior over the entire range of shear rates.
It is similar with dispersions of micro- and nanocrystalline cellulose, but the absolute viscosity value
is much higher in the case of BC due to more long fibrils forming more dense entanglements network
than in other cases. Measuring the viscosity in increase and decrease shear rate modes indicate an
existence of hysteresis loop, i.e., thixotropic behavior with time lag for recovering the structural
network. MCC and NCC dispersions even at cellulose content more than 5% do not demonstrate such
behavior. According to oscillatory measurements, viscoelastic behavior of dispersions corresponds
to gel-like systems with almost total independence of moduli on frequency and essentially higher
values of the storage modulus compared with the loss modulus.
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1. Introduction

Bacterial cellulose (BC) is a fibrous structural nanomaterial produced by certain bacteria in the
form of exopolysaccharide in the course of its vital activity [1]. At the moment, a large list of bacterial
strains capable to produce cellulose is known [2], but the most studied and commonly applied and
used in the industry is the strain of Gluconacetobacter or Komagataeibacter (after reclassification) [3–7].

The process of BC synthesis is well studied. There are many papers where this process in various
nutrient media is described in detail [8–10]. Biosynthesis of bacterial cellulose is a complex series
of biochemical reactions, including a large number of key enzymes, which controlling the yield of
cellulose. Many types of Gluconacetobacter can utilize a variety of carbon sources, such as glycerin,
hexoses, pyruvate, dihydroxyacetone and dicarboxylic acids. However, the polysaccharide chains are
synthesized from glucose only. The synthesis of bacterial cellulose proceeds in two main stages: (1) the
formation of 1,4-β-glycosidic bonds between glucose monomers; (2) the assembly and crystallization of
cellulose fibrils. Cellulose-forming cells have from 50 to 80 pore-like sites through which thin (1.5 nm)
filaments of a pre-cellulose polymer are penetrated. They then assemble and form the supramolecular
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structure of bacterial cellulose. Other monomers do not participate in the assembly of the polymer
carbohydrate chains that is why bacterial cellulose is a pure product [11,12].

The molecular structure of BC is identical to cellulose obtained from plant sources, but it has a
higher degree of crystallinity (up to 89%) [13], a degree of polymerization (up to 14400) [14], adsorption
capacity and mechanical strength in wet state [15–19]. In addition, it is worth noting that BC does not
contain lignin and hemicellulose [20], while purification of the plant cellulose from these components is
very expensive, and the yield of purified cellulose is essentially reduced [21]. Besides, the purification
process itself has a harmful effect on the environment [22].

The final product of the synthesis is a film having a homogeneous, compact, three-dimensional
structure formed by BC micro- and nanofibrils [23]. Due to this structure, hydrogels of BC became
popular in various applications: from chocolate in food industry to sensitive diaphragms for
microphones in radio-electronics [20,24–29]. A significant water absorption capacity, in practice,
means that with a small addition of BC, the viscosity of liquid (aqueous) systems will increase
significantly, i.e., BC can play a role a good thickener [30]. Since cellulose is a biologically inert material,
medicine is the most interesting field of its application, in particular, for materials for wound dressing,
artificial skin and blood vessels, etc.

As a rule, cellulose dispersions from plant-derived microcrystalline (MCC) and nanocrystalline
cellulose (NCC) are mainly produced. These dispersions are used in pharmaceutical, cosmetic, food
and others sectors. The main products from NCC are gel-like wound dressings, tissues, vascular grafts
and other implants [31]. In cosmetic and food industry, NCC as a thickener and a source of dietary
fiber is used.

From fundamental point of view, many researchers concentrated attention on possibility MCC
and NCC gels form liquid crystalline (LC) state. The driving force of these attempts is theoretical
predictions of Flory [32] for transition of solutions of stiff chain polymers into LC state at overcoming
so-called critical concentration. The main reason of such transition is reducing an entropy of a set
of rod-like macromolecules, such as poly-γ-benzyl-L-glutamates, aromatic polyamides and others,
located in a limited volume. For stiff particles, formation of ordered phase, is induced by applying
deformation [33,34]; this feature causes an additional interest to study rheological properties of such
dispersions [35,36]. The matter is that for LC polymer solutions converting a polydomain LC system
into monodomain one reflects on a shape of flow curves [37]; this peculiarity of rheological properties
leads to additional functional capability to prove the LC state formation. This approach was used
in [38] for NCC suspensions and typical for LC polymer solution the maximum on concentration
dependence of viscosity at formation of LC phase [39] is mentioned in [40]. For NCC dispersions, the
critical concentration for LC phase occurrence at shear as 3% was estimated. Meanwhile, there are no
publications concerning analogous specific rheological behavior of BC dispersions.

As an alternative to plant cellulose, its analogs of bacterial origin are considered. The interest to
BC in recent years has increased significantly, that is reflected in the number of scientific publications,
which include various ways of its production and use. The advantage of such cellulose over cellulose
of plant origin is its chemical “purity”, but disadvantage is much slower preparing process. The main
method of production of NCC is to extract it from cellulosic biomass by acidic hydrolysis [41,42].
In the case of MCC, cellulose materials depolymerize in presence of mineral acids solutions at high
temperature [43,44]. Both methods are accompanied by a significant amount of waste. Synthesis of BC
occurs during the life of bacteria in the mother liquor. In this case, the mother liquor containing not
more than 0.1% of the produced cellulose and residues of bacteria does not pollute the environment.

For the qualitative characterization of BC as a thickener, it is necessary to know in detail
the rheological properties of its aqueous dispersions with different water content. Together with
above mentioned role of deformation in ordering analogous NCC and MCC dispersions, reflecting
on rheological behavior, the main objective of this research is to study rheological properties of
BC dispersions.
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2. Materials and Methods

2.1. Materials

For synthesis of bacterial cellulose, the strain of Gluconacetobacter hansenii GH-1/2008 was used,
which was isolated by the authors in 2008 (VKPM B-10547) [45]. The cultivation of the producer
G. hansenii GH-1/2008 was carried out in a static culture for 10 days in a modified medium [17] of
the following composition: sucrose—20, peptone—5, yeast extract—5, Na2HPO4—2.7, citric acid
monohydrate—1.15. By growing G. hansenii in the indicated medium at 30 ◦C using a rotary shaker for
3 days the sowing material was prepared.

After completion of the cultivation process, BC films were repeatedly washed with distilled water
to remove the nutrient medium components and then the BC was released from the producer of cells
components. The process of purification of BC films was carried out in several stages: first, they
were washed with RIPA buffer (RIPA Buffer, Thermo Fisher Scientific, St. Peters, MO, USA) for 2
days with a buffer replacing every 24 h, then with RIPA buffer with sequential addition of enzyme
Deoxyribonuclease I (RG1, Promega, Madison, WI, USA). Upon completion of purification steps, they
were washed with distilled water for 3 days with an exchange of water every 24 h to remove the
components of the RIPA buffer and the enzyme.

In addition, for comparison of rheological behavior, dispersions of nanocrystalline cellulose
prepared via acidic hydrolysis method were studied.

2.2. Preparation of Aqueous Dispersions

Films of BC were finely ground, distilled water was added under 1 to 1 ratio and agitated
until a homogeneous dispersion was obtained using SAII-2 (Shanghai Sower Mechanical & Electrical
Equipment, Shanghai, China) series homogenizer at 10,000 rpm. It is important to note that with
insufficient water content in the BC, it is not possible to achieve satisfactory results. The resulting
aqueous dispersion containing 1.23% of BC, was sterilized by autoclaving at temperature of +121 ◦C
and pressure of 1.5 atm. The objects containing different content of BC were prepared and studied.

NCC powder was combined with water for preparing dispersions containing 1.0%, 3.0% and
5.0% of polymer fraction. Each formulation was sonicated by ultrasonic disperser MEF93.T (LLC
MELFIZ, Moscow, Russia) at 22 kHz for homogenization of composition. Interesting to note that the
similar treatment of BC dispersion did not lead to homogenization, but the reverse effect was reached,
i.e., the macro-phase separation (Figure 1). For this reason, only mechanical stirring to BC dispersions
was applied.
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2.3. Characterization Methods

2.3.1. Morphology

In order to examine the morphology of the BC, a MultiMode IIIa atomic force microscope (AFM)
(Bruker Corporation, Santa Barbara, CA, USA) and polarizing microscopy Boetius (VEB Kombinat
Nadema GmbH, Ruhla, former DDR) at ambient conditions were used. The AFM measurements
were performed in a contact mode using silicon nitride cantilevers with 8 nm tip radius of NP
series (Bruker Corporation, Santa Barbara, CA, USA) with the force constant of 0.12 N/m. To obtain
AFM images of the bacterial cellulose, films were prepared from neat gels by drying under room
conditions to an equilibrium moisture content. The dried film was stick to metal disc. Image processing
using FemtoScan001 SPM image software (Center for Advanced Technologies, Moscow, Russia, 2012)
was performed.

For microscopic observations, the thin layer of the neat BC gel between optical slide and cover
glasses was prepared. The polarizing microscope Biomed 6 PO (Biomed, Moscow, Russia) was
equipped with camera ToupTek E3ISPM5000 (ToupTek Photonics Co., Hangzhou, China) allowing to
resolute up to 6 dots per micron.

2.3.2. Rheology

The rheological properties of the aqueous BC dispersions were measured on a rotational rheometer
Physica MCR 301 (Anton Paar, Graz, Austria). The cone-plate and plate-plate operating units with a
diameter of 25 mm was used. Tests in steady-state conditions at controlled shear rate in a range of
10−2–10◦ s−1 were performed. Measurements in oscillatory mode were performed in the domain of
linear viscoelasticity in a frequency range of 0.01–100 Hz. Measurements were carried out at 25, 40 and
60 ◦C.

3. Results and Discussion

Aqueous dispersions of BC look like gels in a wide range of water content. They do not spread
under action of gravity force. Visual observations during several months did not reveal any obvious
changes in their appearance (Figure 2).
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Figure 2. Appearance of dispersion containing 1.23% of BC.

The dispersion, when compressed, does not manifest syneresis, i.e., phase separation and elution
of the liquid phase. Gels consist of a three-dimensional network formed by long entangled fibrils
containing cells filled with liquid medium strongly interacted with BC fibrils by physical forces,
presumably H-bonds (Figure 3).
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Figure 3. Micrograph of the BC aqueous dispersion (a) and AFM image of the film of BC (b).

The pictures of BC and NCC dispersions in polarized light are essentially different (Figure 4). In
spite of less concentrated BC dispersion, the bright areas are evident, while for more concentrated
NCC dispersion only birefringent spots. It says about existence in BC dispersion not only crystalline
fibrils but also their domains with a various orientation. Do not excluded, that at steady shear such
domains will transform to the real LC state. Nevertheless, already now it is possible to conclude that
BC dispersion is more ordered compared with NCC dispersion.
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Figure 4. Micrographs in crossed Polaroids of 1.23% BC (a) and 5% NCC (b) dispersions.

Preservation of neat morphology of dispersions in time can be confirmed by constancy of the
viscosity during at least two hours (Figure 5). Simultaneously, it should be noted that dispersions
demonstrate strong non-Newtonian behavior that can be seen from significant difference of viscosities
measured at low and high shear rates.
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The flow curves of aqueous dispersions of BC with different cellulose content are presented in
Figure 6a. As is seen, all suspensions demonstrate strong non-Newtonian behavior. The constancy of
the viscosity at low shear rates doesn’t exist, that is why this kind of behavior can be characterized as
close to viscoplastic one, though the yield stress does not appear distinctively in the applied range
of the shear rates. In addition, all dispersions demonstrate thixotropic behavior, i.e., branches of the
flow curves measured with increase of the shear rate do not coincide with corresponding branches
measured in the opposite direction. Moreover, even at initial shear rate this difference remains, which
means that destroyed at intense deformation structure does not recover during time of the experiment.
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content indicated in figures.

The corresponding data for NCC dispersions are shown in Figure 5. Comparison with rheological
behavior of BC dispersions says about very similar character of non-Newtonian behavior without
realization of the initial Newtonian viscosity and two main distinctions. The first concerns much lower
viscosity values for NCC dispersions. For almost equally concentrated dispersions: 1% in the case of
NCC and 1.23% in the case of BC, the difference of viscosities at low shear rates reaches 2–2.5 orders in
favor of BC. The second distinction consists in absence for NCC dispersions of thixotropic behavior,
i.e., flow curves in modes of increase and decrease of shear rate coincides almost completely.

By the way very similar to obtained in this paper behavior was mentioned for NCC [38,40] and
MCC dispersions [35]. The collected from different sources flow curves for suspensions of MCC
and NCC, as well as cellulose whiskers with a length of 0.5–2.5 µm [40], NCC with a particle size of
35 nm [38] and even for MCC Avicel RC-591 with a particle size of 45–250 µm [36] are presented in
Figure 7.
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As is seen from the graph, the viscosity of aqueous dispersions of BC is more than 4 orders
greater compared with the system based on nanocrystalline cellulose and ~3 orders higher than the
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values obtained for microcrystalline cellulose. The character of the flow is strongly non-Newtonian.
The exception concerns mixtures of the fibrillar MCC and almost spherical particles of Na-CMC. For
them, very slight decrease in viscosity with increasing shear rate is observed. This feature indicate the
decisive role in viscosity anomaly a presence of long anisometric particles. Without doubts, fibrils of
BC are the most long and with highest aspect ratio. It is difficult to estimate these characteristics from
microscope or AFM pictures (Figure 3), but according to [43] diameter of BC fibrils is about 100 nm
and length up to 100 microns. The nature of such shape of fibrils belongs to bacteria, which construct
very long and perfect macromolecules with polymerization degree overcoming 104. Because of high
enough rigidity of such macromolecules, it is difficult to suppose that they could form compact coils.
Much easier for them is to contact each other preserving elongated shape. Combinations of extended
BC chains creates long fibrils and the later—stacks of fibrils with high aspect ratio. This is the main
reason of the mostly high structuring of BC gels accompanying with highest viscosity values and
their strongest fall down under action of mechanical field, compared with gel-like systems prepared
from plant cellulose. It is possible to expect that such kind of rheological behavior is stipulated by the
excellent geometry of highly ordered ribbons of the dispersed phase, which, when deformed, split on
individual fibrils and orient in the direction of the flow.

Above mentioned consideration gives a chance to realize a transition of BC gels to LC state at
flow. We are planning to perform such experiments on original apparatus with transparent parts of the
operating unit in near future.

The concentration dependence of BC dispersions in logarithmic scales is linear (Figure 8); this
means that it obeys to power-law equation with the exponent value of 2.95. In principle, this behavior
is close to analogical dispersions of anisotropic particles. In spite of some variations in the exponent
value, it is possible to conclude that all of them can be described by power law dependences. Among
all versions of cellulose dispersions, the BC dispersions have the maximal viscosity at much lower
content of the cellulose phase.
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Figure 8. Concentration dependence of viscosity for different cellulose dispersions at 25 ◦C and
γ = 0.1 s−1: BC—1, NCC (acidic hydrolysis)—2, NCC—3 [33], NCC—4 [38], MCC—5 [35], cellulose
whiskers—6 [40].

In the oscillatory mode of deformation, one important task is a determination of the linear domain
of viscoelasticity where the measured moduli are independent on the applied strain. Figure 9 represents
evolution of the storage and loss moduli of the BC dispersion containing 1.23%, on the amplitude of
deformation at a fixed frequency of 1 Hz.
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Figure 9. Storage (G’) and loss modulus (G”) as a function of strain at 25 ◦C.

The linear viscoelastic domain exists until strain of ~0.1%. At higher strains, the storage modulus
starts to decrease while the loss modulus increased slightly. This is not traditional behavior because as
a rule both moduli decrease in the non-linear domain of viscoelasticity. In other words, the complex
modulus of viscoelasticity remains almost the same for BC dispersion. Nevertheless, it is reasonable to
assume that observed changes of moduli reflect conversion of elastic response to dissipative one due
to destroying the structure of BC gels.

Frequency dependences of dispersions with different content of the BC are presented in Figure 10.
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Figure 10. Dependences of elastic and loss moduli on oscillation frequency at strain of 0.01% for
dispersions containing 0.63%, 0.84% and 1.23% of BC (a) and for dispersion with 1.0%, 3.0% and 5.0%
of NCC (b) at 25 ◦C.

As can be seen from the figure, the storage modulus is higher than loss modulus and this means
that the dispersion has prevailed elastic behavior. Both moduli change slightly with increasing of
oscillation frequency. Such kind of behavior is typical for gel-like or even rubber-like systems.

Since such dispersions can be used at elevated temperatures, it is of interest to study changes
in the mechanism of the flow with increasing of temperature. This important for such processes as
sterilization at autoclaving, the introduction of additional components into the system during heating,
etc. Flow curves of 1.23% aqueous dispersion of BC at different temperatures and dependence of
viscosity on temperature in Arrhenius coordinates are shown in Figure 11.
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Figure 11. Flow curves of 1.23% BC aqueous dispersion at different temperatures (a) and dependence
of viscosity measured at γ = 0.1 s−1 on reciprocal temperature (b).

With increasing temperature, the nature of the flow did not change: viscosity decreased with shear
rate almost linearly. Based on the data presented in Figure 11a, the dependence of log η on 103/T was
constructed. The character of obtained dependence was linear, which suggests that the temperature
dependence of viscosity can be described by the Arrhenius equation. There was no significant changes
of dispersion structure in the temperature range studied.

The activation energy value allows us to assess the minimum energy required to break the
physical bonds between the BC-gel fragments for irreversible displacement each relatively others. The
minimum values of the activation energy were observed for aqueous dispersions based on cellulose
fibrils with small values of the aspect ratio. An increase in the length-to-width ratio led to an increase
in the activation energy. The activation energy value for BC dispersion was equal to 25.7 kJ/mole. It is
comparative with the corresponding value for aqueous dispersions of rayon short fibers with various
aspect ratios, described in [46]. Objectively, for long BC fibrils the number of physical contacts is larger
and, as a result, the activation energy is higher in comparison with rayon-based systems.

The heating of aqueous dispersions of BC up to 60 ◦C caused slight decreases in the viscosity
values, and in turn, may be used to facilitate the technological process for such systems, for example,
dosing and packaging at increased temperatures. It should be noted that the dispersions of BC with
different ratios of water and cellulose after heat treatment in an autoclave did not show any visual
signs of degradation and separation at least in one year. Thus, we can confirm the stability of the
system over long periods of time even after heating.

In the course of work, an additional question arose—is it possible to use BC gels obtained as
stabilizing systems? To answer this question, we prepared a water suspension of nanodiamonds and
added to it BC gel to observe the stability over time (Figure 12).
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Nanodiamonds were not pretreated for stabilization; the resulting 0.5% dispersion in water was
not stable and after few hours a sedimentation of nanodiamonds takes place and its deposition in the
bottom of a flask (Figure 12c). When an equivalent amount the BC was added to diamonds dispersion
and mechanically mixed (Figure 12d), the system remained stable at least for two weeks. Thus, BC
may play a role of not only a thickener, but also a stabilizer.

4. Conclusions

For the first time, aqueous dispersions of bacterial cellulose—synthesized by the strain of
Gluconacetobacter hansenii GH-1/2008, with a polymer content of up to 1.23 wt %—were subjected to
detail rheological characterization including steady state and oscillatory regimes of shear deformation.
The most preferable method of BC dispersion preparation was mechanical stirring. Sonication led
to synaeresis and phase separation of dispersions. The time dependences of viscosity and repeated
experiments over long periods of time revealed the stability of the values of viscosity. The obtained
results were compared with the corresponding data for various aqueous dispersions of the plant
cellulose. According to visual appearance and rheological response, the aqueous BC dispersions were
gel-like systems with prevail elastic reaction, i.e., storage modulus was always higher than loss modulus.
Because of high aspect ratio of BC fibrils and strong intermolecular interaction they exhibited strong
viscosity anomaly and thixotropic lag time. Such kind of behavior inherent also to other cellulose gel-like
dispersions based on plant cellulose, but the absolute value of viscosity of BC dispersions was several
times higher compared to the values for similar systems based on nanocrystalline or microcrystalline
cellulose. The temperature dependence of viscosity obeys to Arrhenius equation without any specific
deviation on linearity. This supports the stability of dispersions in wide temperature range. According
to the results of rheological studies, it could be argued that bacterial cellulose is the most acceptable
material as a thickener and a stabilizer of different aqueous dispersions. This was shown on an example
of the nanodiamond suspensions.
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