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Abstract: In this paper, Huolinhe lignite was selected as the lignite experimental sample,
using microwave modification and ultrasonic modification separately as improvement methods.
The three-dimensional molecular models of HLH before and after modification were established base
on the parameters obtained by 13C NMR, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy
(Raman), and Fourier transform infrared (FTIR). After the microwave treatment, the methylene
carbon in the HLH coal sample structure mostly exists in the form of long straight chains, and after
microwave and ultrasonic treatment, the -OH content of oxygen atoms in the coal sample increases,
and form the CO- and the COO-. The proportion is decreasing. The models were adjusted and
tested by the covalent bond concentration method and carbon chemical shift spectra calculation
using Chemdraw software. A new method is proposed to study the structure and physicochemical
properties of lignite modification from the molecular point of view through this study.

Keywords: Lignite; microwave and ultrasound modification; structural characterization;
3D molecular model; structural simulation

1. Introduction

In recent years, the shortage of high-rank coal resources has gradually become a prominent
problem in industrial development [1,2]. Lignite is widely used in energy fields, such as pyrolysis,
combustion, gasification and liquefaction [3,4]. In order to make more effective use of lignite resources,
many scholars carried out much research on modification treatment processes for lignite characteristics.
Arash Tahmasebi [5] discovered that the content of some functional groups in pulverized coal particles
decreased significantly after microwave irradiation, but the content of aromatic carbon and aromatic
ring in lignite was not affected by microwave pyrolysis. Sun Qiang [6] selected coal samples were
treated with water and heat treatment and found that the rate of re-absorption decreased with the
increase of temperature, and the lignite quality could improve most in high temperature and low
humidity. Ge Lichao [7] found the rank of lignite increased after microwave modification and the
combustion reaction process moved to high temperature zone by Thermogravimetry (TG) analysis.

The existing research focuses more on the optimization of modification processes and
proposes new modification processes. The mechanism of these processes were difficult to study
by experimental methods due to innumerable coupling reaction pathways during the utilization of
lignite [8–10]. Therefore, Huolinhe lignite (HLH) was selected as the experimental sample, using
microwave modification (MM) and ultrasonic modification (UM) as improvement methods separately.
The two-dimensional molecular models of HLH before and after modification were established based on
the parameters obtained by a series of detection methods, and three-dimensional model is constructed
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based on molecular mechanics and molecular dynamics. A new method is proposed to study the
structure and physicochemical properties of lignite modification from the molecular point of view
through this study.

2. Experiment

2.1. Modification of Lignite

HLH was low degree of coalification was selected as the experimental sample. HLH sample was
ground to 109–180 µm and dried in a vacuum drying chamber at 40 ◦C for 24 h. Take HLH sample
in a crucible, added 100 mL distilled water and blended fully. The crucible contained HLH sample
was placed in the ultrasonic oscillator to water bath oscillation for 60 s. The crucible was placed in the
drying oven for drying treatment with 85 ◦C for 4 h. The crucible containing the HLH sample was
placed in the a quartz reaction tube of the microwave reactor, the modification parameters set as 200 W
and 60 s, and the microwave activated. Industrial analysis and elemental analysis of lignite samples
before and after treatment were carried out and the results are shown in Table 1.

Table 1. Proximate and ultimate analyses of HLH lignite.

Sample (wt. %), ad
Proximate Analysis Ultimate Analysis

Mad Aad FCad Vdaf C H O N S

HLH 16.32 21.97 24.20 37.51 78.38 6.24 13.35 1.51 0.52
MM 15.22 22.32 26.03 36.43 80.67 5.81 11.29 1.66 0.57
UM 15.46 22.64 25.06 36.84 81.77 5.47 10.31 1.85 0.60

Note: ad: air-dry basis; daf: dry-and-ash-free basis. M: moisture; A: ash; FC is fixed carbon; V: volatile matter content.

2.2. FTIR and Structural Parameters Analysis

2.2.1. FTIR Results Analysis

Infrared spectroscopy is closely related to the chemical structure of the substance. It can be
confirmed the aromatic structure, oxygen-containing structure and fat structure of coal by FTIR
detection [11]. Infrared spectra of all samples are shown in Figure 1, with curves smoothed and
baselines corrected.
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Figure 1. FTIR spectra of lignite before and after modification. Figure 1. FTIR spectra of lignite before and after modification.

It can be observed that selected coal samples contain similar functional groups, hence the absorption
of sample to infrared spectrum occurs at same wavenumber positions [11]. These obtained spectra
are comprehensive curves of many independent peaks, which have to be deconvoluted to achieve.
All spectra were divided into 4 regions, namely 700–900 cm−1 (aromatic structures), 1000–1800 cm−1
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(oxygen-containing structures), 2800–3000 cm−1 (aliphatic structures) and 3000–3600 cm−1 (hydroxyl
structure). Consequently, the area values of specific peak can be derived. The corresponding
relationships between peak position and functional group are shown in Tables 2–5 [12,13].

Table 2. Aromatic structure of HLH before and after modification.

Assignment
Relative Area

HLH MM UM

4H 11.051 13.573 12.106
3H 86.498 86.427 87.894
2H 2.459 — —

Table 3. Oxygen-containing functional group of HLH before and after modification.

Assignment
Relative Area

HLH MM UM

Alkyl ethers 16.406 14.231 13.321
C-O phenols, ethers 48.679 40.349 51.372
C-O in aryl ethers 9.023 11.452 8.213

Symmertric CH3-Ar, R 1.612 1.823 —
Asymmertric CH3-, CH2- 2.462 7.435 9.468

Aromatic C=C 10.954 9.097 6.039
Conjugated C=O 9.633 10.979 10.534
Carboxyl acids 1.231 4.634 1.053

Table 4. Fatty structure of HLH before and after modification.

Assignment
Relative Area

HLH MM UM

Sym. R2CH2 13.118 20.622 17.705
R3CH 47.68 28.051 36.046

Asym. R2CH2 24.814 30.553 27.132
Asym. RCH3 14.388 20.774 19.118

Table 5. Hydroxyl structure of HLH before and after modification.

Assignment
Relative Area

HLH MM UM

OH-N 4.419 3.118 8.304
Ring hydroxyl 45.653 41.322 31.922

Phenol OH 35.271 41.202 42.944
OH-π 14.662 14.358 16.829

It can be found that there are 3 substitution modes of hydrogen atoms on benzene ring in HLH
structure. The proportion of triple substituted aromatics (3H) is the largest among all the samples.
The proportion of triple substituted aromatics of HLH raw coal is 86.498%, the MM sample is 86.427%
in, the UM sample is 87.893%. The tetrasubstituted hydrocarbons (2H) of HLH lignite has also
changed significantly. Tetrasubstituted hydrocarbons (2H) are not found in the infrared spectra of HLH
lignite after both modification. In the process of modification, the substitution reaction of aromatic
hydrocarbons may cause structural changes, which is due to the instability of other atoms and aliphatic
side chains in benzene rings.
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It is also found that the form and proportion of oxygen elements in HLH sample changed a lot
after modification, however the carbonyl (C=O), alkyl ether (C-O-C), and phenol hydroxyl (-OH)
groups are still the main existing forms of oxygen-containing functional group of HLH.

2.2.2. FTIR Structural Parameters Analysis

FTIR structural parameters could be obtained by the area of peak with peak fitting [14,15].
(1) Ratio of hydrogen to carbon H/C.

H
C

=
Had
Cad
12

(1)

(2) The aromatic carbon ratio far-F: On the premise of ignoring carbonyl carbon, assuming that
coal only contains aromatic carbon and aliphatic carbon, the formula for calculating aromatic carbon
rate is as follows:

Hal
H

=
A(3000− 2800)cm−1

A(3000− 2800)cm−1 + A(900− 700)cm−1
(2)

far−F = 1−
Cal

C
= 1−

Hal
H ×

H
C

Hal
Cal

(3)

where aromatic hydrogen ratio Har/H: Cal/C is the ratio of aliphatic carbons to the total number of
carbons, H/C represents the ratio of hydrogen to carbon atoms, Hal/Cal is 1.8 for all coal samples,
and represents the atomic ratio between hydrogen and carbon in aliphatic groups.

(3) Fat carbon ratio fal-F:
fal−F = 100− far−F (4)

(4) Lipid chain length and branching degree of coal I1: According to the ratio between CH2 and
CH3, namely the area ratio of A(CH2)/A(CH3), the aliphatic group length and the branched chain
degree were calculated to determine the aliphatic structural parameters. The intensity ratio of CH2/CH3

was determined by Equation (5):

I1 =
CH2

CH3
=

A2852cm−1 + A2924cm−1

A2957cm−1
(5)

(5) Alkane branching degree:

δF >
R3CH

A(3000−2800cm−1)
(6)

Compared with the alkane branching degree of the 3 coal samples from Table 6, the δF of HLH
without modification is 47.68% which indicate there were much tertiary carbon and quaternary
carbon in HLH raw coal. There were many branching structures in HLH raw coal. After microwave
modification, the main structure of HLH is methylene carbon with long straight chain.

Table 6. FTIR structural parameters of HLH before and after modification.

Parameter HLH MM UM

H/C 0.97 0.89 0.83
Hal/H 0.56 0.44 0.45
far-F 61.38 78.49 79.84
fal-F 38.62 21.52 16.16
I1 2.64 2.85 2.35
δF 47.68% 25.05% 36.05%
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2.3. 13C NMR Results Analysis

Figure 2 shows 13C NMR spectra of HLH lignite. It is including 2 main peaks. The lipid-carbon
peak area with chemical shift of 0–90 × 10−6 and the aromatic-carbon peak area with chemical shift of
90–165 × 10−6. The sample also contains a small amount of carbonyl carbon, with a chemical shift of
165–220 × 10−6 in the peak area [16,17]. The carbon spectra obtained before and after modification
were fitted by peak-splitting method, and 9 carbon skeleton structural parameters were obtained.
The results are shown in Table 7.
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Table 7. Structure attribution and relative content of chemical shifts in 13C NMR spectra of HLH before
and after modification.

Chemical Shift Structural Fragments Symbols Carbon Distribution
Sample

HLH MM UM

14–16 Aliphatic CH3 fal
M

Aliphatic carbon 30.48 32.246 32.21
16–22 Aromatic CH3 fal

A

22–50 Methylene fal
H

50–90 Oxy- aliphatic carbon fal
O

100–129 Aromatic protonated fa
H

Aromatic carbon 64.983 63.719 64.703
129–137 Aromatic bridgehead fa

B

137–148 Aromatic branched fa
S

148–165 Oxy- aromatic carbon fa
O

>165 Carbonyl carbon fa
C Carbonyl carbon 4.319 3.135 3.087
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XBP = fa
B

/(fa
H

+ fa
O

+ fa
S

+ fa
B

), the ratio of aromatic bridge carbon to peripheral carbon of HLH
before and after modification is an important parameter to construct macromolecular structure model of
lignite, which represent condensation degree of polycyclic aromatic hydrocarbons as well as reflecting
the size of aromatic cluster. According the parameters shown above, the XBP of 3 samples could be
calculated, and the value of HLH is 0.26, 0.29 for sample with microwave modification, and 0.28 for
sample with ultrasonic modification.

2.4. XPS Results Analysis

2.4.1. Oxygen Element Analysis

XPS is often used to characterize the existence of oxygen, nitrogen and other heteroatoms in coal,
which provides an important basis for the construction of macromolecular structure model of HLH [18].
XPS tests of HLH raw coal, microwave modified HLH and ultrasonic modified HLH were carried out,
and the XPS maps of 3 samples were processed by peak fitting. The peak-splitting diagram is shown in
Figure 3, and the form and content of nitrogen elements are shown in Table 8.
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Figure 3. XPS peak fitting of oxygen atoms of HLH before and after modification. 
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Figure 3. XPS peak fitting of oxygen atoms of HLH before and after modification.

The main forms of oxygen in HLH coal samples are C=O, C-O, -OH and COO-, and it can be
found in Table 8 that oxygen exists in most of the four forms of C-O in structure. The content of
C-O in HLH samples after microwave modification decreases 2%, but the content of COO-structure
form decreases from 14.37% to 35.25% of raw coal. 12.37%. The reason for this change may be that
microwave treatment destroys the oxygen structure of HLH raw coal. The content of oxygen-OH and
C=O in HLH coal samples treated by ultrasonic wave also increased obviously, while the content of
CO-form in opposite direction was still decreasing. Therefore, the microwave and ultrasonic treatment
of HLH has different effects on the existing forms of oxygen elements. The stability of COO-and C-O
structure forms is relatively poor and easy to be destroyed in the process of modification. On the
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contrary, the stability of C=O structure makes it not easy to be destroyed in the process of ultrasonic
and microwave treatment, which increases the proportion of C=O in the structure.

Table 8. XPS detection and analysis of oxygen composition forms of HLH before and after modification.

Elemental Peak Functionality Binding Energy (eV) Molar Content (%)

HLH

C-O 532.87 37.25
C=O 531.27 24.71
-OH 529.89 23.67

COO- 533.28 14.37

MM

C-O 532.08 35.25
C=O 531.87 26.47
-OH 530.08 25.91

COO- 533.28 12.37

UM

C-O 532.08 36.56
C=O 531.87 26.21
-OH 530.08 25.35

COO- 533.28 11.88

2.4.2. Nitrogen Element Analysis

Nitrogen in coal mainly comes from coal-forming plants, and most of it exists in the form of
organic matter, which mainly includes pyridine nitrogen (N-6), pyrrole nitrogen (N-5), nitrogen oxides
(N-X) and proton nitrogen (N-Q) [19,20]. In order to characterize the forms of nitrogen elements
in HLH before and after modification, the XPS spectra of HLH lignite were fitted by peak-splitting
method. The peak-splitting diagram is shown in Figure 4, and the forms and contents of nitrogen
elements are shown in Table 9.
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Figure 4. XPS peak fitting of nitrogen atoms of HLH before and after modification.
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Table 9. XPS detection and analysis of nitrogen composition forms of HLH before and after modification.

Elemental Peak Functionaliy Binding Energy (eV) Molar Content (%)

HLH
N-Q 402.21 32.78
N-5 396.75 42.81
N-6 399.81 24.41

MM
N-Q 402.21 31.28
N-5 396.75 43.02
N-6 399.81 25.70

UM
N-Q 402.21 30.78
N-5 396.75 43.31
N-6 399.81 25.91

By comparing the XPS data of N element in HLH before and after modification, it is obvious that
the percentages of N-5, N-6 and N-Q in HLH have changed significantly. The percentage of N-Q in
pulverized coal decreased to 31.28% and 30.78% respectively after modification, and the corresponding
proportion of N-5 and N-6 increased to varying degrees. The total amount of N-5 and N-6 of modified
HLH is nearly 70%. It can be seen that microwave and ultrasonic modification methods mainly play
a role in N-Q, while N-5 and N-6 form of nitrogen bond are relatively stable, and the above modification
methods have little effect on it. Therefore, in order to make the model representative, N-5 and N-6
nitrogen bonds are often used in the construction of macromolecule HLH lignite structure model.

2.5. Raman Results Analysis

There are two relatively broad D and G peaks in the Raman spectra of HLH, and two vibration
peaks have abundant information, the G peak in lignite does not really represent its crystal structure.
It mainly reflects the strength of the stretching vibration bond of aromatic rings [21,22]. Raman spectra
of coal samples are exhibited in Figure 5.
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There are many overlapping peaks between D and G peaks in Raman spectra of coal. In order
to obtain more accurate functional group information of HLH lignite before and after modification,
Position and area values of D and G peaks of coal samples obtained by deconvolution process of
Raman spectra shown in Figure 6. Raman fitting parameters of HLH coal samples before and after
modification are shown in Table 10.
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Figure 6. Raman peak separation fitting charts of HLH coal samples before and after reformation.

Table 10. Raman spectrum structural parameters of different coal samples.

Sample
Peak Position Peak Area Peak Height

PG-D AD/AG ID/IG
PD PG AD AG ID IG

HLH 1361.1 1594.3 47,030 57,990 4782.3 5926.3 233.2 0.81 0.81
MM 1362.1 1591.8 35,770 45,858 3105.5 3997.8 229.7 0.78 0.78
UM 1365.3 1595.6 41,480 55,500 3867.6 5173.1 230.3 0.75 0.75

From the AD and AG values of coal samples before and after modification, it can be found that
the D peak area of coal samples after microwave and ultrasonic treatment decreases, especially the
D peak area of coal samples after microwave treatment decreases significantly, which also shows
that microwave treatment makes HLH structure more complete. Compared with G peak area AG,
the AG value of HLH structure after microwave modification is significantly smaller than that of HLH.
It can be seen that the total number of aromatic rings in macromolecular structure of HLH treated by
microwave is the smallest, and the enrichment degree of aromatic carbon is the lowest, followed by the
macromolecular structure of HLH coal treated by ultrasound, while the content of aromatic rings in
the macromolecular structure of HLH coal is the highest and the enrichment degree of aromatic carbon
is the largest.

ID/IG is usually used to evaluate the disordering degree of carbon materials, and it decreases with
the increase of graphitization degree. After microwave treatment, the ID/IG value of HLH was reduced
from 0.81 to 0.78. Similarly, after ultrasonic treatment, the ID/IG value of HLH was also reduced to
0.75, and the ID/IG value was reduced. This indicated that the ordering degree of aromatic ring layers
in the structure increased and the content of fat chain and side chain decreased after microwave and
ultrasonic treatment.
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3. HLH Molecular Model Before and After Modification

3.1. Determination of the Type and Number of Aromatic Ring

The average molecular formula of HLH is C167N3O27H149 by elemental analysis. The average
molecular formula of microwave modified HLH is C148H129N3O20, and that of ultrasonic modified
HLH is C155H131O23N23. Combined with XPS and elemental analysis, it is found that S content in
HLH lignite is extremely small. S element was added to the macromolecular model, but it was found
that the percentage of S atom in the analysis of experimental elements was about 1.5%, which was
obviously inconsistent with the actual results. Therefore, a small amount of S content was neglected in
the construction of the macromolecular model of HLH.

XBP is calculated by using the twelve structural parameters, which is calculated by 13C NMR.
The ratio of aromatic bridge carbon to periphery carbon of HLH raw coal is 0.26, that of microwave
modified HLH is 0.29, and that of ultrasonic modified HLH is 0.28. The XBP of naphthalene ring with
two rings is 0.25, and that of anthracene ring with three rings is 0.40. Therefore, the aromatic framework
of HLH raw coal structure model is mainly composed of benzene ring and naphthalene ring. After HLH
with microwave modification model and HLH with ultrasonic modification aromatic framework is
mainly composed of naphthalene ring, with anthracene ring and benzene ring supplemented. In order
to make the XBP of HLH raw coal and HLH model after microwave and ultrasonic modification close
to 0.26, 0.29 and 0.28, the combination number of benzene, naphthalene and anthracene rings in its
structural model needs to be adjusted continuously. The type and number of aromatic rings in the
three structural models are determined. The results are shown in Table 11.

Table 11. Type and quantities of aromatic rings of HLH before and after modification.

Type of Aromatic Unit Structure
Number

HLH MM UM
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Comparing the previous 13C NMR and FTIR spectra, it is found that the proportion of oxygen
bonded by carbon-oxygen double bond is much smaller than that bonded by carbon-oxygen single
bond, which is consistent with the XPS test results. This shows that the main forms of oxygen in
macromolecular structure before and after HLH modification are mostly in the form of ether bond
and hydroxyl bond of carbon-oxygen single bond, and the other oxygen-containing structures are in
the second place. The final form of oxygen in the structure is determined by constantly adjusting the
structure of oxygen.

The main forms of nitrogen in HLH macromolecular structure are pyridine nitrogen and pyrrole
nitrogen. According to XPS analysis, the number of nitrogen atoms is always 3 of HLH before and after
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modification, and the main forms of nitrogen elements were pyridine nitrogen and pyrrole nitrogen
the content ratio was 2:1. Therefore, two pyridine rings and one pyrrole ring were added to the HLH
structure model before and after modification.

3.2. Model Construction

Wiser coal chemical model is used as the basis, which is widely accepted and considered to be
comprehensive and reasonable. Combining with the above calculation results, the existing forms and
proportions of each part of the macromolecular structure model before and after modification of HLH
are summarized and analyzed. Finally, the two-dimensional molecular model of HLH before and after
modification is preliminarily established according to the chemical structure characteristics obtained
from the experiments. As shown in Figures 7–9.
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Figure 7. Final two-dimensional model macromolecular structure diagram of HLH.
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Figure 8. Final two-dimensional model macromolecular structure of HLH after microwave modification.



Processes 2020, 8, 399 12 of 17

Processes 2020, 8, 399 12 of 17 

 

Figure 8. Final two-dimensional model macromolecular structure of HLH after microwave 
modification. 

 
Figure 9. Final two-dimensional model macromolecular structure of HLH after Ultrasonic 
modification. 

3.3. Verification of Model 

The 13C NMR chemical shifts of the three models were calculated and compared with the 
experimental 13C NMR chemical shifts. Because of the complexity and diversity of coal’s 
macromolecule structure, it is necessary to constantly adjust the types and quantities of its structural 
units in the construction process, so as to make its 13C NMR simulation spectra better consistent with 
the experimental spectra. The comparison of 13C NMR simulation spectra and experimental spectra 
of the three models is shown in Figure 10. 

 

Figure 10. Comparison of 13C NMR computational spectra and experimental spectra of HLH final 
two-dimensional model before and after modification: (a) HLH, (b) HLH after microwave 
modification, (c) HLH after Ultrasonic modification. 

It can be seen that the 13C NMR simulation spectra of the three models are in good agreement 
with the experimental spectra. There are some errors between the two spectra due to some 
uncontrollable factors in the experimental process, but it is considered acceptable and will not affect 
the characterization of average macromolecular structure of HLH coal samples. 

2

3
4

N 5

1

6

7

O
8

9

1011

12

13

14

15

16

1718

19

20
O 21

22
2324

25

26 27

28 29

O 30

O
31 32

33

34

35

36
3738

39

40
41

42

43

44

O45

46

47

O
48

49

O
51

55

56
57

58

59

60
61

62

63

64

N
65

OH
72

74

75
O

82
84

85 86

87

88

89

90
91

92

93

94
95

96

OH
97

109
110

O
111

112

113

114
115

116

117
118

N
119

120

121

122

123

124

125

126

127

O
128

129

130

131

132

133

134 135

136

137
138

139

140

141
142

OH
143

144

145

146

147

O148
149

O
150

151

152

153
154

155

156
157

O
158

159

160

161

162

163

164
165166

167

168
169

OH
170

172

173

174

175

176

177

178
179

180

181

182

183

O186

187

O
188

OH
189

191

192

O 193

194

195

197

171

184

185

190
196

200 201

202
203

204 205

206

207

208

209

O
210

198O
199

Figure 9. Final two-dimensional model macromolecular structure of HLH after Ultrasonic modification.

3.3. Verification of Model

The 13C NMR chemical shifts of the three models were calculated and compared with the
experimental 13C NMR chemical shifts. Because of the complexity and diversity of coal’s macromolecule
structure, it is necessary to constantly adjust the types and quantities of its structural units in the
construction process, so as to make its 13C NMR simulation spectra better consistent with the
experimental spectra. The comparison of 13C NMR simulation spectra and experimental spectra of the
three models is shown in Figure 10.
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Figure 10. Comparison of 13C NMR computational spectra and experimental spectra of HLH final
two-dimensional model before and after modification: (a) HLH, (b) HLH after microwave modification,
(c) HLH after Ultrasonic modification.

It can be seen that the 13C NMR simulation spectra of the three models are in good agreement with
the experimental spectra. There are some errors between the two spectra due to some uncontrollable
factors in the experimental process, but it is considered acceptable and will not affect the characterization
of average macromolecular structure of HLH coal samples.

In order to adjust the structure of the model to approximate the experimental data, most researchers
adopted the simulation of 13C NMR spectrum, but which cannot avoid the choice of isomers [23,24].
At the same time, the model obtained by this method is only a conceptual structure, which cannot
reflect the properties of chemical reactions. By using the main covalent bond concentration instead of
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the 13C NMR simulation spectrum, the molecular model can be better corrected. According to the 11
structural parameters (fa, fa

H, fa
O, fa

B, fa
S, fa

C, fal, fal
A, fal

M, fal
H, fal

O) obtained from 13C NMB data,
nine covalent bond concentrations of HLH lignite (Car-Car, Car-Cal, Cal-Cal, Car-H, Cal-H, Car-O,
Cal-O, Cal=O, and O-H.) can be obtained. This covalent concentration method reflects the essence of
13C NMR simulation spectroscopy. By comparing the simulated concentration of the main covalent
bond with the experimental results, the preliminary two-dimensional molecular model is modified.
The concentrations of nine types covalent bonds in coal can be determined by Equations (7)–(15).

conCa−Ca =
1
2

[C%
12

(
3 fa − f H

a − f S
a − f O

a

)]
(7)

conCa−Cal =
C%
12

f S
a (8)

conCal−Cal = 1
2

[
C%
12

(
4 fal + 2 f C

a − f C
a − f O

al

)
− nCal−H

]
= −H%

2 + O%
16 + 1

2

[
C%
12

(
4 fal + f H

a − f S
a − f O

a − 2 f O
al − f C

a

)] (9)

conCa−H =
C%
12

f H
a (10)

conCal−H = H%− conO−H − conCa−H

= H%− 2 O%
16 + C%

12

(
f O
a + f O

al + 2 f O
a + 3 f C

a − f H
ar

) (11)

conCar−O =
C%
12

f O
ar (12)

conCal−O =
C%
12

(
f O
al + f C

a

)
(13)

conCal=o =
C%
12

(
f C
a

)
(14)

conO−H =
2O%

16
−

C%
12

(
f O
a + f O

al + 3 f C
a

)
(15)

Based on the formula, the information of covalent bond concentration of the three final planar
model structures is calculated and summarized in Table 12, in order to more intuitively compare and
analyze the difference between the covalent bond concentration obtained from the experiment and that
calculated from the model. Then, the molecular models of the three structures obtained from HLH raw
coal, microwave, and ultrasonic upgrading of HLH coal, respectively, were adjusted.

Table 12. Covalent bond concentrations of 3 structural models of HLH before and after modification.

Sample conCa-Ca conCa-Cal conCal-Cal conCa-H conCal-H conCa-O conCal-O conCal=O conO-H

HLH 46.701 6.943 18.037 16.410 35.768 5.303 5.389 2.828 7.208
HLH Model 46.233 6.822 17.354 17.231 35.154 5.036 5.673. 2.32 7.053

MM 47.669 10.053 19.488 14.499 36.133 4.851 3.621 2.113 5.252
MM Model 47.276 10.997 17.376 15.547 34.453 4.784 3.435 2.349 5.127

UM 47.095 9.934 20.374 15.093 38.309 4.793 2.133 2.005 6.407
UM Model 46.967 9.322 19.763 15.216 37.867 4.452 2.243 2.105 6.395

According to the covalent bond concentration obtained from the experiment and the concentration
calculated by the model, it was found that the concentration of the nine covalent bonds is not different
from that calculated by the model, but the difference between the experimental concentration of
conCal-Cal and conCar-H and the calculated concentration of the model is relatively large. The reason
for this may be that there is a certain difference between the proportion of elements in the model
and that in the experimental measurement, which makes the calculation of the nine covalent bonds
concentration more intensive.
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3.4. Adjustment of Model

After the final model of molecular structure is obtained, the molecular formulas and element
contents of the three models of HLH under different modification conditions are calculated.
By comparing the results of Tables 13 and 14, it can be seen that the element contents of the three
models are very close to the experimental values, and there is no significant difference, which verifies
the reliability of the model.

Table 13. Element content measured by experiments of HLH before and after modification.

Sample
Ultimate Analysis (wt. %), ad

C H O N

HLH 78.56 6.36 13.48 1.61
MM 80.87 5.99 11.39 1.76
UM 81.97 5.67 10.41 1.95

Table 14. Molecular formula and element content of the model of HLH before and after modification.

Sample Molecular Formula
Ultimate Analysis (wt. %)

C H O N

HLH C167H151N3O27 76.21 5.78 16.41 1.6
MM C148H129N3O20 78.52 5.73 14.10 1.85
UM C155H131N3O23 77.45 5.49 15.31 1.75

3.5. Construction of 3- Dimensional Model

The three-dimensional model is constructed for the 2- dimensional structure of HLH before and
after modification, whose three-dimensional geometric optimization configuration is calculated by
MM and MD of Forcite module in Materials Studio 8.0 software. The structure model of HLH before
and after optimization is shown in Figures 11–13, and the energy change in the process of optimization
is shown in Table 15.
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Figure 13. 3-dimensional structure of HLH lignite model modified by ultrasound before and after
geometric optimization.

Table 15. Energy comparison before and after HLH structural model optimization.

Sample Total Energy
(Kcal·mol−1)

Valence Energy (Kcal·mol−1) Non-Bond Energy (Kcal·mol−1)

EB EA ET EI EH Evan EE

HLH
Initial 6030.56 2602.16 65.21 90.59 2.05 0 3270.55 0
Final 810.65 204.89 197.06 119.08 18.42 0 342.05 −70.85

MM
Initial 6310.80 2225.16 153.04 89.24 1.68 0 3841.68 0
Final 850.20 191.04 217.58 139.81 24.99 0 344.30 −67.52

UM
Initial 7608.20. 2402.78 142.34 122.83 1.56 0 4938.69 0
Final 846.37 187.50 189.76 134.07 17.57 0 348.01 −30.54

It can be seen from this that the total energy of the minimum energy structures of the three
structures decreases sharply. Compared with other terms, the value of Van der Waals energy (EVan)
in the non-bonding energy is the largest, which constitutes the most important part of the potential
energy. Therefore, the decrease of the inter-molecular Van der Waals energy (EVan) is also the main
factor that makes the HLH macromolecular structure model stable in space.

4. Conclusions

(1) The molecular formula of the three structures was determined by elemental analysis.
The average molecular formula of HLH raw coal configuration was C167N3O27H149, and the aromatic
part consists of five benzene rings, six naphthalene rings, two pyrrole rings and one pyridine ring.
The average molecular formula of Mm coal configuration was C148H129N3O20, the aromatic structure
includes three benzene rings, four anthracene rings, four naphthalene rings, one anthracene ring,
one pyridine ring and two pyrrole rings. And the average molecular formula of Um coal configuration
was C155H131O23N23, the aromatic structure includes three benzene rings, five anthracene rings,
four naphthalene rings, one anthracene ring, one pyridine ring, and two pyrrole rings.

(2) It was found that after microwave and ultrasonic treatment, the orderliness of aromatic ring
layer arrangement increased. The content of fat chain and side chain decreased, and the existence form
of oxygen atoms also changed, in which the proportion of C-O and COO- form shows a decreasing trend.
It was found that the total energy of the three structures decreased significantly after optimization.
The chemical bonds between the atoms are obviously bent and distorted, and the space configuration
is more stereoscopic. Although the model constructed in this paper is not the most comprehensive
and optimized configuration before and after HLH modification, some problems such as isomers are
considered in the process of construction, which has a certain reference value for better understanding
and application of lignite upgrading.
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