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Abstract: The general suitability of water treatment systems involving metallic iron (Fe0) is well-
established. Various attempts have been made to improve the efficiency of conventional Fe0 systems.
One promising approach combines granular Fe0 and an iron sulfide mineral to form Fe0/Fe-sulfide/H2O
systems. An improved understanding of the fundamental principles by which such systems operate is
still needed. Through a systematic analysis of possible reactions and the probability of their occurrence,
this study establishes that sulfide minerals primarily sustain iron corrosion by lowering the pH of
the system. Thus, chemical reduction mediated by FeII species (indirect reduction) is a plausible
explanation for the documented reductive transformations. Such a mechanism is consistent with the
nature and distribution of reported reaction products. While considering the mass balance of iron,
it appears that lowering the pH value increases Fe0 dissolution, and thus subsequent precipitation of
hydroxides. This precipitation reaction is coupled with the occlusion of contaminants (co-precipitation
or irreversible adsorption). The extent to which individual sulfides impact the efficiency of the
tested systems depends on their intrinsic reactivities and the operational conditions (e.g., sulfide
dosage, particle size, experimental duration). Future research directions, including the extension of
Fe0/Fe-sulfide/H2O systems to drinking water filters and (domestic) wastewater treatment using the
multi-soil-layering method are highlighted.
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1. Introduction

Metallic iron (Fe0) is a readily available and low-cost reactive material, industrially used in water
treatment since the second half of the 19th Century [1–6]. Fe0 has been successfully used to remove
color and various classes of biological and chemical pollutants from the aqueous phase [1,3,4,7–9].
During the 1990s, Fe0 has been rediscovered and successfully applied for environmental remediation,
including in subsurface permeable reactive barriers (Fe0 PRBs) [10–18]. New Fe0-based technologies
for safe drinking water supply were then derived from the Fe0-based PRB technology [19–28].

The efficiency of a Fe0/H2O remediation system for water treatment has been observed to be
impaired by an inherent characteristic of aqueous iron corrosion at near-neutral pH values, which
is often termed “reactivity loss” [10,29]. Reactivity loss is characterized by the precipitation of iron
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(hydr)oxides in the vicinity of or at the Fe0 surface. The layer of (hydr)oxides or oxide scale acts as
a physical and electronic barrier that “passivates” the material, thereby significantly reducing the
efficiency of the Fe0-based system [10,18,30–32]. In essence, “reactivity loss” is a misleading term,
as reactivity is an intrinsic property of each material and cannot change with operational variables
or under given operating conditions [28,33–36]. That is the reason why it is restored by appropriate
treatments (e.g., acid wash) [15,37] and/or sustained by other additive materials (e.g., using FeS2 or
MnO2) [29,38–44]. Despite its misleading nature, the term “reactivity loss” is partly maintained here,
for the sake of clarity. Several tools have been introduced to address “reactivity loss” [15,37,44–48],
including the amendment of granular Fe0 with granular iron sulfide minerals, which is the focus of the
current study. Other tools as summarized by Lü et al. [18] include using the following: fabrication of
(dispersed) nanoscale Fe0, multi-metallic materials, weak magnetic field and the fabrication of several
Fe0-based composites.

Lipczynska-Kochany et al. [38] was probably the first research group to use iron sulfide minerals to
sustain the Fe0 reactivity, thereby increasing the efficiency of conventional Fe0/H2O systems for water
treatment. Accordingly, during the past 25 years, a large number of scientific publications have reported
on the enhanced efficiency of Fe0/Fe-sulfide/H2O systems relative to their Fe0/H2O counterparts [18,29,
44,47–53]. However, the mechanisms for this enhancement are still to be established [18,44,52]. Clearly,
there is still controversy on the reasons why the presence of pyrite enhances the efficiency of Fe0/H2O
systems for contaminant removal. This troublesome situation is not a good basis for a science-based
design of the next generation Fe0/Fe-sulfide/H2O system, and the development of the Fe0 technology in
general. Table 1 suggests that the main cause for this situation lies in the various different experimental
designs and conditions for the reported investigations [53–57]. It is seen that the used Fe0 and FeS2

dosages (in g L−1) vary largely, while the mixing intensities vary from 0 to 400 rpm.

Table 1. Comparison of literature data on experimental conditions for investigating the Fe0/FeS2/H2O
system. Studies were performed at initial pH values ranging from 3.0 to 10.0, and Fe0 mass loadings
ranging from 0.2 to 200 g L−1. The size of pyrite and Fe0 also showed large variations among studies.
“n.s.” stands for not specified, the authors have referred to Supporting Information.

Contaminant
Nature Pyrite Metallic Iron Stirring Ref.

pH0 (-) V (mL) d (mm) ρ(g L−1) d (mm) ρ(g L−1) (rpm)

CCl4 6.0 25 <0.841 200 0.150 200 170 38
Arsenic 3.0 to 9.0 500 n.s. 0.20 or 2.0 n.s. 0.20 or 2.0 400 53

Uranium 7.2 20 200 to
630 25 1.6 to 2.5 15 0.0 54, 55

Nitrobenzene 5.0 to
10.0 150 40 to 75 0.5 to 3.0 40 to 75 0.5 200 52

Orange II 7.0 150.0 38 to 50 0.25 or 2.0 0.25 to 2.0 0.25 or 0.50 200 47
RR X-3B 7.0 150.0 38 to 50 0.25 or 2.0 0.25 to 2.0 0.25 or 0.50 200 47

Amido Black 10B 7.0 150.0 38 to 50 0.25 or 2.0 0.25 to 2.0 0.25 or 0.50 200 47
Methylorange 6.9 22 38 to 50 0.25 or 2.0 1.0 0.5 0.0 57

Methylene blue 7.0 22 38 to 50 0.25 or 2.0 1.0 0.5 0.0 57

The objectives of the current study are: (i) to critique and clarify the role of sulfide minerals in
enhancing the efficiency of Fe0/H2O systems on a purely analytical basis, and (ii) to highlight the key
knowledge gaps and future research directions. The paper is structured as follows; first, the chemistry
of the Fe0/Fe-sulfide/H2O system will be presented. Then the mechanisms of contaminant removal are
discussed. Finally, the key knowledge gaps and future directions are then highlighted.

2. The Fe0/Fe-Sulfide/H2O System

When a reactive Fe-sulfide (e.g., FeS2) is immersed in aqueous systems under oxic conditions
(presence of O2), it is oxidatively dissolved and each mole of FeS2 produces four moles of protons (H+)



Processes 2020, 8, 409 3 of 15

(Equation (1)). Under anoxic conditions (absence of O2), pyrite dissolution produces four times more
protons (Equation (2)).

4 FeS2 + 15 O2 +10 H2O⇒ 4 FeOOH + 16 H+ + 8 SO4
2− (1)

FeS2 + 14 Fe3+ + 8 H2O⇒ 15 Fe2+ + 2 SO4
2− + 16 H+ (2)

Reactions (1) and (2) show that the oxidative dissolution of pyrite always generates protons, and
hence induces an acidification of non-buffered aqueous systems (Figure 1). In this study, Fe-sulfides
mixed with Fe0 are considered, wherein aqueous oxidative dissolution is a proton-consuming process
(Equation (3)). Reaction 3 implies that Fe0 is oxidized by protons generated by the hydrolysis of
water (H2O⇔ H+ + OH−). The abundance of water (solvent) implies that reaction 3 should never be
assumed as a side reaction, unless it is demonstrated otherwise. However, for natural waters, relevant
pollutants are typically present in trace amounts and the pH value is close to 7 [54].

Fe0 + 2 H+
⇒ Fe2+ + H2 (3)

Depending on O2 availability, reactions (1) and (3) or reactions (2) and (3) compete for controlling
the pH of the system. Thus, the final pH value depends on at least four factors: (i) the relative dosages
of Fe0 and FeS2, (ii) their respective intrinsic reactivities, (iii) the contact time and (iv) the temperature.
In other words, the trivial pH decrease with increasing FeS2 loadings (Figure 1) cannot be directly
correlated with the extent of contaminant removal.

One hypothetical case is the one in which FeS2 oxidation initially dominates [55]. In such as case,
the pH value first decreases, and then progressively increases until it reaches a final value. Acidity
is first produced by reaction 1 or/and reaction 2, then progressively consumed by reaction 3 until a
pseudo-steady state is reached. Considering that Fe0 and FeS2 have long-term reactivity, investigating
Fe0/Fe-sulfide/H2O systems in batch mode under quiescent conditions can last for several weeks
before reaching a pseudo-equilibrium [56]. During this long time of reactivity, weathering of in-situ
generated iron (hydr)oxides (corrosion products) through acidification (Equation (1) or Equation (2))
also occurs, but will not be discussed further herein. Note that reactions 1 and 2 are not mutually
exclusive of each other—rather, they may occur simultaneously to some extent. An initially closed
oxic system will turn anoxic over time because both pyrite oxidation (Equation (1)) and iron corrosion
(Equation (3)) are O2 scavengers. The O2 scavenging nature of iron corrosion is due to the fact that Fe2+

(Equation (3)) is readily oxidized by dissolved O2 (Equation (4)). Clearly, iron corrosion (Equation (5))
is accelerated because Fe2+ is consumed (Le Chatelier’s principle). In other words, Fe0 is not oxidized
by O2 (Equation (6)) or any contaminant, as commonly reported in the Fe0 literature (Equation (7)), but
is oxidized in the presence of oxygen (Equations (3) and (4)).

4 Fe2+ + O2 + 2 H+
⇒ 4 Fe3+ + 2 HO− (4)

Fe0
⇔ Fe2+ + 2 e− (5)

2 Fe0 + O2 + 2 H2O⇒ 2 Fe2+ + 4 OH− (6)

Fe0 + RX + H+
⇒ Fe2+ + RH + X− (7)

where X represents a halogen (e.g., Cl).
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Figure 1. Illustration of the pH shifting property of pyrite (FeS2) for the Fe0/H2O system. The initial pH value is 
7.0; data are from Cui (2020) [57]. The lower the FeS2 loading, the higher the pH value. Correlating the final pH 
values to the extent of decontamination depends on other operational parameters, including the experimental 
duration. The represented lines are not fitting functions; they just join the points to facilitate visualization. 
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contaminant, an Fe-sulfide enhanced Fe0/H2O system represents the at rest state of 
dynamic processes, implying that both Fe0 and Fe-sulfide produce reducing species 
(e.g., FeII, H2) and adsorbing agents (iron hydroxides and oxides). Moreover, during 
the precipitation of hydroxides, contaminants are enmeshed or occluded in their 
matrix and also co-precipitated [58,59]. In other words, in Fe0/Fe-sulfide/H2O 
systems, contaminants are more or less removed by adsorption and co-precipitation, 
while some reducible contaminants are probably quantitatively reduced. However, 
two key issues should be considered: (i) observed reductive transformations are not 
the cathodic reactions coupled to iron dissolution (Equation (5)), and (ii) chemical 
reduction is not a relevant removal mechanism for many contaminants at the 
concentration ranges of natural waters [28,57,60,61]. 

The inherent limitation of chemical methods for the treatment of natural water 
arises from the fact that the residual concentration based on the solubility limit is 
still too high compared to an admissible maximum concentration level (MCL). For 
example, the residual concentrations of the water treatment chemicals (e.g., chlorine, 
Al3+) may exceed the MCL for drinking water set by the World Health Organization 
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Figure 1. Illustration of the pH shifting property of pyrite (FeS2) for the Fe0/H2O system. The initial pH
value is 7.0; data are from Cui [57]. The lower the FeS2 loading, the higher the pH value. Correlating the
final pH values to the extent of decontamination depends on other operational parameters, including
the experimental duration. The represented lines are not fitting functions; they just join the points to
facilitate visualization.

The presentation until here reveals the complexity of a contaminant-free Fe0/Fe-sulfide/H2O system.
It also shows the possible variabilities of systems commonly termed “Fe-sulfide enhanced Fe0/H2O.”
Regardless of the presence of any contaminant, an Fe-sulfide enhanced Fe0/H2O system represents the
at rest state of dynamic processes, implying that both Fe0 and Fe-sulfide produce reducing species
(e.g., FeII, H2) and adsorbing agents (iron hydroxides and oxides). Moreover, during the precipitation
of hydroxides, contaminants are enmeshed or occluded in their matrix and also co-precipitated [58,59].
In other words, in Fe0/Fe-sulfide/H2O systems, contaminants are more or less removed by adsorption
and co-precipitation, while some reducible contaminants are probably quantitatively reduced. However,
two key issues should be considered: (i) observed reductive transformations are not the cathodic
reactions coupled to iron dissolution (Equation (5)), and (ii) chemical reduction is not a relevant
removal mechanism for many contaminants at the concentration ranges of natural waters [28,57,60,61].

The inherent limitation of chemical methods for the treatment of natural water arises from the fact
that the residual concentration based on the solubility limit is still too high compared to an admissible
maximum concentration level (MCL). For example, the residual concentrations of the water treatment
chemicals (e.g., chlorine, Al3+) may exceed the MCL for drinking water set by the World Health
Organization (WHO). As an example, using Ca2+ addition to lower the concentration of fluoride
(F−) from polluted water yields an equilibrium concentration of 8.0 mg L−1 ([F−]), which is too high
compared to the WHO MCL value of 1.5 mg L−1. To reach values less than 1.5 mg L−1, physical
methods are needed (e.g., adsorption, dilution or water blending, ion-exchange and size-exclusion),
Fe0 filters were proven a poorly-efficient alternative [62]. For organic species, the reduction products
must be removed from water as well, particularly in the context of safe drinking water provision. For
environmental remediation, it may suffice if the reaction products are biodegradable [10]. Clearly, one
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major problem of the research on using Fe0 for water treatment has been to randomly interchange the
terms “contaminant reduction” and “contaminant removal” as if reduced species are automatically
removed [28,33,34]. It has been constantly pointed out that no satisfying mass balance of the species
involved, including Fe0, has been presented [63–65].

The thermodynamic arguments given in this section are sufficient to definitively rule out direct
reduction (electrons from Fe0) as a mechanism of contaminant transformation in Fe0/H2O systems as a
rule. Documented reductive transformations are mediated by primary reducing species (FeII, H/H2)
and secondary corrosion products (e.g., Fe3O4, green rust) operating in synergy. By inducing a timely
pH shift, the addition of Fe-minerals just intensifies the discussed processes. Since the first mechanistic
work of Matheson and Tratnyek [66], reactions similar to Equation (7) were being written as the first
choice and are mostly considered as scientifically established. Moreover, the stoichiometry of reaction
7 is used to model/design Fe0/H2O systems [28,32,36,67].

O’Hannesin and Gillham [68] acknowledged that the adoption of the reductive transformation
concept was a “broad consensus” among researchers in the Fe0 remediation community. This raises a
question: how can a flawed consensus survive for two decades without being addressed? There are at
least two possible answers: (i) it has not been really questioned or investigated by the majority of active
researchers; and/or (ii) research findings pointing to the flaws of the concept have been overlooked or
refuted. A number of cases exist to support these explanations. For example, despite a number of
short communications and review articles challenging the validity of the concept (Table 2), several
subsequent studies have perpetuated the flawed concept to explain the removal of contaminants
by Fe0/H2O. This situation has prompted the publication of a “review of reviews” in 2015 in Water
Research [64], but the large majority of researchers are still propagating the false view. The most
referenced article with 242 citations is from 2008 (12 years old). During this period some thousands of
scientific articles have been published on the remediation Fe0/H2O system. The next section is focused
on the Fe0/Fe-sulfide/H2O system.

Table 2. Selected articles disproving the reductive transformation concept for the Fe0/H2O system
and their current bibliometry according to Scopus and ScienceDirect (www.scopus.com: 23/03/2020).
Self-citation is included. It is seen that the best citation rate is 20 per year in a context where more than
500 articles are produced every year.

Title Journal Year Citation Citation/Year

Processes of contaminant removal in
“Fe0–H2O” systems revisited. The importance

of coprecipitation.
Open Environ. Sci. 2007 n.a. n.a.

A critical review on the mechanism of
contaminant removal in Fe0–H2O systems Environ. Technol. 2008 242 20.2

Fe0-based alloys for environmental
remediation: Thinking outside the box

J. Hazard. Mater. 2009 23 2.1

An analysis of the evolution of reactive species
in Fe0/H2O systems J. Hazard. Mater. 2009 108 9.8

On the operating mode of bimetallic systems
for environmental remediation J. Hazard. Mater. 2009 29 2.6

On the validity of specific rate constants (kSA)
in Fe0/H2O systems J. Hazard. Mater. 2009 14 1.6

On nanoscale metallic iron for groundwater
remediation J. Hazard. Mater. 2010 45 4.5

The fundamental mechanism of aqueous
contaminant removal by metallic iron Water SA 2010 125 12.5

The suitability of metallic iron for
environmental remediation

Environ. Prog
Sustain. 2010 55 5.5

www.scopus.com
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Table 2. Cont.

Title Journal Year Citation Citation/Year

Aqueous contaminant removal by metallic iron:
Is the paradigm shifting? Water SA 2011 59 6.6

Metallic iron for environmental remediation:
Back to textbooks

Fresenius Environ.
Bull. 2012 13 1.6

Flaws in the design of Fe0-based filtration
systems?

Chemosphere 2014 24 4.0

Metallic iron for environmental remediation: A
review of reviews Water Research 2015 72 14.4

No scientific debate in the zero-valent iron
literature

CLEAN—Soil, Air,
Water 2016 8 2.0

Research on metallic iron for environmental
remediation: Stopping growing sloppy science Chemosphere 2016 21 5.3

Predicting the hydraulic conductivity of
metallic iron filters: Modeling gone astray Water 2016 18 4.5

Metallic iron for water treatment: Leaving the
valley of confusion

Applied Water
Science 2017 n.a. n.a.

Rescuing Fe0 remediation research from its
systemic flaws

Res. Rev. Insights 2017 n.a. n.a.

Metallic iron for environmental remediation:
How experts maintain a comfortable status quo

Fresenius Environ.
Bull. 2018 n.a. n.a.

Iron corrosion: Scientific heritage in jeopardy Sustainability 2018 5 2.5

3. Contaminant Removal in Fe0/Fe-Sulfide/H2O Systems

Fe-sulfides have been successfully used as stand-alone reducing agents for many dissolved organic
and inorganic species [69–79]. It is one of the most powerful natural reducing agents and has been
demonstrated to sustain the environmental redox cycling of manganese [80,81]. Therefore, mixing
Fe-sulfides and Fe0 corresponds to mixing two reducing agents, and should result in even more
reducing systems (without considering the pH shift capacity of Fe-sulfides). Yet studies have been
published comparing the relative kinetics and extent of contaminant removal in the following three
systems: (i) Fe-sulfide alone, (ii) Fe0 alone and (iii) the Fe0/Fe-sulfide mixture [18,47,48,52,53,55,56,82].
For example, Lü et al. [18] observed no nitrobenzene removal in the pure FeS2 system, moderate
removal in the pure Fe0 system and increased removal in the Fe0/FeS2 system. Noubactep et al. [56]
reported exactly the same trend for UVI removal. These results are correctly interpreted as an indication
of the synergetic effect of FeS2 (or more generally Fe-sulfides) on contaminant removal by Fe0 [44,52,56].
However, the role of Fe-sulfides is limited to inducing pH shift, and thus increasing corrosion, at
least during the lag time of the experimental durations ranging from 300 min for Lü et al. [18] to
120 days for Noubactep et al. [56]. It is of critical importance to state that well-documented reductive
transformation of both contaminants in the pure FeS2 system [76,83] were not observed by both research
groups. One reason for this is certainly the slow kinetics of FeII-mediated reduction processes [66,84].
Accordingly, both research groups independently demonstrated that the presence of Fe-sulfides
improve contaminant removal in Fe0/H2O systems.

In Fe0/FeS2 systems, the primary role of FeS2 is to induce acidification. The process is accelerated
by the LeChatelier’s principle as generated protons (Equations (1) and (2)) are used for Fe0 corrosion
(Equation (3)). Generated FeII species are not available in the vicinity of the mineral to induce the
surface-catalyzed reductive transformation observed in nature and reproduced in the laboratory (in
the absence of Fe0) [76,80,81,83,85]. It should be recalled that permeable reactive barriers (PRBs) of
Fe-sulfides are a stand-alone tool for groundwater remediation [85], and have been even suggested as
alternatives to Fe0 PRBs because they are less prone to clogging [10,86].
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As stated earlier, amending Fe0/H2O systems with Fe-sulfides was a tool to increase its efficiency
(often termed reactivity) for contaminant removal. The question is, “which efficiency?” or “the
efficiency to treat which type of natural water?” In essence, the development of the Fe0 technology
during the past three decades has been a sort of a race for the development of the most reactive Fe0

material. However, given that each natural water is unique in terms of physico-chemical and biological
contaminants, it is unlikely that any single material (be it the most reactive one) would be the most
appropriate for all situations. On the contrary, using a more reactive material at a certain site would
result in early Fe0 depletion or early system clogging [87]. Thus, amending a given Fe0/H2O system
with Fe-sulfides should be decided on a site-specific basis. Moreover, which Fe-sulfide or Fe/Fe-sulfide
to use, and which amount (proportion or mix ratio) thereof should be a rationale decision based on
the fundamental understanding of the reactivity or corrosion kinetics of the materials. Therefore, the
further development of the Fe0 technology calls for the characterization and subsequent establishment
of a database of the intrinsic reactivities of Fe0 materials and reactive additives (e.g., FeS2, MnO2).

4. Characterizing the Efficiency of Fe0/FeS2 Systems

Up to this point, the presentation shows the potential of Fe-sulfides to render Fe0 systems more
efficient and sustainable than conventional Fe0/H2O systems (i.e., without reactive additives). However,
available results are collectively qualitative, as they were achieved under very different operating
conditions (Table 1), and in some cases, relevant data to interpret the presented results are missing.
For example, most works characterizing changes in pH values of Fe0/FeS2/H2O systems are limited to
giving the initial and (more rarely) the final pH values [18,47,53]. However, because Fe-sulfides are
expected to induce a pH shift, and Fe0 corrosion is a proton consuming process, only careful real-time
in-situ monitoring of the pH value during the course of the experiment can improve the understanding
of the system. This corresponds to the approach of Noubactep et al. [55,56,82,88], who used different
dosage of FeS2 and showed different final pH values in long-term quiescent batch experiments (up to
120 days). The same authors particularly demonstrated that uranium removal is only quantitative in
Fe0/FeS2 systems having final pH values larger than 4.5. There was no uranium removal in the pure
FeS2 system, while the pure Fe0 system also exhibited quantitative uranium removal.

Another important aspect was reported by Mackenzie et al. [45], who were able to decrease the
pH of their experimental system by admixing Fe0 with troilite (FeS). The same authors also compared
several systems for scavenging dissolved O2, and identified an Fe0/sand mixture as the best mixture.
Based on these results, Kenneke and McCutcheon [29] positively tested the Fe0/FeS2/sand as a further
improvement in a pretreatment zone (PTZ). The mix composition of the PTZ (in weight %) was: Fe0

(10), FeS2 (10) and sand (80). These insightful results from both batch and column studies demonstrate
the suitability of Fe-sulfide minerals to sustain the efficiency of Fe0/H2O systems for water treatment.
Sections 5 and 6 present a systematic path to achieve reliable results within the coming few years.

5. Extending the Application of Fe0/FeS2 Systems

Monitoring the behaviors of selected contaminants, including tracers, has been used as a
conventional tool to investigate the efficiencies of Fe0/H2O systems for water treatment [15,89,90]. The
rational selection of model contaminants has been questioned in view of the myriad of species that are
potential contaminants worldwide [57,91–94]. The complexity of the Fe0/FeS2/H2O system (Section 4)
suggests that its investigation using the methylene blue discoloration method (MB method) [33] would
be a very helpful approach with which to accelerate the understanding of the system.

The MB method is summarized by Btatkeu-K et al. [92]. It exploits the low affinity of cationic
MB for the positively charged surface of iron corrosion products (FeCPs) under natural conditions
(pH > 5.0). Comparatively investigating the efficiency of Fe0/sand mixtures with the pure sand system
as a reference enables the relative quantification of the extent of iron corrosion. In fact, the pure
sand system is an excellent adsorbent for MB, while sand coated with FeCPs has no affinity for MB.
Performing parallel experiments with the same sand and various Fe0 specimens is thus a powerful
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tool with which to characterize the Fe0 reactivity. The most reactive specimen produces the largest
amount of FeCPs to coat sand under experimental conditions and exhibits the lowest extent of MB
discoloration [95]. This simple tool has been adapted to investigate several aspects of the process of
contaminant removal in Fe0/H2O systems [96–99], and is expected to accelerate the investigation of the
Fe0/FeS2 system. In particular, Btatkeu-K et al. [96] used the MB method to clarify the controversy in
the literature concerning the Fe0/MnO2 system.

Extending the application of Fe0/FeS2 to drinking water treatment requires a profound
understanding of its operating mode. Cui [57] has recently used the MB method to investigate
the operating mode of FeS2 in enhancing the efficiency of Fe0/H2O systems. The same author used
methyl orange (MO) to support the interpretation of the results of MB discoloration. Contrary to MB,
MO is an anionic dye exhibiting an excellent affinity to FeCPs. MB and MO are additionally similar
in their molecular size. Cui’s results [57] clearly demonstrated that FeS2 dissolution lowered the pH
value, and neither MB nor MO were quantitatively discolored before the subsequent pH increase
reached values larger than 4.5. Additionally, at pH < 4.5, there was no significant difference between
MB and MO discoloration. Most importantly, by keeping the pH value low, Cui [57] has irrefutably
demonstrated that adsorption and co-precipitation are the fundamental mechanism of contaminant
removal in Fe0/H2O systems. The pure sand system could not discolor MO, but all other investigated
systems discolored both MB and MO.

The results of Cui [57] frontally contradict those of Chen et al. [47], who used the same pyrite,
but investigated the discolorations of three different dyes (Orange II, Reactive Red X-3B and Amido
Black 10B). Chen et al. [47] is entitled “Pyrite enhanced the reactivity of zero-valent iron for reductive
removal of dyes.” According to Miyajima and Noubactep [33] the term “reactivity” is misused, and
according to the results of Cui [57], the expression “reductive removal” is inappropriate. On the
other hand, Chen et al. [47] have not rooted the interpretation of their results on the recorded final
pH values. Another weakness of Chen et al. [47] is that all three dyes are anionic in nature, and
therefore interact very strongly with in-situ generated FeCPs. In other words, whether the dyes are
reductively transformed or not, they are discolored by adsorption and co-precipitation. This last aspect
makes the term “discoloration” better than “removal” in investigating dye interactions in Fe0/H2O
systems [98,99].

There are several ways to extend the efficiency of Fe0/H2O system by amending it with pyrite.
For example, small amounts of FeS2 can be added to a Fe0/sand system to sustain iron corrosion in
the initial phase of the system operation. The intrinsic reactivity of the selected FeS2 mineral should
be known, as well as the kinetics of its long-term dissolution. In other words, there is no need to
verify whether pyrite can enhance the efficiency of a Fe0/H2O system or not [44,100,101]. Instead, there
is a need to rationally select both Fe0 and FeS2 and their relative mixing ratios to achieve a given
remediation goal [57]. Similarly, the in-depth mechanisms mediating contaminant removal in Fe0/FeS2

mixtures are known; thus, the open question is ‘how to sustain them in the long-term’?. Another point
to note is that, the in-situ dissolution of a FeS2 mineral cannot prevent Fe0 surface passivation because
FeCPs are not soluble under environmental conditions. However, FeS2 dissolution locally increases
the pH value and delays the precipitation of FeCPs at the surface or in the vicinity of Fe0.

6. Knowledge Gaps and Future Directions

A systematic approach is required in the coming years to better understand the operating mode
of Fe0/FeS2/H2O systems. Figure 2 presents a conceptual summary of the focal areas of future research
critical for the development of Fe0/FeS2/H2O-based water treatment systems. Figure 2 also shows
the key inputs/outputs of each step, including feedbacks between the various steps, indicating the
iterative nature of the design process. Specifically, future research on Fe0/FeS2/H2O systems should
include: (i) characterization of the long-term Fe0 and FeS2 reactivities, (ii) determination of the design
and operation principles of Fe0/FeS2/H2O systems; (iii) laboratory developments and evaluations of
functional prototypes of Fe0/FeS2/H2O systems, including multi-soil layer systems; (iv) pilot-scale and
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field testing and evaluation of actual Fe0/FeS2/H2O systems; and (v) outreach and dissemination of the
Fe0/FeS2/H2O systems, including monitoring and evaluation by potential end-users of the technology.
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6.1. Characterization of Reactivity of Materials

The long-term reactivity of both FeS2 and Fe0 used in Fe0/FeS2/H2O systems are key factors
controlling the contaminant removal efficiency of such systems. Yet data on corrosion kinetics is often
lacking in most literature focusing on Fe0/FeS2/H2O systems [47,53,102]. On the one hand, highly
reactive Fe0 filter media may be effective in contaminant removal in the short-term, but are likely to
lose such capacity in the long-term [102]. On the other hand, Fe0 filter materials with low reactivity
may have low contaminant removal capacity in the short term, but higher operational longevity.
In some water treatment applications, an optimum mixture of Fe0 and FeS2 may need to be determined
in order to design effective Fe0/FeS2/H2O systems. In this regard, characterization of the corrosion
kinetics of Fe0 and FeS2, and the factors controlling such processes are critical to better understand
the contaminant removal capacity of Fe0/FeS2/H2O systems. Such studies should culminate into the
establishment of a database of well-characterized Fe0, FeS2 and their optimal mixing ratios.

6.2. Design and Operation Principles of Fe0/FeS2/H2O Systems

In reality, water treatment systems are designed to treat raw waters with diverse physico-chemical
and biological properties, including salinity, alkalinity, natural organic matter and other potentially-
interfering ionic species. Therefore, before Fe0/FeS2/H2O can be widely adopted for drinking water
treatment, design engineers and managers for water utilities will require information on the design
and operation principles of the Fe0/FeS2/H2O systems for various types of raw waters likely to be
encountered. Unlike other competing technologies, such as membrane filtration and reverse osmosis,
the design and operation principles for Fe0/FeS2/H2O systems are still lacking. Therefore, further
research using both batch and column experiments is required to develop the design and operation
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parameters of Fe0/FeS2/H2O-based water treatment systems. Subsequently, the design and operation
parameters can be used to develop and evaluate prototypes of Fe0/FeS2/H2O-based drinking water
treatment systems, including those entailing multi-soil layer systems. Such research forms a critical step
in the development, and subsequent application of Fe0/FeS2/H2O systems for drinking water treatment.

6.3. Laboratory-Scale Development Functional Prototypes

The design principles and data from the previous steps will be used to design laboratory-scale
functional prototypes of Fe0/FeS2/H2O systems. The evaluation will entail determination of the effects
of operational conditions (e.g., hydraulic loading and residence times) on the capacity of the prototypes
to remove target contaminants in synthetic aqueous systems and natural waters. This phase will also
include the application of simulation models to better understand system performance. In this regard,
the MB method (Section 5) will be very helpful at this stage.

6.4. Pilot-Scale and Field Testing and Evaluation

In this step, pilot scale Fe0/FeS2/H2O systems will be designed and evaluated under field conditions
to address the scale issues associated with laboratory-scale prototypes. The recent three-layer-design
(one Fe0/sand unit sandwiched between two biosand filters) of a household water filter presented
by Tepong-Tsindé et al. [27] can be used as starting prototype. In this design, the Fe0/sand unit can
be amended with various Fe0 to FeS2 ratios. Evaluation data from this step will be used to optimize
and finalize the system designs for the removal of target contaminants, and adequate capacity to treat
water/wastewater.

6.5. Outreach and Dissemination of the Fe0/FeS2/H2O Technology

The final phase will entail outreach and dissemination of the Fe0/FeS2/H2O technology to the
target end-users. The monitoring and evaluation (M&E) system will include system performance
evaluations by researchers and utility managers, including perceptions of end-users on the resulting
water quality. M&E data from this phase can then be used to further improve the technology, and
design improved systems.

7. Conclusions

Fe-sulfides minerals could be important for the design of future sustainable Fe0-based water
treatment systems, as currently acknowledged. They have already been useful in the following
applications: (i) clarifying the mechanism of contaminant removal in Fe0/H2O systems, and
(ii) scavenging O2 in pre-treatment zones to delay permeability loss and/or sustain the Fe0 reactivity.
However, given the many uncertainties coupled with the long-term reactivity of Fe0 (and Fe-sulfides)
under environmental conditions, only well-conceived, long-lasting, systematic laboratory and pilot
studies would enable the exploitation of the huge potential of Fe0/Fe-sulfides/H2O for environmental
remediation and drinking water supply. A summary of key knowledge gaps and future directions
was presented, including the need to adapt Fe0/Fe-sulfides-layers to the design of next generation
multi-soil-layering (MSL) systems for decentralized wastewater treatment.
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